diff options
Diffstat (limited to 'alc/mixer/mixer_c.cpp')
-rw-r--r-- | alc/mixer/mixer_c.cpp | 208 |
1 files changed, 208 insertions, 0 deletions
diff --git a/alc/mixer/mixer_c.cpp b/alc/mixer/mixer_c.cpp new file mode 100644 index 00000000..47c4a6f4 --- /dev/null +++ b/alc/mixer/mixer_c.cpp @@ -0,0 +1,208 @@ +#include "config.h" + +#include <cassert> + +#include <limits> + +#include "alcmain.h" +#include "alu.h" +#include "alSource.h" +#include "alAuxEffectSlot.h" +#include "defs.h" +#include "hrtfbase.h" + + +namespace { + +inline ALfloat do_point(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei) +{ return vals[0]; } +inline ALfloat do_lerp(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) +{ return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); } +inline ALfloat do_cubic(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) +{ return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); } +inline ALfloat do_bsinc(const InterpState &istate, const ALfloat *RESTRICT vals, const ALsizei frac) +{ + ASSUME(istate.bsinc.m > 0); + + // Calculate the phase index and factor. +#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) + const ALsizei pi{frac >> FRAC_PHASE_BITDIFF}; + const ALfloat pf{(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF))}; +#undef FRAC_PHASE_BITDIFF + + const ALfloat *fil{istate.bsinc.filter + istate.bsinc.m*pi*4}; + const ALfloat *scd{fil + istate.bsinc.m}; + const ALfloat *phd{scd + istate.bsinc.m}; + const ALfloat *spd{phd + istate.bsinc.m}; + + // Apply the scale and phase interpolated filter. + ALfloat r{0.0f}; + for(ALsizei j_f{0};j_f < istate.bsinc.m;j_f++) + r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f]; + return r; +} + +using SamplerT = ALfloat(const InterpState&, const ALfloat*RESTRICT, const ALsizei); +template<SamplerT &Sampler> +const ALfloat *DoResample(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) +{ + ASSUME(numsamples > 0); + ASSUME(increment > 0); + ASSUME(frac >= 0); + + const InterpState istate{*state}; + auto proc_sample = [&src,&frac,istate,increment]() -> ALfloat + { + const ALfloat ret{Sampler(istate, src, frac)}; + + frac += increment; + src += frac>>FRACTIONBITS; + frac &= FRACTIONMASK; + + return ret; + }; + std::generate_n(dst, numsamples, proc_sample); + + return dst; +} + +} // namespace + +template<> +const ALfloat *Resample_<CopyTag,CTag>(const InterpState*, const ALfloat *RESTRICT src, ALsizei, + ALint, ALfloat *RESTRICT dst, ALsizei dstlen) +{ + ASSUME(dstlen > 0); +#if defined(HAVE_SSE) || defined(HAVE_NEON) + /* Avoid copying the source data if it's aligned like the destination. */ + if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst)&15)) + return src; +#endif + std::copy_n(src, dstlen, dst); + return dst; +} + +template<> +const ALfloat *Resample_<PointTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ return DoResample<do_point>(state, src, frac, increment, dst, dstlen); } + +template<> +const ALfloat *Resample_<LerpTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ return DoResample<do_lerp>(state, src, frac, increment, dst, dstlen); } + +template<> +const ALfloat *Resample_<CubicTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ return DoResample<do_cubic>(state, src-1, frac, increment, dst, dstlen); } + +template<> +const ALfloat *Resample_<BSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst, dstlen); } + + +static inline void ApplyCoeffs(ALsizei /*Offset*/, float2 *RESTRICT Values, const ALsizei IrSize, + const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right) +{ + ASSUME(IrSize >= 2); + for(ALsizei c{0};c < IrSize;++c) + { + Values[c][0] += Coeffs[c][0] * left; + Values[c][1] += Coeffs[c][1] * right; + } +} + +template<> +void MixHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, + MixHrtfFilter *hrtfparams, const ALsizei BufferSize) +{ + MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, + hrtfparams, BufferSize); +} + +template<> +void MixHrtfBlend_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, + const HrtfFilter *oldparams, MixHrtfFilter *newparams, const ALsizei BufferSize) +{ + MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, + oldparams, newparams, BufferSize); +} + +template<> +void MixDirectHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State, + const ALsizei BufferSize) +{ + MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); +} + + +template<> +void Mix_<CTag>(const ALfloat *data, const al::span<FloatBufferLine> OutBuffer, + ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos, + const ALsizei BufferSize) +{ + ASSUME(BufferSize > 0); + + const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f}; + for(FloatBufferLine &output : OutBuffer) + { + ALfloat *RESTRICT dst{output.data()+OutPos}; + ALfloat gain{*CurrentGains}; + const ALfloat diff{*TargetGains - gain}; + + ALsizei pos{0}; + if(std::fabs(diff) > std::numeric_limits<float>::epsilon()) + { + ALsizei minsize{mini(BufferSize, Counter)}; + const ALfloat step{diff * delta}; + ALfloat step_count{0.0f}; + for(;pos < minsize;pos++) + { + dst[pos] += data[pos] * (gain + step*step_count); + step_count += 1.0f; + } + if(pos == Counter) + gain = *TargetGains; + else + gain += step*step_count; + *CurrentGains = gain; + } + ++CurrentGains; + ++TargetGains; + + if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + for(;pos < BufferSize;pos++) + dst[pos] += data[pos]*gain; + } +} + +/* Basically the inverse of the above. Rather than one input going to multiple + * outputs (each with its own gain), it's multiple inputs (each with its own + * gain) going to one output. This applies one row (vs one column) of a matrix + * transform. And as the matrices are more or less static once set up, no + * stepping is necessary. + */ +template<> +void MixRow_<CTag>(FloatBufferLine &OutBuffer, const ALfloat *Gains, + const al::span<const FloatBufferLine> InSamples, const ALsizei InPos, const ALsizei BufferSize) +{ + ASSUME(BufferSize > 0); + + for(const FloatBufferLine &input : InSamples) + { + const ALfloat *RESTRICT src{input.data()+InPos}; + const ALfloat gain{*(Gains++)}; + if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + + for(ALsizei i{0};i < BufferSize;i++) + OutBuffer[i] += src[i] * gain; + } +} |