diff options
author | Chris Robinson <[email protected]> | 2020-12-12 14:58:09 -0800 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2020-12-12 14:58:09 -0800 |
commit | e179bf0a12e80eb41041469bc04ba1fbcffe11e8 (patch) | |
tree | 0e42d2b17f1005fad29ec4f509b1530a15213b88 /core/mixer | |
parent | 14df53411402bae0e5dcdea8bc0d2d3ba30e7923 (diff) |
Move the mixer functions to core
Diffstat (limited to 'core/mixer')
-rw-r--r-- | core/mixer/defs.h | 100 | ||||
-rw-r--r-- | core/mixer/hrtfbase.h | 159 | ||||
-rw-r--r-- | core/mixer/hrtfdefs.h | 52 | ||||
-rw-r--r-- | core/mixer/mixer_c.cpp | 198 | ||||
-rw-r--r-- | core/mixer/mixer_neon.cpp | 303 | ||||
-rw-r--r-- | core/mixer/mixer_sse.cpp | 266 | ||||
-rw-r--r-- | core/mixer/mixer_sse2.cpp | 85 | ||||
-rw-r--r-- | core/mixer/mixer_sse3.cpp | 0 | ||||
-rw-r--r-- | core/mixer/mixer_sse41.cpp | 90 |
9 files changed, 1253 insertions, 0 deletions
diff --git a/core/mixer/defs.h b/core/mixer/defs.h new file mode 100644 index 00000000..9dcf395f --- /dev/null +++ b/core/mixer/defs.h @@ -0,0 +1,100 @@ +#ifndef CORE_MIXER_DEFS_H +#define CORE_MIXER_DEFS_H + +#include <array> +#include <stdlib.h> + +#include "alspan.h" +#include "core/bufferline.h" + +struct HrtfChannelState; +struct HrtfFilter; +struct MixHrtfFilter; + +using uint = unsigned int; +using float2 = std::array<float,2>; + + +constexpr int MixerFracBits{12}; +constexpr int MixerFracOne{1 << MixerFracBits}; +constexpr int MixerFracMask{MixerFracOne - 1}; + +/* Maximum number of samples to pad on the ends of a buffer for resampling. + * Note that the padding is symmetric (half at the beginning and half at the + * end)! + */ +constexpr int MaxResamplerPadding{48}; + +constexpr float GainSilenceThreshold{0.00001f}; /* -100dB */ + + +enum class Resampler { + Point, + Linear, + Cubic, + FastBSinc12, + BSinc12, + FastBSinc24, + BSinc24, + + Max = BSinc24 +}; + +/* Interpolator state. Kind of a misnomer since the interpolator itself is + * stateless. This just keeps it from having to recompute scale-related + * mappings for every sample. + */ +struct BsincState { + float sf; /* Scale interpolation factor. */ + uint m; /* Coefficient count. */ + uint l; /* Left coefficient offset. */ + /* Filter coefficients, followed by the phase, scale, and scale-phase + * delta coefficients. Starting at phase index 0, each subsequent phase + * index follows contiguously. + */ + const float *filter; +}; + +union InterpState { + BsincState bsinc; +}; + +using ResamplerFunc = const float*(*)(const InterpState *state, const float *RESTRICT src, + uint frac, uint increment, const al::span<float> dst); + +ResamplerFunc PrepareResampler(Resampler resampler, uint increment, InterpState *state); + + +template<typename TypeTag, typename InstTag> +const float *Resample_(const InterpState *state, const float *RESTRICT src, uint frac, + uint increment, const al::span<float> dst); + +template<typename InstTag> +void Mix_(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer, + float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos); + +template<typename InstTag> +void MixHrtf_(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const MixHrtfFilter *hrtfparams, const size_t BufferSize); +template<typename InstTag> +void MixHrtfBlend_(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize); +template<typename InstTag> +void MixDirectHrtf_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, + float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize); + +/* Vectorized resampler helpers */ +inline void InitPosArrays(uint frac, uint increment, uint *frac_arr, uint *pos_arr, size_t size) +{ + pos_arr[0] = 0; + frac_arr[0] = frac; + for(size_t i{1};i < size;i++) + { + const uint frac_tmp{frac_arr[i-1] + increment}; + pos_arr[i] = pos_arr[i-1] + (frac_tmp>>MixerFracBits); + frac_arr[i] = frac_tmp&MixerFracMask; + } +} + +#endif /* CORE_MIXER_DEFS_H */ diff --git a/core/mixer/hrtfbase.h b/core/mixer/hrtfbase.h new file mode 100644 index 00000000..8031fe3d --- /dev/null +++ b/core/mixer/hrtfbase.h @@ -0,0 +1,159 @@ +#ifndef CORE_MIXER_HRTFBASE_H +#define CORE_MIXER_HRTFBASE_H + +#include <algorithm> +#include <cmath> + +#include "almalloc.h" +#include "hrtfdefs.h" +#include "opthelpers.h" + + +using uint = unsigned int; + +using ApplyCoeffsT = void(&)(float2 *RESTRICT Values, const uint_fast32_t irSize, + const HrirArray &Coeffs, const float left, const float right); + +template<ApplyCoeffsT ApplyCoeffs> +inline void MixHrtfBase(const float *InSamples, float2 *RESTRICT AccumSamples, const uint IrSize, + const MixHrtfFilter *hrtfparams, const size_t BufferSize) +{ + ASSUME(BufferSize > 0); + + const HrirArray &Coeffs = *hrtfparams->Coeffs; + const float gainstep{hrtfparams->GainStep}; + const float gain{hrtfparams->Gain}; + + size_t ldelay{HRTF_HISTORY_LENGTH - hrtfparams->Delay[0]}; + size_t rdelay{HRTF_HISTORY_LENGTH - hrtfparams->Delay[1]}; + float stepcount{0.0f}; + for(size_t i{0u};i < BufferSize;++i) + { + const float g{gain + gainstep*stepcount}; + const float left{InSamples[ldelay++] * g}; + const float right{InSamples[rdelay++] * g}; + ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, left, right); + + stepcount += 1.0f; + } +} + +template<ApplyCoeffsT ApplyCoeffs> +inline void MixHrtfBlendBase(const float *InSamples, float2 *RESTRICT AccumSamples, + const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams, + const size_t BufferSize) +{ + ASSUME(BufferSize > 0); + + const auto &OldCoeffs = oldparams->Coeffs; + const float oldGainStep{oldparams->Gain / static_cast<float>(BufferSize)}; + const auto &NewCoeffs = *newparams->Coeffs; + const float newGainStep{newparams->GainStep}; + + if LIKELY(oldparams->Gain > GainSilenceThreshold) + { + size_t ldelay{HRTF_HISTORY_LENGTH - oldparams->Delay[0]}; + size_t rdelay{HRTF_HISTORY_LENGTH - oldparams->Delay[1]}; + auto stepcount = static_cast<float>(BufferSize); + for(size_t i{0u};i < BufferSize;++i) + { + const float g{oldGainStep*stepcount}; + const float left{InSamples[ldelay++] * g}; + const float right{InSamples[rdelay++] * g}; + ApplyCoeffs(AccumSamples+i, IrSize, OldCoeffs, left, right); + + stepcount -= 1.0f; + } + } + + if LIKELY(newGainStep*static_cast<float>(BufferSize) > GainSilenceThreshold) + { + size_t ldelay{HRTF_HISTORY_LENGTH+1 - newparams->Delay[0]}; + size_t rdelay{HRTF_HISTORY_LENGTH+1 - newparams->Delay[1]}; + float stepcount{1.0f}; + for(size_t i{1u};i < BufferSize;++i) + { + const float g{newGainStep*stepcount}; + const float left{InSamples[ldelay++] * g}; + const float right{InSamples[rdelay++] * g}; + ApplyCoeffs(AccumSamples+i, IrSize, NewCoeffs, left, right); + + stepcount += 1.0f; + } + } +} + +template<ApplyCoeffsT ApplyCoeffs> +inline void MixDirectHrtfBase(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *RESTRICT AccumSamples, + float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) +{ + ASSUME(BufferSize > 0); + + /* Add the existing signal directly to the accumulation buffer, unfiltered, + * and with a delay to align with the input delay. + */ + for(size_t i{0};i < BufferSize;++i) + { + AccumSamples[HRTF_DIRECT_DELAY+i][0] += LeftOut[i]; + AccumSamples[HRTF_DIRECT_DELAY+i][1] += RightOut[i]; + } + + for(const FloatBufferLine &input : InSamples) + { + /* For dual-band processing, the signal needs extra scaling applied to + * the high frequency response. The band-splitter alone creates a + * frequency-dependent phase shift, which is not ideal. To counteract + * it, combine it with a backwards phase shift. + */ + + /* Load the input signal backwards, into a temp buffer with delay + * padding. The delay serves to reduce the error caused by the IIR + * filter's phase shift on a partial input. + */ + al::span<float> tempbuf{al::assume_aligned<16>(TempBuf), HRTF_DIRECT_DELAY+BufferSize}; + auto tmpiter = std::reverse_copy(input.begin(), input.begin()+BufferSize, tempbuf.begin()); + std::copy(ChanState->mDelay.cbegin(), ChanState->mDelay.cend(), tmpiter); + + /* Save the unfiltered newest input samples for next time. */ + std::copy_n(tempbuf.begin(), ChanState->mDelay.size(), ChanState->mDelay.begin()); + + /* Apply the all-pass on the reversed signal and reverse the resulting + * sample array. This produces the forward response with a backwards + * phase shift (+n degrees becomes -n degrees). + */ + ChanState->mSplitter.applyAllpass(tempbuf); + tempbuf = tempbuf.subspan<HRTF_DIRECT_DELAY>(); + std::reverse(tempbuf.begin(), tempbuf.end()); + + /* Now apply the HF scale with the band-splitter. This applies the + * forward phase shift, which cancels out with the backwards phase + * shift to get the original phase on the scaled signal. + */ + ChanState->mSplitter.processHfScale(tempbuf, ChanState->mHfScale); + + /* Now apply the HRIR coefficients to this channel. */ + const auto &Coeffs = ChanState->mCoeffs; + for(size_t i{0u};i < BufferSize;++i) + { + const float insample{tempbuf[i]}; + ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, insample, insample); + } + + ++ChanState; + } + + for(size_t i{0u};i < BufferSize;++i) + LeftOut[i] = AccumSamples[i][0]; + for(size_t i{0u};i < BufferSize;++i) + RightOut[i] = AccumSamples[i][1]; + + /* Copy the new in-progress accumulation values to the front and clear the + * following samples for the next mix. + */ + auto accum_iter = std::copy_n(AccumSamples+BufferSize, HRIR_LENGTH+HRTF_DIRECT_DELAY, + AccumSamples); + std::fill_n(accum_iter, BufferSize, float2{}); +} + +#endif /* CORE_MIXER_HRTFBASE_H */ diff --git a/core/mixer/hrtfdefs.h b/core/mixer/hrtfdefs.h new file mode 100644 index 00000000..623e6ec3 --- /dev/null +++ b/core/mixer/hrtfdefs.h @@ -0,0 +1,52 @@ +#ifndef CORE_MIXER_HRTFDEFS_H +#define CORE_MIXER_HRTFDEFS_H + +#include <array> + +#include "core/ambidefs.h" +#include "core/bufferline.h" +#include "core/filters/splitter.h" + + +#define HRTF_HISTORY_BITS 6 +#define HRTF_HISTORY_LENGTH (1<<HRTF_HISTORY_BITS) +#define HRTF_HISTORY_MASK (HRTF_HISTORY_LENGTH-1) + +#define HRIR_BITS 7 +#define HRIR_LENGTH (1<<HRIR_BITS) +#define HRIR_MASK (HRIR_LENGTH-1) + +#define MIN_IR_LENGTH 8 + +#define HRTF_DIRECT_DELAY 192 + +using float2 = std::array<float,2>; +using HrirArray = std::array<float2,HRIR_LENGTH>; +using ubyte = unsigned char; +using ubyte2 = std::array<ubyte,2>; +using ushort = unsigned short; +using uint = unsigned int; + + +struct MixHrtfFilter { + const HrirArray *Coeffs; + std::array<uint,2> Delay; + float Gain; + float GainStep; +}; + +struct HrtfFilter { + alignas(16) HrirArray Coeffs; + std::array<uint,2> Delay; + float Gain; +}; + + +struct HrtfChannelState { + std::array<float,HRTF_DIRECT_DELAY> mDelay{}; + BandSplitter mSplitter; + float mHfScale{}; + alignas(16) HrirArray mCoeffs{}; +}; + +#endif /* CORE_MIXER_HRTFDEFS_H */ diff --git a/core/mixer/mixer_c.cpp b/core/mixer/mixer_c.cpp new file mode 100644 index 00000000..24ccd175 --- /dev/null +++ b/core/mixer/mixer_c.cpp @@ -0,0 +1,198 @@ +#include "config.h" + +#include <cassert> +#include <cmath> +#include <limits> + +#include "alnumeric.h" +#include "core/bsinc_tables.h" +#include "defs.h" +#include "hrtfbase.h" + +struct CTag; +struct CopyTag; +struct PointTag; +struct LerpTag; +struct CubicTag; +struct BSincTag; +struct FastBSincTag; + + +namespace { + +constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits}; +constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff}; + +inline float do_point(const InterpState&, const float *RESTRICT vals, const uint) +{ return vals[0]; } +inline float do_lerp(const InterpState&, const float *RESTRICT vals, const uint frac) +{ return lerp(vals[0], vals[1], static_cast<float>(frac)*(1.0f/MixerFracOne)); } +inline float do_cubic(const InterpState&, const float *RESTRICT vals, const uint frac) +{ return cubic(vals[0], vals[1], vals[2], vals[3], static_cast<float>(frac)*(1.0f/MixerFracOne)); } +inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac) +{ + const size_t m{istate.bsinc.m}; + + // Calculate the phase index and factor. + const uint pi{frac >> FracPhaseBitDiff}; + const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; + + const float *fil{istate.bsinc.filter + m*pi*4}; + const float *phd{fil + m}; + const float *scd{phd + m}; + const float *spd{scd + m}; + + // Apply the scale and phase interpolated filter. + float r{0.0f}; + for(size_t j_f{0};j_f < m;j_f++) + r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f]; + return r; +} +inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac) +{ + const size_t m{istate.bsinc.m}; + + // Calculate the phase index and factor. + const uint pi{frac >> FracPhaseBitDiff}; + const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; + + const float *fil{istate.bsinc.filter + m*pi*4}; + const float *phd{fil + m}; + + // Apply the phase interpolated filter. + float r{0.0f}; + for(size_t j_f{0};j_f < m;j_f++) + r += (fil[j_f] + pf*phd[j_f]) * vals[j_f]; + return r; +} + +using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const uint); +template<SamplerT Sampler> +const float *DoResample(const InterpState *state, const float *RESTRICT src, uint frac, + uint increment, const al::span<float> dst) +{ + const InterpState istate{*state}; + for(float &out : dst) + { + out = Sampler(istate, src, frac); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } + return dst.data(); +} + +inline void ApplyCoeffs(float2 *RESTRICT Values, const uint_fast32_t IrSize, + const HrirArray &Coeffs, const float left, const float right) +{ + ASSUME(IrSize >= MIN_IR_LENGTH); + for(size_t c{0};c < IrSize;++c) + { + Values[c][0] += Coeffs[c][0] * left; + Values[c][1] += Coeffs[c][1] * right; + } +} + +} // namespace + +template<> +const float *Resample_<CopyTag,CTag>(const InterpState*, const float *RESTRICT src, uint, uint, + const al::span<float> dst) +{ +#if defined(HAVE_SSE) || defined(HAVE_NEON) + /* Avoid copying the source data if it's aligned like the destination. */ + if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst.data())&15)) + return src; +#endif + std::copy_n(src, dst.size(), dst.begin()); + return dst.data(); +} + +template<> +const float *Resample_<PointTag,CTag>(const InterpState *state, const float *RESTRICT src, + uint frac, uint increment, const al::span<float> dst) +{ return DoResample<do_point>(state, src, frac, increment, dst); } + +template<> +const float *Resample_<LerpTag,CTag>(const InterpState *state, const float *RESTRICT src, + uint frac, uint increment, const al::span<float> dst) +{ return DoResample<do_lerp>(state, src, frac, increment, dst); } + +template<> +const float *Resample_<CubicTag,CTag>(const InterpState *state, const float *RESTRICT src, + uint frac, uint increment, const al::span<float> dst) +{ return DoResample<do_cubic>(state, src-1, frac, increment, dst); } + +template<> +const float *Resample_<BSincTag,CTag>(const InterpState *state, const float *RESTRICT src, + uint frac, uint increment, const al::span<float> dst) +{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); } + +template<> +const float *Resample_<FastBSincTag,CTag>(const InterpState *state, const float *RESTRICT src, + uint frac, uint increment, const al::span<float> dst) +{ return DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); } + + +template<> +void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const MixHrtfFilter *hrtfparams, const size_t BufferSize) +{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } + +template<> +void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) +{ + MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams, + BufferSize); +} + +template<> +void MixDirectHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, + float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) +{ + MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState, + IrSize, BufferSize); +} + + +template<> +void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer, + float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) +{ + const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f}; + const auto min_len = minz(Counter, InSamples.size()); + for(FloatBufferLine &output : OutBuffer) + { + float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; + float gain{*CurrentGains}; + const float step{(*TargetGains-gain) * delta}; + + size_t pos{0}; + if(!(std::abs(step) > std::numeric_limits<float>::epsilon())) + gain = *TargetGains; + else + { + float step_count{0.0f}; + for(;pos != min_len;++pos) + { + dst[pos] += InSamples[pos] * (gain + step*step_count); + step_count += 1.0f; + } + if(pos == Counter) + gain = *TargetGains; + else + gain += step*step_count; + } + *CurrentGains = gain; + ++CurrentGains; + ++TargetGains; + + if(!(std::abs(gain) > GainSilenceThreshold)) + continue; + for(;pos != InSamples.size();++pos) + dst[pos] += InSamples[pos] * gain; + } +} diff --git a/core/mixer/mixer_neon.cpp b/core/mixer/mixer_neon.cpp new file mode 100644 index 00000000..af8f6b0c --- /dev/null +++ b/core/mixer/mixer_neon.cpp @@ -0,0 +1,303 @@ +#include "config.h" + +#include <arm_neon.h> + +#include <cmath> +#include <limits> + +#include "alnumeric.h" +#include "core/bsinc_defs.h" +#include "defs.h" +#include "hrtfbase.h" + +struct NEONTag; +struct LerpTag; +struct BSincTag; +struct FastBSincTag; + + +namespace { + +inline float32x4_t set_f4(float l0, float l1, float l2, float l3) +{ + float32x4_t ret{}; + ret = vsetq_lane_f32(l0, ret, 0); + ret = vsetq_lane_f32(l1, ret, 1); + ret = vsetq_lane_f32(l2, ret, 2); + ret = vsetq_lane_f32(l3, ret, 3); + return ret; +} + +constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits}; +constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff}; + +inline void ApplyCoeffs(float2 *RESTRICT Values, const uint_fast32_t IrSize, + const HrirArray &Coeffs, const float left, const float right) +{ + float32x4_t leftright4; + { + float32x2_t leftright2 = vdup_n_f32(0.0); + leftright2 = vset_lane_f32(left, leftright2, 0); + leftright2 = vset_lane_f32(right, leftright2, 1); + leftright4 = vcombine_f32(leftright2, leftright2); + } + + ASSUME(IrSize >= MIN_IR_LENGTH); + for(size_t c{0};c < IrSize;c += 2) + { + float32x4_t vals = vld1q_f32(&Values[c][0]); + float32x4_t coefs = vld1q_f32(&Coeffs[c][0]); + + vals = vmlaq_f32(vals, coefs, leftright4); + + vst1q_f32(&Values[c][0], vals); + } +} + +} // namespace + +template<> +const float *Resample_<LerpTag,NEONTag>(const InterpState*, const float *RESTRICT src, uint frac, + uint increment, const al::span<float> dst) +{ + const int32x4_t increment4 = vdupq_n_s32(static_cast<int>(increment*4)); + const float32x4_t fracOne4 = vdupq_n_f32(1.0f/MixerFracOne); + const int32x4_t fracMask4 = vdupq_n_s32(MixerFracMask); + alignas(16) uint pos_[4], frac_[4]; + int32x4_t pos4, frac4; + + InitPosArrays(frac, increment, frac_, pos_, 4); + frac4 = vld1q_s32(reinterpret_cast<int*>(frac_)); + pos4 = vld1q_s32(reinterpret_cast<int*>(pos_)); + + auto dst_iter = dst.begin(); + for(size_t todo{dst.size()>>2};todo;--todo) + { + const int pos0{vgetq_lane_s32(pos4, 0)}; + const int pos1{vgetq_lane_s32(pos4, 1)}; + const int pos2{vgetq_lane_s32(pos4, 2)}; + const int pos3{vgetq_lane_s32(pos4, 3)}; + const float32x4_t val1{set_f4(src[pos0], src[pos1], src[pos2], src[pos3])}; + const float32x4_t val2{set_f4(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])}; + + /* val1 + (val2-val1)*mu */ + const float32x4_t r0{vsubq_f32(val2, val1)}; + const float32x4_t mu{vmulq_f32(vcvtq_f32_s32(frac4), fracOne4)}; + const float32x4_t out{vmlaq_f32(val1, mu, r0)}; + + vst1q_f32(dst_iter, out); + dst_iter += 4; + + frac4 = vaddq_s32(frac4, increment4); + pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, MixerFracBits)); + frac4 = vandq_s32(frac4, fracMask4); + } + + if(size_t todo{dst.size()&3}) + { + src += static_cast<uint>(vgetq_lane_s32(pos4, 0)); + frac = static_cast<uint>(vgetq_lane_s32(frac4, 0)); + + do { + *(dst_iter++) = lerp(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne)); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } while(--todo); + } + return dst.data(); +} + +template<> +const float *Resample_<BSincTag,NEONTag>(const InterpState *state, const float *RESTRICT src, + uint frac, uint increment, const al::span<float> dst) +{ + const float *const filter{state->bsinc.filter}; + const float32x4_t sf4{vdupq_n_f32(state->bsinc.sf)}; + const size_t m{state->bsinc.m}; + + src -= state->bsinc.l; + for(float &out_sample : dst) + { + // Calculate the phase index and factor. + const uint pi{frac >> FracPhaseBitDiff}; + const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; + + // Apply the scale and phase interpolated filter. + float32x4_t r4{vdupq_n_f32(0.0f)}; + { + const float32x4_t pf4{vdupq_n_f32(pf)}; + const float *fil{filter + m*pi*4}; + const float *phd{fil + m}; + const float *scd{phd + m}; + const float *spd{scd + m}; + size_t td{m >> 2}; + size_t j{0u}; + + do { + /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ + const float32x4_t f4 = vmlaq_f32( + vmlaq_f32(vld1q_f32(&fil[j]), sf4, vld1q_f32(&scd[j])), + pf4, vmlaq_f32(vld1q_f32(&phd[j]), sf4, vld1q_f32(&spd[j]))); + /* r += f*src */ + r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j])); + j += 4; + } while(--td); + } + r4 = vaddq_f32(r4, vrev64q_f32(r4)); + out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } + return dst.data(); +} + +template<> +const float *Resample_<FastBSincTag,NEONTag>(const InterpState *state, + const float *RESTRICT src, uint frac, uint increment, const al::span<float> dst) +{ + const float *const filter{state->bsinc.filter}; + const size_t m{state->bsinc.m}; + + src -= state->bsinc.l; + for(float &out_sample : dst) + { + // Calculate the phase index and factor. + const uint pi{frac >> FracPhaseBitDiff}; + const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; + + // Apply the phase interpolated filter. + float32x4_t r4{vdupq_n_f32(0.0f)}; + { + const float32x4_t pf4{vdupq_n_f32(pf)}; + const float *fil{filter + m*pi*4}; + const float *phd{fil + m}; + size_t td{m >> 2}; + size_t j{0u}; + + do { + /* f = fil + pf*phd */ + const float32x4_t f4 = vmlaq_f32(vld1q_f32(&fil[j]), pf4, vld1q_f32(&phd[j])); + /* r += f*src */ + r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j])); + j += 4; + } while(--td); + } + r4 = vaddq_f32(r4, vrev64q_f32(r4)); + out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } + return dst.data(); +} + + +template<> +void MixHrtf_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const MixHrtfFilter *hrtfparams, const size_t BufferSize) +{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } + +template<> +void MixHrtfBlend_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) +{ + MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams, + BufferSize); +} + +template<> +void MixDirectHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, + float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) +{ + MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState, + IrSize, BufferSize); +} + + +template<> +void Mix_<NEONTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer, + float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) +{ + const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f}; + const auto min_len = minz(Counter, InSamples.size()); + const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len; + + for(FloatBufferLine &output : OutBuffer) + { + float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; + float gain{*CurrentGains}; + const float step{(*TargetGains-gain) * delta}; + + size_t pos{0}; + if(!(std::abs(step) > std::numeric_limits<float>::epsilon())) + gain = *TargetGains; + else + { + float step_count{0.0f}; + /* Mix with applying gain steps in aligned multiples of 4. */ + if(size_t todo{(min_len-pos) >> 2}) + { + const float32x4_t four4{vdupq_n_f32(4.0f)}; + const float32x4_t step4{vdupq_n_f32(step)}; + const float32x4_t gain4{vdupq_n_f32(gain)}; + float32x4_t step_count4{vdupq_n_f32(0.0f)}; + step_count4 = vsetq_lane_f32(1.0f, step_count4, 1); + step_count4 = vsetq_lane_f32(2.0f, step_count4, 2); + step_count4 = vsetq_lane_f32(3.0f, step_count4, 3); + + do { + const float32x4_t val4 = vld1q_f32(&InSamples[pos]); + float32x4_t dry4 = vld1q_f32(&dst[pos]); + dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4)); + step_count4 = vaddq_f32(step_count4, four4); + vst1q_f32(&dst[pos], dry4); + pos += 4; + } while(--todo); + /* NOTE: step_count4 now represents the next four counts after + * the last four mixed samples, so the lowest element + * represents the next step count to apply. + */ + step_count = vgetq_lane_f32(step_count4, 0); + } + /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ + for(size_t leftover{min_len&3};leftover;++pos,--leftover) + { + dst[pos] += InSamples[pos] * (gain + step*step_count); + step_count += 1.0f; + } + if(pos == Counter) + gain = *TargetGains; + else + gain += step*step_count; + + /* Mix until pos is aligned with 4 or the mix is done. */ + for(size_t leftover{aligned_len&3};leftover;++pos,--leftover) + dst[pos] += InSamples[pos] * gain; + } + *CurrentGains = gain; + ++CurrentGains; + ++TargetGains; + + if(!(std::abs(gain) > GainSilenceThreshold)) + continue; + if(size_t todo{(InSamples.size()-pos) >> 2}) + { + const float32x4_t gain4 = vdupq_n_f32(gain); + do { + const float32x4_t val4 = vld1q_f32(&InSamples[pos]); + float32x4_t dry4 = vld1q_f32(&dst[pos]); + dry4 = vmlaq_f32(dry4, val4, gain4); + vst1q_f32(&dst[pos], dry4); + pos += 4; + } while(--todo); + } + for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover) + dst[pos] += InSamples[pos] * gain; + } +} diff --git a/core/mixer/mixer_sse.cpp b/core/mixer/mixer_sse.cpp new file mode 100644 index 00000000..85b2f1ce --- /dev/null +++ b/core/mixer/mixer_sse.cpp @@ -0,0 +1,266 @@ +#include "config.h" + +#include <xmmintrin.h> + +#include <cmath> +#include <limits> + +#include "alnumeric.h" +#include "core/bsinc_defs.h" +#include "defs.h" +#include "hrtfbase.h" + +struct SSETag; +struct BSincTag; +struct FastBSincTag; + + +namespace { + +constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits}; +constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff}; + +#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z)) + +inline void ApplyCoeffs(float2 *RESTRICT Values, const uint_fast32_t IrSize, + const HrirArray &Coeffs, const float left, const float right) +{ + const __m128 lrlr{_mm_setr_ps(left, right, left, right)}; + + ASSUME(IrSize >= MIN_IR_LENGTH); + /* This isn't technically correct to test alignment, but it's true for + * systems that support SSE, which is the only one that needs to know the + * alignment of Values (which alternates between 8- and 16-byte aligned). + */ + if(reinterpret_cast<intptr_t>(Values)&0x8) + { + __m128 imp0, imp1; + __m128 coeffs{_mm_load_ps(&Coeffs[0][0])}; + __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))}; + imp0 = _mm_mul_ps(lrlr, coeffs); + vals = _mm_add_ps(imp0, vals); + _mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals); + uint_fast32_t td{((IrSize+1)>>1) - 1}; + size_t i{1}; + do { + coeffs = _mm_load_ps(&Coeffs[i+1][0]); + vals = _mm_load_ps(&Values[i][0]); + imp1 = _mm_mul_ps(lrlr, coeffs); + imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2)); + vals = _mm_add_ps(imp0, vals); + _mm_store_ps(&Values[i][0], vals); + imp0 = imp1; + i += 2; + } while(--td); + vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0])); + imp0 = _mm_movehl_ps(imp0, imp0); + vals = _mm_add_ps(imp0, vals); + _mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals); + } + else + { + for(size_t i{0};i < IrSize;i += 2) + { + const __m128 coeffs{_mm_load_ps(&Coeffs[i][0])}; + __m128 vals{_mm_load_ps(&Values[i][0])}; + vals = MLA4(vals, lrlr, coeffs); + _mm_store_ps(&Values[i][0], vals); + } + } +} + +} // namespace + +template<> +const float *Resample_<BSincTag,SSETag>(const InterpState *state, const float *RESTRICT src, + uint frac, uint increment, const al::span<float> dst) +{ + const float *const filter{state->bsinc.filter}; + const __m128 sf4{_mm_set1_ps(state->bsinc.sf)}; + const size_t m{state->bsinc.m}; + + src -= state->bsinc.l; + for(float &out_sample : dst) + { + // Calculate the phase index and factor. + const uint pi{frac >> FracPhaseBitDiff}; + const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; + + // Apply the scale and phase interpolated filter. + __m128 r4{_mm_setzero_ps()}; + { + const __m128 pf4{_mm_set1_ps(pf)}; + const float *fil{filter + m*pi*4}; + const float *phd{fil + m}; + const float *scd{phd + m}; + const float *spd{scd + m}; + size_t td{m >> 2}; + size_t j{0u}; + + do { + /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ + const __m128 f4 = MLA4( + MLA4(_mm_load_ps(&fil[j]), sf4, _mm_load_ps(&scd[j])), + pf4, MLA4(_mm_load_ps(&phd[j]), sf4, _mm_load_ps(&spd[j]))); + /* r += f*src */ + r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j])); + j += 4; + } while(--td); + } + r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + out_sample = _mm_cvtss_f32(r4); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } + return dst.data(); +} + +template<> +const float *Resample_<FastBSincTag,SSETag>(const InterpState *state, const float *RESTRICT src, + uint frac, uint increment, const al::span<float> dst) +{ + const float *const filter{state->bsinc.filter}; + const size_t m{state->bsinc.m}; + + src -= state->bsinc.l; + for(float &out_sample : dst) + { + // Calculate the phase index and factor. + const uint pi{frac >> FracPhaseBitDiff}; + const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; + + // Apply the phase interpolated filter. + __m128 r4{_mm_setzero_ps()}; + { + const __m128 pf4{_mm_set1_ps(pf)}; + const float *fil{filter + m*pi*4}; + const float *phd{fil + m}; + size_t td{m >> 2}; + size_t j{0u}; + + do { + /* f = fil + pf*phd */ + const __m128 f4 = MLA4(_mm_load_ps(&fil[j]), pf4, _mm_load_ps(&phd[j])); + /* r += f*src */ + r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j])); + j += 4; + } while(--td); + } + r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + out_sample = _mm_cvtss_f32(r4); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } + return dst.data(); +} + + +template<> +void MixHrtf_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const MixHrtfFilter *hrtfparams, const size_t BufferSize) +{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } + +template<> +void MixHrtfBlend_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) +{ + MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams, + BufferSize); +} + +template<> +void MixDirectHrtf_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, + float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) +{ + MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState, + IrSize, BufferSize); +} + + +template<> +void Mix_<SSETag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer, + float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) +{ + const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f}; + const auto min_len = minz(Counter, InSamples.size()); + const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len; + + for(FloatBufferLine &output : OutBuffer) + { + float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; + float gain{*CurrentGains}; + const float step{(*TargetGains-gain) * delta}; + + size_t pos{0}; + if(!(std::abs(step) > std::numeric_limits<float>::epsilon())) + gain = *TargetGains; + else + { + float step_count{0.0f}; + /* Mix with applying gain steps in aligned multiples of 4. */ + if(size_t todo{(min_len-pos) >> 2}) + { + const __m128 four4{_mm_set1_ps(4.0f)}; + const __m128 step4{_mm_set1_ps(step)}; + const __m128 gain4{_mm_set1_ps(gain)}; + __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)}; + do { + const __m128 val4{_mm_load_ps(&InSamples[pos])}; + __m128 dry4{_mm_load_ps(&dst[pos])}; + + /* dry += val * (gain + step*step_count) */ + dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4)); + + _mm_store_ps(&dst[pos], dry4); + step_count4 = _mm_add_ps(step_count4, four4); + pos += 4; + } while(--todo); + /* NOTE: step_count4 now represents the next four counts after + * the last four mixed samples, so the lowest element + * represents the next step count to apply. + */ + step_count = _mm_cvtss_f32(step_count4); + } + /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ + for(size_t leftover{min_len&3};leftover;++pos,--leftover) + { + dst[pos] += InSamples[pos] * (gain + step*step_count); + step_count += 1.0f; + } + if(pos == Counter) + gain = *TargetGains; + else + gain += step*step_count; + + /* Mix until pos is aligned with 4 or the mix is done. */ + for(size_t leftover{aligned_len&3};leftover;++pos,--leftover) + dst[pos] += InSamples[pos] * gain; + } + *CurrentGains = gain; + ++CurrentGains; + ++TargetGains; + + if(!(std::abs(gain) > GainSilenceThreshold)) + continue; + if(size_t todo{(InSamples.size()-pos) >> 2}) + { + const __m128 gain4{_mm_set1_ps(gain)}; + do { + const __m128 val4{_mm_load_ps(&InSamples[pos])}; + __m128 dry4{_mm_load_ps(&dst[pos])}; + dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); + _mm_store_ps(&dst[pos], dry4); + pos += 4; + } while(--todo); + } + for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover) + dst[pos] += InSamples[pos] * gain; + } +} diff --git a/core/mixer/mixer_sse2.cpp b/core/mixer/mixer_sse2.cpp new file mode 100644 index 00000000..69fac250 --- /dev/null +++ b/core/mixer/mixer_sse2.cpp @@ -0,0 +1,85 @@ +/** + * OpenAL cross platform audio library + * Copyright (C) 2014 by Timothy Arceri <[email protected]>. + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the + * Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * Or go to http://www.gnu.org/copyleft/lgpl.html + */ + +#include "config.h" + +#include <xmmintrin.h> +#include <emmintrin.h> + +#include "alnumeric.h" +#include "defs.h" + +struct SSE2Tag; +struct LerpTag; + + +template<> +const float *Resample_<LerpTag,SSE2Tag>(const InterpState*, const float *RESTRICT src, uint frac, + uint increment, const al::span<float> dst) +{ + const __m128i increment4{_mm_set1_epi32(static_cast<int>(increment*4))}; + const __m128 fracOne4{_mm_set1_ps(1.0f/MixerFracOne)}; + const __m128i fracMask4{_mm_set1_epi32(MixerFracMask)}; + + alignas(16) uint pos_[4], frac_[4]; + InitPosArrays(frac, increment, frac_, pos_, 4); + __m128i frac4{_mm_setr_epi32(static_cast<int>(frac_[0]), static_cast<int>(frac_[1]), + static_cast<int>(frac_[2]), static_cast<int>(frac_[3]))}; + __m128i pos4{_mm_setr_epi32(static_cast<int>(pos_[0]), static_cast<int>(pos_[1]), + static_cast<int>(pos_[2]), static_cast<int>(pos_[3]))}; + + auto dst_iter = dst.begin(); + for(size_t todo{dst.size()>>2};todo;--todo) + { + const int pos0{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(0, 0, 0, 0)))}; + const int pos1{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(1, 1, 1, 1)))}; + const int pos2{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(2, 2, 2, 2)))}; + const int pos3{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(3, 3, 3, 3)))}; + const __m128 val1{_mm_setr_ps(src[pos0 ], src[pos1 ], src[pos2 ], src[pos3 ])}; + const __m128 val2{_mm_setr_ps(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])}; + + /* val1 + (val2-val1)*mu */ + const __m128 r0{_mm_sub_ps(val2, val1)}; + const __m128 mu{_mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4)}; + const __m128 out{_mm_add_ps(val1, _mm_mul_ps(mu, r0))}; + + _mm_store_ps(dst_iter, out); + dst_iter += 4; + + frac4 = _mm_add_epi32(frac4, increment4); + pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, MixerFracBits)); + frac4 = _mm_and_si128(frac4, fracMask4); + } + + if(size_t todo{dst.size()&3}) + { + src += static_cast<uint>(_mm_cvtsi128_si32(pos4)); + frac = static_cast<uint>(_mm_cvtsi128_si32(frac4)); + + do { + *(dst_iter++) = lerp(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne)); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } while(--todo); + } + return dst.data(); +} diff --git a/core/mixer/mixer_sse3.cpp b/core/mixer/mixer_sse3.cpp new file mode 100644 index 00000000..e69de29b --- /dev/null +++ b/core/mixer/mixer_sse3.cpp diff --git a/core/mixer/mixer_sse41.cpp b/core/mixer/mixer_sse41.cpp new file mode 100644 index 00000000..cacc9e64 --- /dev/null +++ b/core/mixer/mixer_sse41.cpp @@ -0,0 +1,90 @@ +/** + * OpenAL cross platform audio library + * Copyright (C) 2014 by Timothy Arceri <[email protected]>. + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the + * Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * Or go to http://www.gnu.org/copyleft/lgpl.html + */ + +#include "config.h" + +#include <xmmintrin.h> +#include <emmintrin.h> +#include <smmintrin.h> + +#include "alnumeric.h" +#include "defs.h" + +struct SSE4Tag; +struct LerpTag; + + +template<> +const float *Resample_<LerpTag,SSE4Tag>(const InterpState*, const float *RESTRICT src, uint frac, + uint increment, const al::span<float> dst) +{ + const __m128i increment4{_mm_set1_epi32(static_cast<int>(increment*4))}; + const __m128 fracOne4{_mm_set1_ps(1.0f/MixerFracOne)}; + const __m128i fracMask4{_mm_set1_epi32(MixerFracMask)}; + + alignas(16) uint pos_[4], frac_[4]; + InitPosArrays(frac, increment, frac_, pos_, 4); + __m128i frac4{_mm_setr_epi32(static_cast<int>(frac_[0]), static_cast<int>(frac_[1]), + static_cast<int>(frac_[2]), static_cast<int>(frac_[3]))}; + __m128i pos4{_mm_setr_epi32(static_cast<int>(pos_[0]), static_cast<int>(pos_[1]), + static_cast<int>(pos_[2]), static_cast<int>(pos_[3]))}; + + auto dst_iter = dst.begin(); + for(size_t todo{dst.size()>>2};todo;--todo) + { + const int pos0{_mm_extract_epi32(pos4, 0)}; + const int pos1{_mm_extract_epi32(pos4, 1)}; + const int pos2{_mm_extract_epi32(pos4, 2)}; + const int pos3{_mm_extract_epi32(pos4, 3)}; + const __m128 val1{_mm_setr_ps(src[pos0 ], src[pos1 ], src[pos2 ], src[pos3 ])}; + const __m128 val2{_mm_setr_ps(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])}; + + /* val1 + (val2-val1)*mu */ + const __m128 r0{_mm_sub_ps(val2, val1)}; + const __m128 mu{_mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4)}; + const __m128 out{_mm_add_ps(val1, _mm_mul_ps(mu, r0))}; + + _mm_store_ps(dst_iter, out); + dst_iter += 4; + + frac4 = _mm_add_epi32(frac4, increment4); + pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, MixerFracBits)); + frac4 = _mm_and_si128(frac4, fracMask4); + } + + if(size_t todo{dst.size()&3}) + { + /* NOTE: These four elements represent the position *after* the last + * four samples, so the lowest element is the next position to + * resample. + */ + src += static_cast<uint>(_mm_cvtsi128_si32(pos4)); + frac = static_cast<uint>(_mm_cvtsi128_si32(frac4)); + + do { + *(dst_iter++) = lerp(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne)); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } while(--todo); + } + return dst.data(); +} |