aboutsummaryrefslogtreecommitdiffstats
path: root/alc/uhjfilter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'alc/uhjfilter.cpp')
-rw-r--r--alc/uhjfilter.cpp208
1 files changed, 0 insertions, 208 deletions
diff --git a/alc/uhjfilter.cpp b/alc/uhjfilter.cpp
deleted file mode 100644
index 09edba84..00000000
--- a/alc/uhjfilter.cpp
+++ /dev/null
@@ -1,208 +0,0 @@
-
-#include "config.h"
-
-#include "uhjfilter.h"
-
-#ifdef HAVE_SSE_INTRINSICS
-#include <xmmintrin.h>
-#endif
-
-#include <algorithm>
-#include <iterator>
-
-#include "AL/al.h"
-
-#include "alcomplex.h"
-#include "alnumeric.h"
-#include "opthelpers.h"
-
-
-namespace {
-
-using complex_d = std::complex<double>;
-
-std::array<float,Uhj2Encoder::sFilterSize> GenerateFilter()
-{
- /* Some notes on this filter construction.
- *
- * A wide-band phase-shift filter needs a delay to maintain linearity. A
- * dirac impulse in the center of a time-domain buffer represents a filter
- * passing all frequencies through as-is with a pure delay. Converting that
- * to the frequency domain, adjusting the phase of each frequency bin by
- * +90 degrees, then converting back to the time domain, results in a FIR
- * filter that applies a +90 degree wide-band phase-shift.
- *
- * A particularly notable aspect of the time-domain filter response is that
- * every other coefficient is 0. This allows doubling the effective size of
- * the filter, by storing only the non-0 coefficients and double-stepping
- * over the input to apply it.
- *
- * Additionally, the resulting filter is independent of the sample rate.
- * The same filter can be applied regardless of the device's sample rate
- * and achieve the same effect.
- */
- constexpr size_t fft_size{Uhj2Encoder::sFilterSize * 2};
- constexpr size_t half_size{fft_size / 2};
-
- /* Generate a frequency domain impulse with a +90 degree phase offset.
- * Reconstruct the mirrored frequencies to convert to the time domain.
- */
- auto fftBuffer = std::make_unique<complex_d[]>(fft_size);
- std::fill_n(fftBuffer.get(), fft_size, complex_d{});
- fftBuffer[half_size] = 1.0;
-
- forward_fft({fftBuffer.get(), fft_size});
- for(size_t i{0};i < half_size+1;++i)
- fftBuffer[i] = complex_d{-fftBuffer[i].imag(), fftBuffer[i].real()};
- for(size_t i{half_size+1};i < fft_size;++i)
- fftBuffer[i] = std::conj(fftBuffer[fft_size - i]);
- inverse_fft({fftBuffer.get(), fft_size});
-
- /* Reverse the filter for simpler processing, and store only the non-0
- * coefficients.
- */
- auto ret = std::make_unique<std::array<float,Uhj2Encoder::sFilterSize>>();
- auto fftiter = fftBuffer.get() + half_size + (Uhj2Encoder::sFilterSize-1);
- for(float &coeff : *ret)
- {
- coeff = static_cast<float>(fftiter->real() / double{fft_size});
- fftiter -= 2;
- }
- return *ret;
-}
-alignas(16) const auto PShiftCoeffs = GenerateFilter();
-
-
-void allpass_process(al::span<float> dst, const float *RESTRICT src)
-{
-#ifdef HAVE_SSE_INTRINSICS
- size_t pos{0};
- if(size_t todo{dst.size()>>1})
- {
- do {
- __m128 r04{_mm_setzero_ps()};
- __m128 r14{_mm_setzero_ps()};
- for(size_t j{0};j < PShiftCoeffs.size();j+=4)
- {
- const __m128 coeffs{_mm_load_ps(&PShiftCoeffs[j])};
- const __m128 s0{_mm_loadu_ps(&src[j*2])};
- const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])};
-
- __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))};
- r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs));
-
- s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1));
- r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs));
- }
- r04 = _mm_add_ps(r04, _mm_shuffle_ps(r04, r04, _MM_SHUFFLE(0, 1, 2, 3)));
- r04 = _mm_add_ps(r04, _mm_movehl_ps(r04, r04));
- dst[pos++] += _mm_cvtss_f32(r04);
-
- r14 = _mm_add_ps(r14, _mm_shuffle_ps(r14, r14, _MM_SHUFFLE(0, 1, 2, 3)));
- r14 = _mm_add_ps(r14, _mm_movehl_ps(r14, r14));
- dst[pos++] += _mm_cvtss_f32(r14);
-
- src += 2;
- } while(--todo);
- }
- if((dst.size()&1))
- {
- __m128 r4{_mm_setzero_ps()};
- for(size_t j{0};j < PShiftCoeffs.size();j+=4)
- {
- const __m128 coeffs{_mm_load_ps(&PShiftCoeffs[j])};
- /* NOTE: This could alternatively be done with two unaligned loads
- * and a shuffle. Which would be better?
- */
- const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
- r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
- }
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
-
- dst[pos] += _mm_cvtss_f32(r4);
- }
-
-#else
-
- for(float &output : dst)
- {
- float ret{0.0f};
- for(size_t j{0};j < PShiftCoeffs.size();++j)
- ret += src[j*2] * PShiftCoeffs[j];
-
- output += ret;
- ++src;
- }
-#endif
-}
-
-} // namespace
-
-
-/* Encoding 2-channel UHJ from B-Format is done as:
- *
- * S = 0.9396926*W + 0.1855740*X
- * D = j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y
- *
- * Left = (S + D)/2.0
- * Right = (S - D)/2.0
- *
- * where j is a wide-band +90 degree phase shift.
- *
- * The phase shift is done using a FIR filter derived from an FFT'd impulse
- * with the desired shift.
- */
-
-void Uhj2Encoder::encode(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
- const FloatBufferLine *InSamples, const size_t SamplesToDo)
-{
- ASSUME(SamplesToDo > 0);
-
- float *RESTRICT left{al::assume_aligned<16>(LeftOut.data())};
- float *RESTRICT right{al::assume_aligned<16>(RightOut.data())};
-
- const float *RESTRICT winput{al::assume_aligned<16>(InSamples[0].data())};
- const float *RESTRICT xinput{al::assume_aligned<16>(InSamples[1].data())};
- const float *RESTRICT yinput{al::assume_aligned<16>(InSamples[2].data())};
-
- /* Combine the previously delayed mid/side signal with the input. */
-
- /* S = 0.9396926*W + 0.1855740*X */
- auto miditer = std::copy(mMidDelay.cbegin(), mMidDelay.cend(), mMid.begin());
- std::transform(winput, winput+SamplesToDo, xinput, miditer,
- [](const float w, const float x) noexcept -> float
- { return 0.9396926f*w + 0.1855740f*x; });
-
- /* D = 0.6554516*Y */
- auto sideiter = std::copy(mSideDelay.cbegin(), mSideDelay.cend(), mSide.begin());
- std::transform(yinput, yinput+SamplesToDo, sideiter,
- [](const float y) noexcept -> float { return 0.6554516f*y; });
-
- /* Include any existing direct signal in the mid/side buffers. */
- for(size_t i{0};i < SamplesToDo;++i,++miditer)
- *miditer += left[i] + right[i];
- for(size_t i{0};i < SamplesToDo;++i,++sideiter)
- *sideiter += left[i] - right[i];
-
- /* Copy the future samples back to the delay buffers for next time. */
- std::copy_n(mMid.cbegin()+SamplesToDo, mMidDelay.size(), mMidDelay.begin());
- std::copy_n(mSide.cbegin()+SamplesToDo, mSideDelay.size(), mSideDelay.begin());
-
- /* Now add the all-passed signal into the side signal. */
-
- /* D += j(-0.3420201*W + 0.5098604*X) */
- auto tmpiter = std::copy(mSideHistory.cbegin(), mSideHistory.cend(), mTemp.begin());
- std::transform(winput, winput+SamplesToDo, xinput, tmpiter,
- [](const float w, const float x) noexcept -> float
- { return -0.3420201f*w + 0.5098604f*x; });
- std::copy_n(mTemp.cbegin()+SamplesToDo, mSideHistory.size(), mSideHistory.begin());
- allpass_process({mSide.data(), SamplesToDo}, mTemp.data());
-
- /* Left = (S + D)/2.0 */
- for(size_t i{0};i < SamplesToDo;i++)
- left[i] = (mMid[i] + mSide[i]) * 0.5f;
- /* Right = (S - D)/2.0 */
- for(size_t i{0};i < SamplesToDo;i++)
- right[i] = (mMid[i] - mSide[i]) * 0.5f;
-}