aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects/convolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'alc/effects/convolution.cpp')
-rw-r--r--alc/effects/convolution.cpp388
1 files changed, 229 insertions, 159 deletions
diff --git a/alc/effects/convolution.cpp b/alc/effects/convolution.cpp
index 7f36c415..517e6b08 100644
--- a/alc/effects/convolution.cpp
+++ b/alc/effects/convolution.cpp
@@ -17,7 +17,6 @@
#include <arm_neon.h>
#endif
-#include "albyte.h"
#include "alcomplex.h"
#include "almalloc.h"
#include "alnumbers.h"
@@ -35,44 +34,49 @@
#include "core/fmt_traits.h"
#include "core/mixer.h"
#include "intrusive_ptr.h"
+#include "pffft.h"
#include "polyphase_resampler.h"
#include "vector.h"
namespace {
-/* Convolution reverb is implemented using a segmented overlap-add method. The
- * impulse response is broken up into multiple segments of 128 samples, and
- * each segment has an FFT applied with a 256-sample buffer (the latter half
- * left silent) to get its frequency-domain response. The resulting response
- * has its positive/non-mirrored frequencies saved (129 bins) in each segment.
+/* Convolution is implemented using a segmented overlap-add method. The impulse
+ * response is split into multiple segments of 128 samples, and each segment
+ * has an FFT applied with a 256-sample buffer (the latter half left silent) to
+ * get its frequency-domain response. The resulting response has its positive/
+ * non-mirrored frequencies saved (129 bins) in each segment. Note that since
+ * the 0- and half-frequency bins are real for a real signal, their imaginary
+ * components are always 0 and can be dropped, allowing their real components
+ * to be combined so only 128 complex values are stored for the 129 bins.
*
- * Input samples are similarly broken up into 128-sample segments, with an FFT
- * applied to each new incoming segment to get its 129 bins. A history of FFT'd
- * input segments is maintained, equal to the length of the impulse response.
+ * Input samples are similarly broken up into 128-sample segments, with a 256-
+ * sample FFT applied to each new incoming segment to get its 129 bins. A
+ * history of FFT'd input segments is maintained, equal to the number of
+ * impulse response segments.
*
- * To apply the reverberation, each impulse response segment is convolved with
+ * To apply the convolution, each impulse response segment is convolved with
* its paired input segment (using complex multiplies, far cheaper than FIRs),
- * accumulating into a 256-bin FFT buffer. The input history is then shifted to
- * align with later impulse response segments for next time.
+ * accumulating into a 129-bin FFT buffer. The input history is then shifted to
+ * align with later impulse response segments for the next input segment.
*
* An inverse FFT is then applied to the accumulated FFT buffer to get a 256-
* sample time-domain response for output, which is split in two halves. The
* first half is the 128-sample output, and the second half is a 128-sample
* (really, 127) delayed extension, which gets added to the output next time.
- * Convolving two time-domain responses of lengths N and M results in a time-
- * domain signal of length N+M-1, and this holds true regardless of the
- * convolution being applied in the frequency domain, so these "overflow"
- * samples need to be accounted for.
+ * Convolving two time-domain responses of length N results in a time-domain
+ * signal of length N*2 - 1, and this holds true regardless of the convolution
+ * being applied in the frequency domain, so these "overflow" samples need to
+ * be accounted for.
*
- * To avoid a delay with gathering enough input samples to apply an FFT with,
- * the first segment is applied directly in the time-domain as the samples come
- * in. Once enough have been retrieved, the FFT is applied on the input and
- * it's paired with the remaining (FFT'd) filter segments for processing.
+ * To avoid a delay with gathering enough input samples for the FFT, the first
+ * segment is applied directly in the time-domain as the samples come in. Once
+ * enough have been retrieved, the FFT is applied on the input and it's paired
+ * with the remaining (FFT'd) filter segments for processing.
*/
-void LoadSamples(float *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
+void LoadSamples(float *RESTRICT dst, const std::byte *src, const size_t srcstep, FmtType srctype,
const size_t samples) noexcept
{
#define HANDLE_FMT(T) case T: al::LoadSampleArray<T>(dst, src, srcstep, samples); break
@@ -80,6 +84,7 @@ void LoadSamples(float *RESTRICT dst, const al::byte *src, const size_t srcstep,
{
HANDLE_FMT(FmtUByte);
HANDLE_FMT(FmtShort);
+ HANDLE_FMT(FmtInt);
HANDLE_FMT(FmtFloat);
HANDLE_FMT(FmtDouble);
HANDLE_FMT(FmtMulaw);
@@ -94,40 +99,43 @@ void LoadSamples(float *RESTRICT dst, const al::byte *src, const size_t srcstep,
}
-inline auto& GetAmbiScales(AmbiScaling scaletype) noexcept
+constexpr auto GetAmbiScales(AmbiScaling scaletype) noexcept
{
switch(scaletype)
{
- case AmbiScaling::FuMa: return AmbiScale::FromFuMa();
- case AmbiScaling::SN3D: return AmbiScale::FromSN3D();
- case AmbiScaling::UHJ: return AmbiScale::FromUHJ();
+ case AmbiScaling::FuMa: return al::span{AmbiScale::FromFuMa};
+ case AmbiScaling::SN3D: return al::span{AmbiScale::FromSN3D};
+ case AmbiScaling::UHJ: return al::span{AmbiScale::FromUHJ};
case AmbiScaling::N3D: break;
}
- return AmbiScale::FromN3D();
+ return al::span{AmbiScale::FromN3D};
}
-inline auto& GetAmbiLayout(AmbiLayout layouttype) noexcept
+constexpr auto GetAmbiLayout(AmbiLayout layouttype) noexcept
{
- if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa();
- return AmbiIndex::FromACN();
+ if(layouttype == AmbiLayout::FuMa) return al::span{AmbiIndex::FromFuMa};
+ return al::span{AmbiIndex::FromACN};
}
-inline auto& GetAmbi2DLayout(AmbiLayout layouttype) noexcept
+constexpr auto GetAmbi2DLayout(AmbiLayout layouttype) noexcept
{
- if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D();
- return AmbiIndex::FromACN2D();
+ if(layouttype == AmbiLayout::FuMa) return al::span{AmbiIndex::FromFuMa2D};
+ return al::span{AmbiIndex::FromACN2D};
}
-struct ChanMap {
+constexpr float sin30{0.5f};
+constexpr float cos30{0.866025403785f};
+constexpr float sin45{al::numbers::sqrt2_v<float>*0.5f};
+constexpr float cos45{al::numbers::sqrt2_v<float>*0.5f};
+constexpr float sin110{ 0.939692620786f};
+constexpr float cos110{-0.342020143326f};
+
+struct ChanPosMap {
Channel channel;
- float angle;
- float elevation;
+ std::array<float,3> pos;
};
-constexpr float Deg2Rad(float x) noexcept
-{ return static_cast<float>(al::numbers::pi / 180.0 * x); }
-
using complex_f = std::complex<float>;
@@ -181,6 +189,13 @@ void apply_fir(al::span<float> dst, const float *RESTRICT src, const float *REST
#endif
}
+
+struct PFFFTSetupDeleter {
+ void operator()(PFFFT_Setup *ptr) { pffft_destroy_setup(ptr); }
+};
+using PFFFTSetupPtr = std::unique_ptr<PFFFT_Setup,PFFFTSetupDeleter>;
+
+
struct ConvolutionState final : public EffectState {
FmtChannels mChannels{};
AmbiLayout mAmbiLayout{};
@@ -188,11 +203,13 @@ struct ConvolutionState final : public EffectState {
uint mAmbiOrder{};
size_t mFifoPos{0};
- std::array<float,ConvolveUpdateSamples*2> mInput{};
+ alignas(16) std::array<float,ConvolveUpdateSamples*2> mInput{};
al::vector<std::array<float,ConvolveUpdateSamples>,16> mFilter;
al::vector<std::array<float,ConvolveUpdateSamples*2>,16> mOutput;
- alignas(16) std::array<complex_f,ConvolveUpdateSize> mFftBuffer{};
+ PFFFTSetupPtr mFft{};
+ alignas(16) std::array<float,ConvolveUpdateSize> mFftBuffer{};
+ alignas(16) std::array<float,ConvolveUpdateSize> mFftWorkBuffer{};
size_t mCurrentSegment{0};
size_t mNumConvolveSegs{0};
@@ -204,9 +221,8 @@ struct ConvolutionState final : public EffectState {
float Current[MAX_OUTPUT_CHANNELS]{};
float Target[MAX_OUTPUT_CHANNELS]{};
};
- using ChannelDataArray = al::FlexArray<ChannelData>;
- std::unique_ptr<ChannelDataArray> mChans;
- std::unique_ptr<complex_f[]> mComplexData;
+ std::vector<ChannelData> mChans;
+ al::vector<float,16> mComplexData;
ConvolutionState() = default;
@@ -229,7 +245,7 @@ struct ConvolutionState final : public EffectState {
void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut,
const size_t samplesToDo)
{
- for(auto &chan : *mChans)
+ for(auto &chan : mChans)
MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current, chan.Target,
samplesToDo, 0);
}
@@ -237,7 +253,7 @@ void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut,
void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut,
const size_t samplesToDo)
{
- for(auto &chan : *mChans)
+ for(auto &chan : mChans)
{
const al::span<float> src{chan.mBuffer.data(), samplesToDo};
chan.mFilter.processScale(src, chan.mHfScale, chan.mLfScale);
@@ -251,19 +267,23 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
using UhjDecoderType = UhjDecoder<512>;
static constexpr auto DecoderPadding = UhjDecoderType::sInputPadding;
- constexpr uint MaxConvolveAmbiOrder{1u};
+ static constexpr uint MaxConvolveAmbiOrder{1u};
+
+ if(!mFft)
+ mFft = PFFFTSetupPtr{pffft_new_setup(ConvolveUpdateSize, PFFFT_REAL)};
mFifoPos = 0;
mInput.fill(0.0f);
decltype(mFilter){}.swap(mFilter);
decltype(mOutput){}.swap(mOutput);
- mFftBuffer.fill(complex_f{});
+ mFftBuffer.fill(0.0f);
+ mFftWorkBuffer.fill(0.0f);
mCurrentSegment = 0;
mNumConvolveSegs = 0;
- mChans = nullptr;
- mComplexData = nullptr;
+ decltype(mChans){}.swap(mChans);
+ decltype(mComplexData){}.swap(mComplexData);
/* An empty buffer doesn't need a convolution filter. */
if(!buffer || buffer->mSampleLen < 1) return;
@@ -273,12 +293,11 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
mAmbiScaling = IsUHJ(mChannels) ? AmbiScaling::UHJ : buffer->mAmbiScaling;
mAmbiOrder = minu(buffer->mAmbiOrder, MaxConvolveAmbiOrder);
- constexpr size_t m{ConvolveUpdateSize/2 + 1};
const auto bytesPerSample = BytesFromFmt(buffer->mType);
const auto realChannels = buffer->channelsFromFmt();
const auto numChannels = (mChannels == FmtUHJ2) ? 3u : ChannelsFromFmt(mChannels, mAmbiOrder);
- mChans = ChannelDataArray::Create(numChannels);
+ mChans.resize(numChannels);
/* The impulse response needs to have the same sample rate as the input and
* output. The bsinc24 resampler is decent, but there is high-frequency
@@ -293,7 +312,7 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
buffer->mSampleRate);
const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
- for(auto &e : *mChans)
+ for(auto &e : mChans)
e.mFilter = splitter;
mFilter.resize(numChannels, {});
@@ -307,9 +326,8 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples;
mNumConvolveSegs = maxz(mNumConvolveSegs, 2) - 1;
- const size_t complex_length{mNumConvolveSegs * m * (numChannels+1)};
- mComplexData = std::make_unique<complex_f[]>(complex_length);
- std::fill_n(mComplexData.get(), complex_length, complex_f{});
+ const size_t complex_length{mNumConvolveSegs * ConvolveUpdateSize * (numChannels+1)};
+ mComplexData.resize(complex_length, 0.0f);
/* Load the samples from the buffer. */
const size_t srclinelength{RoundUp(buffer->mSampleLen+DecoderPadding, 16)};
@@ -330,7 +348,10 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
auto ressamples = std::make_unique<double[]>(buffer->mSampleLen +
(resampler ? resampledCount : 0));
- complex_f *filteriter = mComplexData.get() + mNumConvolveSegs*m;
+ auto ffttmp = al::vector<float,16>(ConvolveUpdateSize);
+ auto fftbuffer = std::vector<std::complex<double>>(ConvolveUpdateSize);
+
+ float *filteriter = mComplexData.data() + mNumConvolveSegs*ConvolveUpdateSize;
for(size_t c{0};c < numChannels;++c)
{
/* Resample to match the device. */
@@ -351,71 +372,85 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
std::transform(ressamples.get(), ressamples.get()+first_size, mFilter[c].rbegin(),
[](const double d) noexcept -> float { return static_cast<float>(d); });
- auto fftbuffer = std::vector<std::complex<double>>(ConvolveUpdateSize);
size_t done{first_size};
for(size_t s{0};s < mNumConvolveSegs;++s)
{
const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)};
+ /* Apply a double-precision forward FFT for more precise frequency
+ * measurements.
+ */
auto iter = std::copy_n(&ressamples[done], todo, fftbuffer.begin());
done += todo;
std::fill(iter, fftbuffer.end(), std::complex<double>{});
+ forward_fft(al::span{fftbuffer});
- forward_fft(al::as_span(fftbuffer));
- filteriter = std::copy_n(fftbuffer.cbegin(), m, filteriter);
+ /* Convert to, and pack in, a float buffer for PFFFT. Note that the
+ * first bin stores the real component of the half-frequency bin in
+ * the imaginary component. Also scale the FFT by its length so the
+ * iFFT'd output will be normalized.
+ */
+ static constexpr float fftscale{1.0f / float{ConvolveUpdateSize}};
+ for(size_t i{0};i < ConvolveUpdateSamples;++i)
+ {
+ ffttmp[i*2 ] = static_cast<float>(fftbuffer[i].real()) * fftscale;
+ ffttmp[i*2 + 1] = static_cast<float>((i == 0) ?
+ fftbuffer[ConvolveUpdateSamples].real() : fftbuffer[i].imag()) * fftscale;
+ }
+ /* Reorder backward to make it suitable for pffft_zconvolve and the
+ * subsequent pffft_transform(..., PFFFT_BACKWARD).
+ */
+ pffft_zreorder(mFft.get(), ffttmp.data(), al::to_address(filteriter), PFFFT_BACKWARD);
+ filteriter += ConvolveUpdateSize;
}
}
}
void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot,
- const EffectProps* /*props*/, const EffectTarget target)
+ const EffectProps *props, const EffectTarget target)
{
- /* NOTE: Stereo and Rear are slightly different from normal mixing (as
- * defined in alu.cpp). These are 45 degrees from center, rather than the
- * 30 degrees used there.
- *
- * TODO: LFE is not mixed to output. This will require each buffer channel
+ /* TODO: LFE is not mixed to output. This will require each buffer channel
* to have its own output target since the main mixing buffer won't have an
* LFE channel (due to being B-Format).
*/
- static constexpr ChanMap MonoMap[1]{
- { FrontCenter, 0.0f, 0.0f }
+ static constexpr ChanPosMap MonoMap[1]{
+ { FrontCenter, std::array{0.0f, 0.0f, -1.0f} }
}, StereoMap[2]{
- { FrontLeft, Deg2Rad(-45.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) }
+ { FrontLeft, std::array{-sin30, 0.0f, -cos30} },
+ { FrontRight, std::array{ sin30, 0.0f, -cos30} },
}, RearMap[2]{
- { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
+ { BackLeft, std::array{-sin30, 0.0f, cos30} },
+ { BackRight, std::array{ sin30, 0.0f, cos30} },
}, QuadMap[4]{
- { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
- { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
+ { FrontLeft, std::array{-sin45, 0.0f, -cos45} },
+ { FrontRight, std::array{ sin45, 0.0f, -cos45} },
+ { BackLeft, std::array{-sin45, 0.0f, cos45} },
+ { BackRight, std::array{ sin45, 0.0f, cos45} },
}, X51Map[6]{
- { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
+ { FrontLeft, std::array{-sin30, 0.0f, -cos30} },
+ { FrontRight, std::array{ sin30, 0.0f, -cos30} },
+ { FrontCenter, std::array{ 0.0f, 0.0f, -1.0f} },
+ { LFE, {} },
+ { SideLeft, std::array{-sin110, 0.0f, -cos110} },
+ { SideRight, std::array{ sin110, 0.0f, -cos110} },
}, X61Map[7]{
- { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
- { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
+ { FrontLeft, std::array{-sin30, 0.0f, -cos30} },
+ { FrontRight, std::array{ sin30, 0.0f, -cos30} },
+ { FrontCenter, std::array{ 0.0f, 0.0f, -1.0f} },
+ { LFE, {} },
+ { BackCenter, std::array{ 0.0f, 0.0f, 1.0f} },
+ { SideLeft, std::array{-1.0f, 0.0f, 0.0f} },
+ { SideRight, std::array{ 1.0f, 0.0f, 0.0f} },
}, X71Map[8]{
- { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
- { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
+ { FrontLeft, std::array{-sin30, 0.0f, -cos30} },
+ { FrontRight, std::array{ sin30, 0.0f, -cos30} },
+ { FrontCenter, std::array{ 0.0f, 0.0f, -1.0f} },
+ { LFE, {} },
+ { BackLeft, std::array{-sin30, 0.0f, cos30} },
+ { BackRight, std::array{ sin30, 0.0f, cos30} },
+ { SideLeft, std::array{ -1.0f, 0.0f, 0.0f} },
+ { SideRight, std::array{ 1.0f, 0.0f, 0.0f} },
};
if(mNumConvolveSegs < 1) UNLIKELY
@@ -423,7 +458,7 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
mMix = &ConvolutionState::NormalMix;
- for(auto &chan : *mChans)
+ for(auto &chan : mChans)
std::fill(std::begin(chan.Target), std::end(chan.Target), 0.0f);
const float gain{slot->Gain};
if(IsAmbisonic(mChannels))
@@ -432,46 +467,66 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
if(mChannels == FmtUHJ2 && !device->mUhjEncoder)
{
mMix = &ConvolutionState::UpsampleMix;
- (*mChans)[0].mHfScale = 1.0f;
- (*mChans)[0].mLfScale = DecoderBase::sWLFScale;
- (*mChans)[1].mHfScale = 1.0f;
- (*mChans)[1].mLfScale = DecoderBase::sXYLFScale;
- (*mChans)[2].mHfScale = 1.0f;
- (*mChans)[2].mLfScale = DecoderBase::sXYLFScale;
+ mChans[0].mHfScale = 1.0f;
+ mChans[0].mLfScale = DecoderBase::sWLFScale;
+ mChans[1].mHfScale = 1.0f;
+ mChans[1].mLfScale = DecoderBase::sXYLFScale;
+ mChans[2].mHfScale = 1.0f;
+ mChans[2].mLfScale = DecoderBase::sXYLFScale;
}
else if(device->mAmbiOrder > mAmbiOrder)
{
mMix = &ConvolutionState::UpsampleMix;
const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder,
device->m2DMixing);
- (*mChans)[0].mHfScale = scales[0];
- (*mChans)[0].mLfScale = 1.0f;
- for(size_t i{1};i < mChans->size();++i)
+ mChans[0].mHfScale = scales[0];
+ mChans[0].mLfScale = 1.0f;
+ for(size_t i{1};i < mChans.size();++i)
{
- (*mChans)[i].mHfScale = scales[1];
- (*mChans)[i].mLfScale = 1.0f;
+ mChans[i].mHfScale = scales[1];
+ mChans[i].mLfScale = 1.0f;
}
}
mOutTarget = target.Main->Buffer;
- auto&& scales = GetAmbiScales(mAmbiScaling);
+ alu::Vector N{props->Convolution.OrientAt[0], props->Convolution.OrientAt[1],
+ props->Convolution.OrientAt[2], 0.0f};
+ N.normalize();
+ alu::Vector V{props->Convolution.OrientUp[0], props->Convolution.OrientUp[1],
+ props->Convolution.OrientUp[2], 0.0f};
+ V.normalize();
+ /* Build and normalize right-vector */
+ alu::Vector U{N.cross_product(V)};
+ U.normalize();
+
+ const float mixmatrix[4][4]{
+ {1.0f, 0.0f, 0.0f, 0.0f},
+ {0.0f, U[0], -U[1], U[2]},
+ {0.0f, -V[0], V[1], -V[2]},
+ {0.0f, -N[0], N[1], -N[2]},
+ };
+
+ const auto scales = GetAmbiScales(mAmbiScaling);
const uint8_t *index_map{Is2DAmbisonic(mChannels) ?
GetAmbi2DLayout(mAmbiLayout).data() :
GetAmbiLayout(mAmbiLayout).data()};
std::array<float,MaxAmbiChannels> coeffs{};
- for(size_t c{0u};c < mChans->size();++c)
+ for(size_t c{0u};c < mChans.size();++c)
{
const size_t acn{index_map[c]};
- coeffs[acn] = scales[acn];
- ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[c].Target);
- coeffs[acn] = 0.0f;
+ const float scale{scales[acn]};
+
+ for(size_t x{0};x < 4;++x)
+ coeffs[x] = mixmatrix[acn][x] * scale;
+
+ ComputePanGains(target.Main, coeffs, gain, mChans[c].Target);
}
}
else
{
DeviceBase *device{context->mDevice};
- al::span<const ChanMap> chanmap{};
+ al::span<const ChanPosMap> chanmap{};
switch(mChannels)
{
case FmtMono: chanmap = MonoMap; break;
@@ -493,28 +548,55 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
mOutTarget = target.Main->Buffer;
if(device->mRenderMode == RenderMode::Pairwise)
{
- auto ScaleAzimuthFront = [](float azimuth, float scale) -> float
+ /* Scales the azimuth of the given vector by 3 if it's in front.
+ * Effectively scales +/-30 degrees to +/-90 degrees, leaving > +90
+ * and < -90 alone.
+ */
+ auto ScaleAzimuthFront = [](std::array<float,3> pos) -> std::array<float,3>
{
- constexpr float half_pi{al::numbers::pi_v<float>*0.5f};
- const float abs_azi{std::fabs(azimuth)};
- if(!(abs_azi >= half_pi))
- return std::copysign(minf(abs_azi*scale, half_pi), azimuth);
- return azimuth;
+ if(pos[2] < 0.0f)
+ {
+ /* Normalize the length of the x,z components for a 2D
+ * vector of the azimuth angle. Negate Z since {0,0,-1} is
+ * angle 0.
+ */
+ const float len2d{std::sqrt(pos[0]*pos[0] + pos[2]*pos[2])};
+ float x{pos[0] / len2d};
+ float z{-pos[2] / len2d};
+
+ /* Z > cos(pi/6) = -30 < azimuth < 30 degrees. */
+ if(z > cos30)
+ {
+ /* Triple the angle represented by x,z. */
+ x = x*3.0f - x*x*x*4.0f;
+ z = z*z*z*4.0f - z*3.0f;
+
+ /* Scale the vector back to fit in 3D. */
+ pos[0] = x * len2d;
+ pos[2] = -z * len2d;
+ }
+ else
+ {
+ /* If azimuth >= 30 degrees, clamp to 90 degrees. */
+ pos[0] = std::copysign(len2d, pos[0]);
+ pos[2] = 0.0f;
+ }
+ }
+ return pos;
};
for(size_t i{0};i < chanmap.size();++i)
{
if(chanmap[i].channel == LFE) continue;
- const auto coeffs = CalcAngleCoeffs(ScaleAzimuthFront(chanmap[i].angle, 2.0f),
- chanmap[i].elevation, 0.0f);
- ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[i].Target);
+ const auto coeffs = CalcDirectionCoeffs(ScaleAzimuthFront(chanmap[i].pos), 0.0f);
+ ComputePanGains(target.Main, coeffs, gain, mChans[i].Target);
}
}
else for(size_t i{0};i < chanmap.size();++i)
{
if(chanmap[i].channel == LFE) continue;
- const auto coeffs = CalcAngleCoeffs(chanmap[i].angle, chanmap[i].elevation, 0.0f);
- ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[i].Target);
+ const auto coeffs = CalcDirectionCoeffs(chanmap[i].pos, 0.0f);
+ ComputePanGains(target.Main, coeffs, gain, mChans[i].Target);
}
}
}
@@ -525,9 +607,7 @@ void ConvolutionState::process(const size_t samplesToDo,
if(mNumConvolveSegs < 1) UNLIKELY
return;
- constexpr size_t m{ConvolveUpdateSize/2 + 1};
size_t curseg{mCurrentSegment};
- auto &chans = *mChans;
for(size_t base{0u};base < samplesToDo;)
{
@@ -539,9 +619,9 @@ void ConvolutionState::process(const size_t samplesToDo,
/* Apply the FIR for the newly retrieved input samples, and combine it
* with the inverse FFT'd output samples.
*/
- for(size_t c{0};c < chans.size();++c)
+ for(size_t c{0};c < mChans.size();++c)
{
- auto buf_iter = chans[c].mBuffer.begin() + base;
+ auto buf_iter = mChans[c].mBuffer.begin() + base;
apply_fir({buf_iter, todo}, mInput.data()+1 + mFifoPos, mFilter[c].data());
auto fifo_iter = mOutput[c].begin() + mFifoPos;
@@ -557,59 +637,49 @@ void ConvolutionState::process(const size_t samplesToDo,
/* Move the newest input to the front for the next iteration's history. */
std::copy(mInput.cbegin()+ConvolveUpdateSamples, mInput.cend(), mInput.begin());
+ std::fill(mInput.begin()+ConvolveUpdateSamples, mInput.end(), 0.0f);
- /* Calculate the frequency domain response and add the relevant
+ /* Calculate the frequency-domain response and add the relevant
* frequency bins to the FFT history.
*/
- auto fftiter = std::copy_n(mInput.cbegin(), ConvolveUpdateSamples, mFftBuffer.begin());
- std::fill(fftiter, mFftBuffer.end(), complex_f{});
- forward_fft(al::as_span(mFftBuffer));
+ pffft_transform(mFft.get(), mInput.data(), mComplexData.data() + curseg*ConvolveUpdateSize,
+ mFftWorkBuffer.data(), PFFFT_FORWARD);
- std::copy_n(mFftBuffer.cbegin(), m, &mComplexData[curseg*m]);
-
- const complex_f *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m};
- for(size_t c{0};c < chans.size();++c)
+ const float *filter{mComplexData.data() + mNumConvolveSegs*ConvolveUpdateSize};
+ for(size_t c{0};c < mChans.size();++c)
{
- std::fill_n(mFftBuffer.begin(), m, complex_f{});
-
/* Convolve each input segment with its IR filter counterpart
* (aligned in time).
*/
- const complex_f *RESTRICT input{&mComplexData[curseg*m]};
+ mFftBuffer.fill(0.0f);
+ const float *input{&mComplexData[curseg*ConvolveUpdateSize]};
for(size_t s{curseg};s < mNumConvolveSegs;++s)
{
- for(size_t i{0};i < m;++i,++input,++filter)
- mFftBuffer[i] += *input * *filter;
+ pffft_zconvolve_accumulate(mFft.get(), input, filter, mFftBuffer.data());
+ input += ConvolveUpdateSize;
+ filter += ConvolveUpdateSize;
}
- input = mComplexData.get();
+ input = mComplexData.data();
for(size_t s{0};s < curseg;++s)
{
- for(size_t i{0};i < m;++i,++input,++filter)
- mFftBuffer[i] += *input * *filter;
+ pffft_zconvolve_accumulate(mFft.get(), input, filter, mFftBuffer.data());
+ input += ConvolveUpdateSize;
+ filter += ConvolveUpdateSize;
}
- /* Reconstruct the mirrored/negative frequencies to do a proper
- * inverse FFT.
- */
- for(size_t i{m};i < ConvolveUpdateSize;++i)
- mFftBuffer[i] = std::conj(mFftBuffer[ConvolveUpdateSize-i]);
-
/* Apply iFFT to get the 256 (really 255) samples for output. The
* 128 output samples are combined with the last output's 127
* second-half samples (and this output's second half is
* subsequently saved for next time).
*/
- inverse_fft(al::as_span(mFftBuffer));
+ pffft_transform(mFft.get(), mFftBuffer.data(), mFftBuffer.data(),
+ mFftWorkBuffer.data(), PFFFT_BACKWARD);
- /* The iFFT'd response is scaled up by the number of bins, so apply
- * the inverse to normalize the output.
- */
+ /* The filter was attenuated, so the response is already scaled. */
for(size_t i{0};i < ConvolveUpdateSamples;++i)
- mOutput[c][i] =
- (mFftBuffer[i].real()+mOutput[c][ConvolveUpdateSamples+i]) *
- (1.0f/float{ConvolveUpdateSize});
+ mOutput[c][i] = mFftBuffer[i] + mOutput[c][ConvolveUpdateSamples+i];
for(size_t i{0};i < ConvolveUpdateSamples;++i)
- mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real();
+ mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i];
}
/* Shift the input history. */