aboutsummaryrefslogtreecommitdiffstats
path: root/core/hrtf.cpp
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2021-04-22 10:26:20 -0700
committerChris Robinson <[email protected]>2021-04-22 10:26:20 -0700
commit65b85f7cb9cdac5cbad2cefbe2141141717c80cb (patch)
tree8766848438fc2ea0b32ffba7860b89c46e1728f6 /core/hrtf.cpp
parentd6d6fd73787bc159678a8c09cbf6833d2d336949 (diff)
Move hrtf.cpp/h to core
Diffstat (limited to 'core/hrtf.cpp')
-rw-r--r--core/hrtf.cpp1447
1 files changed, 1447 insertions, 0 deletions
diff --git a/core/hrtf.cpp b/core/hrtf.cpp
new file mode 100644
index 00000000..0a065be2
--- /dev/null
+++ b/core/hrtf.cpp
@@ -0,0 +1,1447 @@
+
+#include "config.h"
+
+#include "hrtf.h"
+
+#include <algorithm>
+#include <array>
+#include <cassert>
+#include <cctype>
+#include <cmath>
+#include <cstdint>
+#include <cstdio>
+#include <cstring>
+#include <functional>
+#include <fstream>
+#include <iterator>
+#include <memory>
+#include <mutex>
+#include <new>
+#include <numeric>
+#include <type_traits>
+#include <utility>
+
+#include "albit.h"
+#include "albyte.h"
+#include "alfstream.h"
+#include "almalloc.h"
+#include "alnumeric.h"
+#include "aloptional.h"
+#include "alspan.h"
+#include "ambidefs.h"
+#include "filters/splitter.h"
+#include "helpers.h"
+#include "logging.h"
+#include "math_defs.h"
+#include "opthelpers.h"
+#include "polyphase_resampler.h"
+
+
+namespace {
+
+struct HrtfEntry {
+ std::string mDispName;
+ std::string mFilename;
+};
+
+struct LoadedHrtf {
+ std::string mFilename;
+ std::unique_ptr<HrtfStore> mEntry;
+};
+
+/* Data set limits must be the same as or more flexible than those defined in
+ * the makemhr utility.
+ */
+constexpr uint MinFdCount{1};
+constexpr uint MaxFdCount{16};
+
+constexpr uint MinFdDistance{50};
+constexpr uint MaxFdDistance{2500};
+
+constexpr uint MinEvCount{5};
+constexpr uint MaxEvCount{181};
+
+constexpr uint MinAzCount{1};
+constexpr uint MaxAzCount{255};
+
+constexpr uint MaxHrirDelay{HrtfHistoryLength - 1};
+
+constexpr uint HrirDelayFracBits{2};
+constexpr uint HrirDelayFracOne{1 << HrirDelayFracBits};
+constexpr uint HrirDelayFracHalf{HrirDelayFracOne >> 1};
+
+static_assert(MaxHrirDelay*HrirDelayFracOne < 256, "MAX_HRIR_DELAY or DELAY_FRAC too large");
+
+constexpr char magicMarker00[8]{'M','i','n','P','H','R','0','0'};
+constexpr char magicMarker01[8]{'M','i','n','P','H','R','0','1'};
+constexpr char magicMarker02[8]{'M','i','n','P','H','R','0','2'};
+constexpr char magicMarker03[8]{'M','i','n','P','H','R','0','3'};
+
+/* First value for pass-through coefficients (remaining are 0), used for omni-
+ * directional sounds. */
+constexpr float PassthruCoeff{0.707106781187f/*sqrt(0.5)*/};
+
+std::mutex LoadedHrtfLock;
+al::vector<LoadedHrtf> LoadedHrtfs;
+
+std::mutex EnumeratedHrtfLock;
+al::vector<HrtfEntry> EnumeratedHrtfs;
+
+
+class databuf final : public std::streambuf {
+ int_type underflow() override
+ { return traits_type::eof(); }
+
+ pos_type seekoff(off_type offset, std::ios_base::seekdir whence, std::ios_base::openmode mode) override
+ {
+ if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
+ return traits_type::eof();
+
+ char_type *cur;
+ switch(whence)
+ {
+ case std::ios_base::beg:
+ if(offset < 0 || offset > egptr()-eback())
+ return traits_type::eof();
+ cur = eback() + offset;
+ break;
+
+ case std::ios_base::cur:
+ if((offset >= 0 && offset > egptr()-gptr()) ||
+ (offset < 0 && -offset > gptr()-eback()))
+ return traits_type::eof();
+ cur = gptr() + offset;
+ break;
+
+ case std::ios_base::end:
+ if(offset > 0 || -offset > egptr()-eback())
+ return traits_type::eof();
+ cur = egptr() + offset;
+ break;
+
+ default:
+ return traits_type::eof();
+ }
+
+ setg(eback(), cur, egptr());
+ return cur - eback();
+ }
+
+ pos_type seekpos(pos_type pos, std::ios_base::openmode mode) override
+ {
+ // Simplified version of seekoff
+ if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
+ return traits_type::eof();
+
+ if(pos < 0 || pos > egptr()-eback())
+ return traits_type::eof();
+
+ setg(eback(), eback() + static_cast<size_t>(pos), egptr());
+ return pos;
+ }
+
+public:
+ databuf(const char_type *start_, const char_type *end_) noexcept
+ {
+ setg(const_cast<char_type*>(start_), const_cast<char_type*>(start_),
+ const_cast<char_type*>(end_));
+ }
+};
+
+class idstream final : public std::istream {
+ databuf mStreamBuf;
+
+public:
+ idstream(const char *start_, const char *end_)
+ : std::istream{nullptr}, mStreamBuf{start_, end_}
+ { init(&mStreamBuf); }
+};
+
+
+struct IdxBlend { uint idx; float blend; };
+/* Calculate the elevation index given the polar elevation in radians. This
+ * will return an index between 0 and (evcount - 1).
+ */
+IdxBlend CalcEvIndex(uint evcount, float ev)
+{
+ ev = (al::MathDefs<float>::Pi()*0.5f + ev) * static_cast<float>(evcount-1) /
+ al::MathDefs<float>::Pi();
+ uint idx{float2uint(ev)};
+
+ return IdxBlend{minu(idx, evcount-1), ev-static_cast<float>(idx)};
+}
+
+/* Calculate the azimuth index given the polar azimuth in radians. This will
+ * return an index between 0 and (azcount - 1).
+ */
+IdxBlend CalcAzIndex(uint azcount, float az)
+{
+ az = (al::MathDefs<float>::Tau()+az) * static_cast<float>(azcount) /
+ al::MathDefs<float>::Tau();
+ uint idx{float2uint(az)};
+
+ return IdxBlend{idx%azcount, az-static_cast<float>(idx)};
+}
+
+} // namespace
+
+
+/* Calculates static HRIR coefficients and delays for the given polar elevation
+ * and azimuth in radians. The coefficients are normalized.
+ */
+void GetHrtfCoeffs(const HrtfStore *Hrtf, float elevation, float azimuth, float distance,
+ float spread, HrirArray &coeffs, const al::span<uint,2> delays)
+{
+ const float dirfact{1.0f - (spread / al::MathDefs<float>::Tau())};
+
+ const auto *field = Hrtf->field;
+ const auto *field_end = field + Hrtf->fdCount-1;
+ size_t ebase{0};
+ while(distance < field->distance && field != field_end)
+ {
+ ebase += field->evCount;
+ ++field;
+ }
+
+ /* Calculate the elevation indices. */
+ const auto elev0 = CalcEvIndex(field->evCount, elevation);
+ const size_t elev1_idx{minu(elev0.idx+1, field->evCount-1)};
+ const size_t ir0offset{Hrtf->elev[ebase + elev0.idx].irOffset};
+ const size_t ir1offset{Hrtf->elev[ebase + elev1_idx].irOffset};
+
+ /* Calculate azimuth indices. */
+ const auto az0 = CalcAzIndex(Hrtf->elev[ebase + elev0.idx].azCount, azimuth);
+ const auto az1 = CalcAzIndex(Hrtf->elev[ebase + elev1_idx].azCount, azimuth);
+
+ /* Calculate the HRIR indices to blend. */
+ const size_t idx[4]{
+ ir0offset + az0.idx,
+ ir0offset + ((az0.idx+1) % Hrtf->elev[ebase + elev0.idx].azCount),
+ ir1offset + az1.idx,
+ ir1offset + ((az1.idx+1) % Hrtf->elev[ebase + elev1_idx].azCount)
+ };
+
+ /* Calculate bilinear blending weights, attenuated according to the
+ * directional panning factor.
+ */
+ const float blend[4]{
+ (1.0f-elev0.blend) * (1.0f-az0.blend) * dirfact,
+ (1.0f-elev0.blend) * ( az0.blend) * dirfact,
+ ( elev0.blend) * (1.0f-az1.blend) * dirfact,
+ ( elev0.blend) * ( az1.blend) * dirfact
+ };
+
+ /* Calculate the blended HRIR delays. */
+ float d{Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] +
+ Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]};
+ delays[0] = fastf2u(d * float{1.0f/HrirDelayFracOne});
+ d = Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] +
+ Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3];
+ delays[1] = fastf2u(d * float{1.0f/HrirDelayFracOne});
+
+ /* Calculate the blended HRIR coefficients. */
+ float *coeffout{al::assume_aligned<16>(&coeffs[0][0])};
+ coeffout[0] = PassthruCoeff * (1.0f-dirfact);
+ coeffout[1] = PassthruCoeff * (1.0f-dirfact);
+ std::fill_n(coeffout+2, size_t{HrirLength-1}*2, 0.0f);
+ for(size_t c{0};c < 4;c++)
+ {
+ const float *srccoeffs{al::assume_aligned<16>(Hrtf->coeffs[idx[c]][0].data())};
+ const float mult{blend[c]};
+ auto blend_coeffs = [mult](const float src, const float coeff) noexcept -> float
+ { return src*mult + coeff; };
+ std::transform(srccoeffs, srccoeffs + HrirLength*2, coeffout, coeffout, blend_coeffs);
+ }
+}
+
+
+std::unique_ptr<DirectHrtfState> DirectHrtfState::Create(size_t num_chans)
+{ return std::unique_ptr<DirectHrtfState>{new(FamCount(num_chans)) DirectHrtfState{num_chans}}; }
+
+void DirectHrtfState::build(const HrtfStore *Hrtf, const uint irSize,
+ const al::span<const AngularPoint> AmbiPoints, const float (*AmbiMatrix)[MaxAmbiChannels],
+ const float XOverFreq, const al::span<const float,MaxAmbiOrder+1> AmbiOrderHFGain)
+{
+ using double2 = std::array<double,2>;
+ struct ImpulseResponse {
+ const ConstHrirSpan hrir;
+ uint ldelay, rdelay;
+ };
+
+ const double xover_norm{double{XOverFreq} / Hrtf->sampleRate};
+ for(size_t i{0};i < mChannels.size();++i)
+ {
+ const size_t order{AmbiIndex::OrderFromChannel()[i]};
+ mChannels[i].mSplitter.init(static_cast<float>(xover_norm));
+ mChannels[i].mHfScale = AmbiOrderHFGain[order];
+ }
+
+ uint min_delay{HrtfHistoryLength*HrirDelayFracOne}, max_delay{0};
+ al::vector<ImpulseResponse> impres; impres.reserve(AmbiPoints.size());
+ auto calc_res = [Hrtf,&max_delay,&min_delay](const AngularPoint &pt) -> ImpulseResponse
+ {
+ auto &field = Hrtf->field[0];
+ const auto elev0 = CalcEvIndex(field.evCount, pt.Elev.value);
+ const size_t elev1_idx{minu(elev0.idx+1, field.evCount-1)};
+ const size_t ir0offset{Hrtf->elev[elev0.idx].irOffset};
+ const size_t ir1offset{Hrtf->elev[elev1_idx].irOffset};
+
+ const auto az0 = CalcAzIndex(Hrtf->elev[elev0.idx].azCount, pt.Azim.value);
+ const auto az1 = CalcAzIndex(Hrtf->elev[elev1_idx].azCount, pt.Azim.value);
+
+ const size_t idx[4]{
+ ir0offset + az0.idx,
+ ir0offset + ((az0.idx+1) % Hrtf->elev[elev0.idx].azCount),
+ ir1offset + az1.idx,
+ ir1offset + ((az1.idx+1) % Hrtf->elev[elev1_idx].azCount)
+ };
+
+ const std::array<double,4> blend{{
+ (1.0-elev0.blend) * (1.0-az0.blend),
+ (1.0-elev0.blend) * ( az0.blend),
+ ( elev0.blend) * (1.0-az1.blend),
+ ( elev0.blend) * ( az1.blend)
+ }};
+
+ /* The largest blend factor serves as the closest HRIR. */
+ const size_t irOffset{idx[std::max_element(blend.begin(), blend.end()) - blend.begin()]};
+ ImpulseResponse res{Hrtf->coeffs[irOffset],
+ Hrtf->delays[irOffset][0], Hrtf->delays[irOffset][1]};
+
+ min_delay = minu(min_delay, minu(res.ldelay, res.rdelay));
+ max_delay = maxu(max_delay, maxu(res.ldelay, res.rdelay));
+
+ return res;
+ };
+ std::transform(AmbiPoints.begin(), AmbiPoints.end(), std::back_inserter(impres), calc_res);
+ auto hrir_delay_round = [](const uint d) noexcept -> uint
+ { return (d+HrirDelayFracHalf) >> HrirDelayFracBits; };
+
+ TRACE("Min delay: %.2f, max delay: %.2f, FIR length: %u\n",
+ min_delay/double{HrirDelayFracOne}, max_delay/double{HrirDelayFracOne}, irSize);
+
+ const bool per_hrir_min{mChannels.size() > AmbiChannelsFromOrder(1)};
+ auto tmpres = al::vector<std::array<double2,HrirLength>>(mChannels.size());
+ max_delay = 0;
+ for(size_t c{0u};c < AmbiPoints.size();++c)
+ {
+ const ConstHrirSpan hrir{impres[c].hrir};
+ const uint base_delay{per_hrir_min ? minu(impres[c].ldelay, impres[c].rdelay) : min_delay};
+ const uint ldelay{hrir_delay_round(impres[c].ldelay - base_delay)};
+ const uint rdelay{hrir_delay_round(impres[c].rdelay - base_delay)};
+ max_delay = maxu(max_delay, maxu(impres[c].ldelay, impres[c].rdelay) - base_delay);
+
+ for(size_t i{0u};i < mChannels.size();++i)
+ {
+ const double mult{AmbiMatrix[c][i]};
+ const size_t numirs{HrirLength - maxz(ldelay, rdelay)};
+ size_t lidx{ldelay}, ridx{rdelay};
+ for(size_t j{0};j < numirs;++j)
+ {
+ tmpres[i][lidx++][0] += hrir[j][0] * mult;
+ tmpres[i][ridx++][1] += hrir[j][1] * mult;
+ }
+ }
+ }
+ impres.clear();
+
+ for(size_t i{0u};i < mChannels.size();++i)
+ {
+ auto copy_arr = [](const double2 &in) noexcept -> float2
+ { return float2{{static_cast<float>(in[0]), static_cast<float>(in[1])}}; };
+ std::transform(tmpres[i].cbegin(), tmpres[i].cend(), mChannels[i].mCoeffs.begin(),
+ copy_arr);
+ }
+ tmpres.clear();
+
+ const uint max_length{minu(hrir_delay_round(max_delay) + irSize, HrirLength)};
+ TRACE("New max delay: %.2f, FIR length: %u\n", max_delay/double{HrirDelayFracOne},
+ max_length);
+ mIrSize = max_length;
+}
+
+
+namespace {
+
+std::unique_ptr<HrtfStore> CreateHrtfStore(uint rate, ushort irSize,
+ const al::span<const HrtfStore::Field> fields,
+ const al::span<const HrtfStore::Elevation> elevs, const HrirArray *coeffs,
+ const ubyte2 *delays, const char *filename)
+{
+ std::unique_ptr<HrtfStore> Hrtf;
+
+ const size_t irCount{size_t{elevs.back().azCount} + elevs.back().irOffset};
+ size_t total{sizeof(HrtfStore)};
+ total = RoundUp(total, alignof(HrtfStore::Field)); /* Align for field infos */
+ total += sizeof(HrtfStore::Field)*fields.size();
+ total = RoundUp(total, alignof(HrtfStore::Elevation)); /* Align for elevation infos */
+ total += sizeof(Hrtf->elev[0])*elevs.size();
+ total = RoundUp(total, 16); /* Align for coefficients using SIMD */
+ total += sizeof(Hrtf->coeffs[0])*irCount;
+ total += sizeof(Hrtf->delays[0])*irCount;
+
+ Hrtf.reset(new (al_calloc(16, total)) HrtfStore{});
+ if(!Hrtf)
+ ERR("Out of memory allocating storage for %s.\n", filename);
+ else
+ {
+ InitRef(Hrtf->mRef, 1u);
+ Hrtf->sampleRate = rate;
+ Hrtf->irSize = irSize;
+ Hrtf->fdCount = static_cast<uint>(fields.size());
+
+ /* Set up pointers to storage following the main HRTF struct. */
+ char *base = reinterpret_cast<char*>(Hrtf.get());
+ size_t offset{sizeof(HrtfStore)};
+
+ offset = RoundUp(offset, alignof(HrtfStore::Field)); /* Align for field infos */
+ auto field_ = reinterpret_cast<HrtfStore::Field*>(base + offset);
+ offset += sizeof(field_[0])*fields.size();
+
+ offset = RoundUp(offset, alignof(HrtfStore::Elevation)); /* Align for elevation infos */
+ auto elev_ = reinterpret_cast<HrtfStore::Elevation*>(base + offset);
+ offset += sizeof(elev_[0])*elevs.size();
+
+ offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */
+ auto coeffs_ = reinterpret_cast<HrirArray*>(base + offset);
+ offset += sizeof(coeffs_[0])*irCount;
+
+ auto delays_ = reinterpret_cast<ubyte2*>(base + offset);
+ offset += sizeof(delays_[0])*irCount;
+
+ assert(offset == total);
+
+ /* Copy input data to storage. */
+ std::copy(fields.cbegin(), fields.cend(), field_);
+ std::copy(elevs.cbegin(), elevs.cend(), elev_);
+ std::copy_n(coeffs, irCount, coeffs_);
+ std::copy_n(delays, irCount, delays_);
+
+ /* Finally, assign the storage pointers. */
+ Hrtf->field = field_;
+ Hrtf->elev = elev_;
+ Hrtf->coeffs = coeffs_;
+ Hrtf->delays = delays_;
+ }
+
+ return Hrtf;
+}
+
+void MirrorLeftHrirs(const al::span<const HrtfStore::Elevation> elevs, HrirArray *coeffs,
+ ubyte2 *delays)
+{
+ for(const auto &elev : elevs)
+ {
+ const ushort evoffset{elev.irOffset};
+ const ushort azcount{elev.azCount};
+ for(size_t j{0};j < azcount;j++)
+ {
+ const size_t lidx{evoffset + j};
+ const size_t ridx{evoffset + ((azcount-j) % azcount)};
+
+ const size_t irSize{coeffs[ridx].size()};
+ for(size_t k{0};k < irSize;k++)
+ coeffs[ridx][k][1] = coeffs[lidx][k][0];
+ delays[ridx][1] = delays[lidx][0];
+ }
+ }
+}
+
+
+template<typename T, size_t num_bits=sizeof(T)*8>
+inline T readle(std::istream &data)
+{
+ static_assert((num_bits&7) == 0, "num_bits must be a multiple of 8");
+ static_assert(num_bits <= sizeof(T)*8, "num_bits is too large for the type");
+
+ T ret{};
+ if_constexpr(al::endian::native == al::endian::little)
+ {
+ if(!data.read(reinterpret_cast<char*>(&ret), num_bits/8))
+ return static_cast<T>(EOF);
+ }
+ else
+ {
+ al::byte b[sizeof(T)]{};
+ if(!data.read(reinterpret_cast<char*>(b), num_bits/8))
+ return static_cast<T>(EOF);
+ std::reverse_copy(std::begin(b), std::end(b), reinterpret_cast<al::byte*>(&ret));
+ }
+
+ if_constexpr(std::is_signed<T>::value && num_bits < sizeof(T)*8)
+ {
+ constexpr auto signbit = static_cast<T>(1u << (num_bits-1));
+ return static_cast<T>((ret^signbit) - signbit);
+ }
+ return ret;
+}
+
+template<>
+inline uint8_t readle<uint8_t,8>(std::istream &data)
+{ return static_cast<uint8_t>(data.get()); }
+
+
+std::unique_ptr<HrtfStore> LoadHrtf00(std::istream &data, const char *filename)
+{
+ uint rate{readle<uint32_t>(data)};
+ ushort irCount{readle<uint16_t>(data)};
+ ushort irSize{readle<uint16_t>(data)};
+ ubyte evCount{readle<uint8_t>(data)};
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ if(irSize < MinIrLength || irSize > HrirLength)
+ {
+ ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
+ return nullptr;
+ }
+ if(evCount < MinEvCount || evCount > MaxEvCount)
+ {
+ ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
+ evCount, MinEvCount, MaxEvCount);
+ return nullptr;
+ }
+
+ auto elevs = al::vector<HrtfStore::Elevation>(evCount);
+ for(auto &elev : elevs)
+ elev.irOffset = readle<uint16_t>(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+ for(size_t i{1};i < evCount;i++)
+ {
+ if(elevs[i].irOffset <= elevs[i-1].irOffset)
+ {
+ ERR("Invalid evOffset: evOffset[%zu]=%d (last=%d)\n", i, elevs[i].irOffset,
+ elevs[i-1].irOffset);
+ return nullptr;
+ }
+ }
+ if(irCount <= elevs.back().irOffset)
+ {
+ ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n",
+ elevs.size()-1, elevs.back().irOffset, irCount);
+ return nullptr;
+ }
+
+ for(size_t i{1};i < evCount;i++)
+ {
+ elevs[i-1].azCount = static_cast<ushort>(elevs[i].irOffset - elevs[i-1].irOffset);
+ if(elevs[i-1].azCount < MinAzCount || elevs[i-1].azCount > MaxAzCount)
+ {
+ ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n",
+ i-1, elevs[i-1].azCount, MinAzCount, MaxAzCount);
+ return nullptr;
+ }
+ }
+ elevs.back().azCount = static_cast<ushort>(irCount - elevs.back().irOffset);
+ if(elevs.back().azCount < MinAzCount || elevs.back().azCount > MaxAzCount)
+ {
+ ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n",
+ elevs.size()-1, elevs.back().azCount, MinAzCount, MaxAzCount);
+ return nullptr;
+ }
+
+ auto coeffs = al::vector<HrirArray>(irCount, HrirArray{});
+ auto delays = al::vector<ubyte2>(irCount);
+ for(auto &hrir : coeffs)
+ {
+ for(auto &val : al::span<float2>{hrir.data(), irSize})
+ val[0] = readle<int16_t>(data) / 32768.0f;
+ }
+ for(auto &val : delays)
+ val[0] = readle<uint8_t>(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+ for(size_t i{0};i < irCount;i++)
+ {
+ if(delays[i][0] > MaxHrirDelay)
+ {
+ ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
+ return nullptr;
+ }
+ delays[i][0] <<= HrirDelayFracBits;
+ }
+
+ /* Mirror the left ear responses to the right ear. */
+ MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
+
+ const HrtfStore::Field field[1]{{0.0f, evCount}};
+ return CreateHrtfStore(rate, irSize, field, {elevs.data(), elevs.size()}, coeffs.data(),
+ delays.data(), filename);
+}
+
+std::unique_ptr<HrtfStore> LoadHrtf01(std::istream &data, const char *filename)
+{
+ uint rate{readle<uint32_t>(data)};
+ ushort irSize{readle<uint8_t>(data)};
+ ubyte evCount{readle<uint8_t>(data)};
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ if(irSize < MinIrLength || irSize > HrirLength)
+ {
+ ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
+ return nullptr;
+ }
+ if(evCount < MinEvCount || evCount > MaxEvCount)
+ {
+ ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
+ evCount, MinEvCount, MaxEvCount);
+ return nullptr;
+ }
+
+ auto elevs = al::vector<HrtfStore::Elevation>(evCount);
+ for(auto &elev : elevs)
+ elev.azCount = readle<uint8_t>(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+ for(size_t i{0};i < evCount;++i)
+ {
+ if(elevs[i].azCount < MinAzCount || elevs[i].azCount > MaxAzCount)
+ {
+ ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i, elevs[i].azCount,
+ MinAzCount, MaxAzCount);
+ return nullptr;
+ }
+ }
+
+ elevs[0].irOffset = 0;
+ for(size_t i{1};i < evCount;i++)
+ elevs[i].irOffset = static_cast<ushort>(elevs[i-1].irOffset + elevs[i-1].azCount);
+ const ushort irCount{static_cast<ushort>(elevs.back().irOffset + elevs.back().azCount)};
+
+ auto coeffs = al::vector<HrirArray>(irCount, HrirArray{});
+ auto delays = al::vector<ubyte2>(irCount);
+ for(auto &hrir : coeffs)
+ {
+ for(auto &val : al::span<float2>{hrir.data(), irSize})
+ val[0] = readle<int16_t>(data) / 32768.0f;
+ }
+ for(auto &val : delays)
+ val[0] = readle<uint8_t>(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+ for(size_t i{0};i < irCount;i++)
+ {
+ if(delays[i][0] > MaxHrirDelay)
+ {
+ ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
+ return nullptr;
+ }
+ delays[i][0] <<= HrirDelayFracBits;
+ }
+
+ /* Mirror the left ear responses to the right ear. */
+ MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
+
+ const HrtfStore::Field field[1]{{0.0f, evCount}};
+ return CreateHrtfStore(rate, irSize, field, {elevs.data(), elevs.size()}, coeffs.data(),
+ delays.data(), filename);
+}
+
+std::unique_ptr<HrtfStore> LoadHrtf02(std::istream &data, const char *filename)
+{
+ constexpr ubyte SampleType_S16{0};
+ constexpr ubyte SampleType_S24{1};
+ constexpr ubyte ChanType_LeftOnly{0};
+ constexpr ubyte ChanType_LeftRight{1};
+
+ uint rate{readle<uint32_t>(data)};
+ ubyte sampleType{readle<uint8_t>(data)};
+ ubyte channelType{readle<uint8_t>(data)};
+ ushort irSize{readle<uint8_t>(data)};
+ ubyte fdCount{readle<uint8_t>(data)};
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ if(sampleType > SampleType_S24)
+ {
+ ERR("Unsupported sample type: %d\n", sampleType);
+ return nullptr;
+ }
+ if(channelType > ChanType_LeftRight)
+ {
+ ERR("Unsupported channel type: %d\n", channelType);
+ return nullptr;
+ }
+
+ if(irSize < MinIrLength || irSize > HrirLength)
+ {
+ ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
+ return nullptr;
+ }
+ if(fdCount < 1 || fdCount > MaxFdCount)
+ {
+ ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount, MinFdCount,
+ MaxFdCount);
+ return nullptr;
+ }
+
+ auto fields = al::vector<HrtfStore::Field>(fdCount);
+ auto elevs = al::vector<HrtfStore::Elevation>{};
+ for(size_t f{0};f < fdCount;f++)
+ {
+ const ushort distance{readle<uint16_t>(data)};
+ const ubyte evCount{readle<uint8_t>(data)};
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ if(distance < MinFdDistance || distance > MaxFdDistance)
+ {
+ ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance,
+ MinFdDistance, MaxFdDistance);
+ return nullptr;
+ }
+ if(evCount < MinEvCount || evCount > MaxEvCount)
+ {
+ ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount,
+ MinEvCount, MaxEvCount);
+ return nullptr;
+ }
+
+ fields[f].distance = distance / 1000.0f;
+ fields[f].evCount = evCount;
+ if(f > 0 && fields[f].distance <= fields[f-1].distance)
+ {
+ ERR("Field distance[%zu] is not after previous (%f > %f)\n", f, fields[f].distance,
+ fields[f-1].distance);
+ return nullptr;
+ }
+
+ const size_t ebase{elevs.size()};
+ elevs.resize(ebase + evCount);
+ for(auto &elev : al::span<HrtfStore::Elevation>(elevs.data()+ebase, evCount))
+ elev.azCount = readle<uint8_t>(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ for(size_t e{0};e < evCount;e++)
+ {
+ if(elevs[ebase+e].azCount < MinAzCount || elevs[ebase+e].azCount > MaxAzCount)
+ {
+ ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e,
+ elevs[ebase+e].azCount, MinAzCount, MaxAzCount);
+ return nullptr;
+ }
+ }
+ }
+
+ elevs[0].irOffset = 0;
+ std::partial_sum(elevs.cbegin(), elevs.cend(), elevs.begin(),
+ [](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
+ -> HrtfStore::Elevation
+ {
+ return HrtfStore::Elevation{cur.azCount,
+ static_cast<ushort>(last.azCount + last.irOffset)};
+ });
+ const auto irTotal = static_cast<ushort>(elevs.back().azCount + elevs.back().irOffset);
+
+ auto coeffs = al::vector<HrirArray>(irTotal, HrirArray{});
+ auto delays = al::vector<ubyte2>(irTotal);
+ if(channelType == ChanType_LeftOnly)
+ {
+ if(sampleType == SampleType_S16)
+ {
+ for(auto &hrir : coeffs)
+ {
+ for(auto &val : al::span<float2>{hrir.data(), irSize})
+ val[0] = readle<int16_t>(data) / 32768.0f;
+ }
+ }
+ else if(sampleType == SampleType_S24)
+ {
+ for(auto &hrir : coeffs)
+ {
+ for(auto &val : al::span<float2>{hrir.data(), irSize})
+ val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
+ }
+ }
+ for(auto &val : delays)
+ val[0] = readle<uint8_t>(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+ for(size_t i{0};i < irTotal;++i)
+ {
+ if(delays[i][0] > MaxHrirDelay)
+ {
+ ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
+ return nullptr;
+ }
+ delays[i][0] <<= HrirDelayFracBits;
+ }
+
+ /* Mirror the left ear responses to the right ear. */
+ MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
+ }
+ else if(channelType == ChanType_LeftRight)
+ {
+ if(sampleType == SampleType_S16)
+ {
+ for(auto &hrir : coeffs)
+ {
+ for(auto &val : al::span<float2>{hrir.data(), irSize})
+ {
+ val[0] = readle<int16_t>(data) / 32768.0f;
+ val[1] = readle<int16_t>(data) / 32768.0f;
+ }
+ }
+ }
+ else if(sampleType == SampleType_S24)
+ {
+ for(auto &hrir : coeffs)
+ {
+ for(auto &val : al::span<float2>{hrir.data(), irSize})
+ {
+ val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
+ val[1] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
+ }
+ }
+ }
+ for(auto &val : delays)
+ {
+ val[0] = readle<uint8_t>(data);
+ val[1] = readle<uint8_t>(data);
+ }
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ for(size_t i{0};i < irTotal;++i)
+ {
+ if(delays[i][0] > MaxHrirDelay)
+ {
+ ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
+ return nullptr;
+ }
+ if(delays[i][1] > MaxHrirDelay)
+ {
+ ERR("Invalid delays[%zu][1]: %d (%d)\n", i, delays[i][1], MaxHrirDelay);
+ return nullptr;
+ }
+ delays[i][0] <<= HrirDelayFracBits;
+ delays[i][1] <<= HrirDelayFracBits;
+ }
+ }
+
+ if(fdCount > 1)
+ {
+ auto fields_ = al::vector<HrtfStore::Field>(fields.size());
+ auto elevs_ = al::vector<HrtfStore::Elevation>(elevs.size());
+ auto coeffs_ = al::vector<HrirArray>(coeffs.size());
+ auto delays_ = al::vector<ubyte2>(delays.size());
+
+ /* Simple reverse for the per-field elements. */
+ std::reverse_copy(fields.cbegin(), fields.cend(), fields_.begin());
+
+ /* Each field has a group of elevations, which each have an azimuth
+ * count. Reverse the order of the groups, keeping the relative order
+ * of per-group azimuth counts.
+ */
+ auto elevs__end = elevs_.end();
+ auto copy_azs = [&elevs,&elevs__end](const ptrdiff_t ebase, const HrtfStore::Field &field)
+ -> ptrdiff_t
+ {
+ auto elevs_src = elevs.begin()+ebase;
+ elevs__end = std::copy_backward(elevs_src, elevs_src+field.evCount, elevs__end);
+ return ebase + field.evCount;
+ };
+ (void)std::accumulate(fields.cbegin(), fields.cend(), ptrdiff_t{0}, copy_azs);
+ assert(elevs_.begin() == elevs__end);
+
+ /* Reestablish the IR offset for each elevation index, given the new
+ * ordering of elevations.
+ */
+ elevs_[0].irOffset = 0;
+ std::partial_sum(elevs_.cbegin(), elevs_.cend(), elevs_.begin(),
+ [](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
+ -> HrtfStore::Elevation
+ {
+ return HrtfStore::Elevation{cur.azCount,
+ static_cast<ushort>(last.azCount + last.irOffset)};
+ });
+
+ /* Reverse the order of each field's group of IRs. */
+ auto coeffs_end = coeffs_.end();
+ auto delays_end = delays_.end();
+ auto copy_irs = [&elevs,&coeffs,&delays,&coeffs_end,&delays_end](
+ const ptrdiff_t ebase, const HrtfStore::Field &field) -> ptrdiff_t
+ {
+ auto accum_az = [](int count, const HrtfStore::Elevation &elev) noexcept -> int
+ { return count + elev.azCount; };
+ const auto elevs_mid = elevs.cbegin() + ebase;
+ const auto elevs_end = elevs_mid + field.evCount;
+ const int abase{std::accumulate(elevs.cbegin(), elevs_mid, 0, accum_az)};
+ const int num_azs{std::accumulate(elevs_mid, elevs_end, 0, accum_az)};
+
+ coeffs_end = std::copy_backward(coeffs.cbegin() + abase,
+ coeffs.cbegin() + (abase+num_azs), coeffs_end);
+ delays_end = std::copy_backward(delays.cbegin() + abase,
+ delays.cbegin() + (abase+num_azs), delays_end);
+
+ return ebase + field.evCount;
+ };
+ (void)std::accumulate(fields.cbegin(), fields.cend(), ptrdiff_t{0}, copy_irs);
+ assert(coeffs_.begin() == coeffs_end);
+ assert(delays_.begin() == delays_end);
+
+ fields = std::move(fields_);
+ elevs = std::move(elevs_);
+ coeffs = std::move(coeffs_);
+ delays = std::move(delays_);
+ }
+
+ return CreateHrtfStore(rate, irSize, {fields.data(), fields.size()},
+ {elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename);
+}
+
+std::unique_ptr<HrtfStore> LoadHrtf03(std::istream &data, const char *filename)
+{
+ constexpr ubyte ChanType_LeftOnly{0};
+ constexpr ubyte ChanType_LeftRight{1};
+
+ uint rate{readle<uint32_t>(data)};
+ ubyte channelType{readle<uint8_t>(data)};
+ ushort irSize{readle<uint8_t>(data)};
+ ubyte fdCount{readle<uint8_t>(data)};
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ if(channelType > ChanType_LeftRight)
+ {
+ ERR("Unsupported channel type: %d\n", channelType);
+ return nullptr;
+ }
+
+ if(irSize < MinIrLength || irSize > HrirLength)
+ {
+ ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
+ return nullptr;
+ }
+ if(fdCount < 1 || fdCount > MaxFdCount)
+ {
+ ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount, MinFdCount,
+ MaxFdCount);
+ return nullptr;
+ }
+
+ auto fields = al::vector<HrtfStore::Field>(fdCount);
+ auto elevs = al::vector<HrtfStore::Elevation>{};
+ for(size_t f{0};f < fdCount;f++)
+ {
+ const ushort distance{readle<uint16_t>(data)};
+ const ubyte evCount{readle<uint8_t>(data)};
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ if(distance < MinFdDistance || distance > MaxFdDistance)
+ {
+ ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance,
+ MinFdDistance, MaxFdDistance);
+ return nullptr;
+ }
+ if(evCount < MinEvCount || evCount > MaxEvCount)
+ {
+ ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount,
+ MinEvCount, MaxEvCount);
+ return nullptr;
+ }
+
+ fields[f].distance = distance / 1000.0f;
+ fields[f].evCount = evCount;
+ if(f > 0 && fields[f].distance > fields[f-1].distance)
+ {
+ ERR("Field distance[%zu] is not before previous (%f <= %f)\n", f, fields[f].distance,
+ fields[f-1].distance);
+ return nullptr;
+ }
+
+ const size_t ebase{elevs.size()};
+ elevs.resize(ebase + evCount);
+ for(auto &elev : al::span<HrtfStore::Elevation>(elevs.data()+ebase, evCount))
+ elev.azCount = readle<uint8_t>(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ for(size_t e{0};e < evCount;e++)
+ {
+ if(elevs[ebase+e].azCount < MinAzCount || elevs[ebase+e].azCount > MaxAzCount)
+ {
+ ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e,
+ elevs[ebase+e].azCount, MinAzCount, MaxAzCount);
+ return nullptr;
+ }
+ }
+ }
+
+ elevs[0].irOffset = 0;
+ std::partial_sum(elevs.cbegin(), elevs.cend(), elevs.begin(),
+ [](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
+ -> HrtfStore::Elevation
+ {
+ return HrtfStore::Elevation{cur.azCount,
+ static_cast<ushort>(last.azCount + last.irOffset)};
+ });
+ const auto irTotal = static_cast<ushort>(elevs.back().azCount + elevs.back().irOffset);
+
+ auto coeffs = al::vector<HrirArray>(irTotal, HrirArray{});
+ auto delays = al::vector<ubyte2>(irTotal);
+ if(channelType == ChanType_LeftOnly)
+ {
+ for(auto &hrir : coeffs)
+ {
+ for(auto &val : al::span<float2>{hrir.data(), irSize})
+ val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
+ }
+ for(auto &val : delays)
+ val[0] = readle<uint8_t>(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+ for(size_t i{0};i < irTotal;++i)
+ {
+ if(delays[i][0] > MaxHrirDelay<<HrirDelayFracBits)
+ {
+ ERR("Invalid delays[%zu][0]: %f (%d)\n", i,
+ delays[i][0] / float{HrirDelayFracOne}, MaxHrirDelay);
+ return nullptr;
+ }
+ }
+
+ /* Mirror the left ear responses to the right ear. */
+ MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
+ }
+ else if(channelType == ChanType_LeftRight)
+ {
+ for(auto &hrir : coeffs)
+ {
+ for(auto &val : al::span<float2>{hrir.data(), irSize})
+ {
+ val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
+ val[1] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
+ }
+ }
+ for(auto &val : delays)
+ {
+ val[0] = readle<uint8_t>(data);
+ val[1] = readle<uint8_t>(data);
+ }
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ for(size_t i{0};i < irTotal;++i)
+ {
+ if(delays[i][0] > MaxHrirDelay<<HrirDelayFracBits)
+ {
+ ERR("Invalid delays[%zu][0]: %f (%d)\n", i,
+ delays[i][0] / float{HrirDelayFracOne}, MaxHrirDelay);
+ return nullptr;
+ }
+ if(delays[i][1] > MaxHrirDelay<<HrirDelayFracBits)
+ {
+ ERR("Invalid delays[%zu][1]: %f (%d)\n", i,
+ delays[i][1] / float{HrirDelayFracOne}, MaxHrirDelay);
+ return nullptr;
+ }
+ }
+ }
+
+ return CreateHrtfStore(rate, irSize, {fields.data(), fields.size()},
+ {elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename);
+}
+
+
+bool checkName(const std::string &name)
+{
+ auto match_name = [&name](const HrtfEntry &entry) -> bool { return name == entry.mDispName; };
+ auto &enum_names = EnumeratedHrtfs;
+ return std::find_if(enum_names.cbegin(), enum_names.cend(), match_name) != enum_names.cend();
+}
+
+void AddFileEntry(const std::string &filename)
+{
+ /* Check if this file has already been enumerated. */
+ auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
+ [&filename](const HrtfEntry &entry) -> bool
+ { return entry.mFilename == filename; });
+ if(enum_iter != EnumeratedHrtfs.cend())
+ {
+ TRACE("Skipping duplicate file entry %s\n", filename.c_str());
+ return;
+ }
+
+ /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
+ * format update). */
+ size_t namepos{filename.find_last_of('/')+1};
+ if(!namepos) namepos = filename.find_last_of('\\')+1;
+
+ size_t extpos{filename.find_last_of('.')};
+ if(extpos <= namepos) extpos = std::string::npos;
+
+ const std::string basename{(extpos == std::string::npos) ?
+ filename.substr(namepos) : filename.substr(namepos, extpos-namepos)};
+ std::string newname{basename};
+ int count{1};
+ while(checkName(newname))
+ {
+ newname = basename;
+ newname += " #";
+ newname += std::to_string(++count);
+ }
+ EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename});
+ const HrtfEntry &entry = EnumeratedHrtfs.back();
+
+ TRACE("Adding file entry \"%s\"\n", entry.mFilename.c_str());
+}
+
+/* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
+ * for input instead of opening the given filename.
+ */
+void AddBuiltInEntry(const std::string &dispname, uint residx)
+{
+ const std::string filename{'!'+std::to_string(residx)+'_'+dispname};
+
+ auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
+ [&filename](const HrtfEntry &entry) -> bool
+ { return entry.mFilename == filename; });
+ if(enum_iter != EnumeratedHrtfs.cend())
+ {
+ TRACE("Skipping duplicate file entry %s\n", filename.c_str());
+ return;
+ }
+
+ /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
+ * format update). */
+
+ std::string newname{dispname};
+ int count{1};
+ while(checkName(newname))
+ {
+ newname = dispname;
+ newname += " #";
+ newname += std::to_string(++count);
+ }
+ EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename});
+ const HrtfEntry &entry = EnumeratedHrtfs.back();
+
+ TRACE("Adding built-in entry \"%s\"\n", entry.mFilename.c_str());
+}
+
+
+#define IDR_DEFAULT_HRTF_MHR 1
+
+#ifndef ALSOFT_EMBED_HRTF_DATA
+
+al::span<const char> GetResource(int /*name*/)
+{ return {}; }
+
+#else
+
+#include "hrtf_default.h"
+
+al::span<const char> GetResource(int name)
+{
+ if(name == IDR_DEFAULT_HRTF_MHR)
+ return {reinterpret_cast<const char*>(hrtf_default), sizeof(hrtf_default)};
+ return {};
+}
+#endif
+
+} // namespace
+
+
+al::vector<std::string> EnumerateHrtf(al::optional<std::string> pathopt)
+{
+ std::lock_guard<std::mutex> _{EnumeratedHrtfLock};
+ EnumeratedHrtfs.clear();
+
+ bool usedefaults{true};
+ if(pathopt)
+ {
+ const char *pathlist{pathopt->c_str()};
+ while(pathlist && *pathlist)
+ {
+ const char *next, *end;
+
+ while(isspace(*pathlist) || *pathlist == ',')
+ pathlist++;
+ if(*pathlist == '\0')
+ continue;
+
+ next = strchr(pathlist, ',');
+ if(next)
+ end = next++;
+ else
+ {
+ end = pathlist + strlen(pathlist);
+ usedefaults = false;
+ }
+
+ while(end != pathlist && isspace(*(end-1)))
+ --end;
+ if(end != pathlist)
+ {
+ const std::string pname{pathlist, end};
+ for(const auto &fname : SearchDataFiles(".mhr", pname.c_str()))
+ AddFileEntry(fname);
+ }
+
+ pathlist = next;
+ }
+ }
+
+ if(usedefaults)
+ {
+ for(const auto &fname : SearchDataFiles(".mhr", "openal/hrtf"))
+ AddFileEntry(fname);
+
+ if(!GetResource(IDR_DEFAULT_HRTF_MHR).empty())
+ AddBuiltInEntry("Built-In HRTF", IDR_DEFAULT_HRTF_MHR);
+ }
+
+ al::vector<std::string> list;
+ list.reserve(EnumeratedHrtfs.size());
+ for(auto &entry : EnumeratedHrtfs)
+ list.emplace_back(entry.mDispName);
+
+ return list;
+}
+
+HrtfStorePtr GetLoadedHrtf(const std::string &name, const uint devrate)
+{
+ std::lock_guard<std::mutex> _{EnumeratedHrtfLock};
+ auto entry_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
+ [&name](const HrtfEntry &entry) -> bool { return entry.mDispName == name; });
+ if(entry_iter == EnumeratedHrtfs.cend())
+ return nullptr;
+ const std::string &fname = entry_iter->mFilename;
+
+ std::lock_guard<std::mutex> __{LoadedHrtfLock};
+ auto hrtf_lt_fname = [](LoadedHrtf &hrtf, const std::string &filename) -> bool
+ { return hrtf.mFilename < filename; };
+ auto handle = std::lower_bound(LoadedHrtfs.begin(), LoadedHrtfs.end(), fname, hrtf_lt_fname);
+ while(handle != LoadedHrtfs.end() && handle->mFilename == fname)
+ {
+ HrtfStore *hrtf{handle->mEntry.get()};
+ if(hrtf && hrtf->sampleRate == devrate)
+ {
+ hrtf->add_ref();
+ return HrtfStorePtr{hrtf};
+ }
+ ++handle;
+ }
+
+ std::unique_ptr<std::istream> stream;
+ int residx{};
+ char ch{};
+ if(sscanf(fname.c_str(), "!%d%c", &residx, &ch) == 2 && ch == '_')
+ {
+ TRACE("Loading %s...\n", fname.c_str());
+ al::span<const char> res{GetResource(residx)};
+ if(res.empty())
+ {
+ ERR("Could not get resource %u, %s\n", residx, name.c_str());
+ return nullptr;
+ }
+ stream = std::make_unique<idstream>(res.begin(), res.end());
+ }
+ else
+ {
+ TRACE("Loading %s...\n", fname.c_str());
+ auto fstr = std::make_unique<al::ifstream>(fname.c_str(), std::ios::binary);
+ if(!fstr->is_open())
+ {
+ ERR("Could not open %s\n", fname.c_str());
+ return nullptr;
+ }
+ stream = std::move(fstr);
+ }
+
+ std::unique_ptr<HrtfStore> hrtf;
+ char magic[sizeof(magicMarker03)];
+ stream->read(magic, sizeof(magic));
+ if(stream->gcount() < static_cast<std::streamsize>(sizeof(magicMarker03)))
+ ERR("%s data is too short (%zu bytes)\n", name.c_str(), stream->gcount());
+ else if(memcmp(magic, magicMarker03, sizeof(magicMarker03)) == 0)
+ {
+ TRACE("Detected data set format v3\n");
+ hrtf = LoadHrtf03(*stream, name.c_str());
+ }
+ else if(memcmp(magic, magicMarker02, sizeof(magicMarker02)) == 0)
+ {
+ TRACE("Detected data set format v2\n");
+ hrtf = LoadHrtf02(*stream, name.c_str());
+ }
+ else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
+ {
+ TRACE("Detected data set format v1\n");
+ hrtf = LoadHrtf01(*stream, name.c_str());
+ }
+ else if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
+ {
+ TRACE("Detected data set format v0\n");
+ hrtf = LoadHrtf00(*stream, name.c_str());
+ }
+ else
+ ERR("Invalid header in %s: \"%.8s\"\n", name.c_str(), magic);
+ stream.reset();
+
+ if(!hrtf)
+ {
+ ERR("Failed to load %s\n", name.c_str());
+ return nullptr;
+ }
+
+ if(hrtf->sampleRate != devrate)
+ {
+ TRACE("Resampling HRTF %s (%uhz -> %uhz)\n", name.c_str(), hrtf->sampleRate, devrate);
+
+ /* Calculate the last elevation's index and get the total IR count. */
+ const size_t lastEv{std::accumulate(hrtf->field, hrtf->field+hrtf->fdCount, size_t{0},
+ [](const size_t curval, const HrtfStore::Field &field) noexcept -> size_t
+ { return curval + field.evCount; }
+ ) - 1};
+ const size_t irCount{size_t{hrtf->elev[lastEv].irOffset} + hrtf->elev[lastEv].azCount};
+
+ /* Resample all the IRs. */
+ std::array<std::array<double,HrirLength>,2> inout;
+ PPhaseResampler rs;
+ rs.init(hrtf->sampleRate, devrate);
+ for(size_t i{0};i < irCount;++i)
+ {
+ HrirArray &coeffs = const_cast<HrirArray&>(hrtf->coeffs[i]);
+ for(size_t j{0};j < 2;++j)
+ {
+ std::transform(coeffs.cbegin(), coeffs.cend(), inout[0].begin(),
+ [j](const float2 &in) noexcept -> double { return in[j]; });
+ rs.process(HrirLength, inout[0].data(), HrirLength, inout[1].data());
+ for(size_t k{0};k < HrirLength;++k)
+ coeffs[k][j] = static_cast<float>(inout[1][k]);
+ }
+ }
+ rs = {};
+
+ /* Scale the delays for the new sample rate. */
+ float max_delay{0.0f};
+ auto new_delays = al::vector<float2>(irCount);
+ const float rate_scale{static_cast<float>(devrate)/static_cast<float>(hrtf->sampleRate)};
+ for(size_t i{0};i < irCount;++i)
+ {
+ for(size_t j{0};j < 2;++j)
+ {
+ const float new_delay{std::round(hrtf->delays[i][j] * rate_scale) /
+ float{HrirDelayFracOne}};
+ max_delay = maxf(max_delay, new_delay);
+ new_delays[i][j] = new_delay;
+ }
+ }
+
+ /* If the new delays exceed the max, scale it down to fit (essentially
+ * shrinking the head radius; not ideal but better than a per-delay
+ * clamp).
+ */
+ float delay_scale{HrirDelayFracOne};
+ if(max_delay > MaxHrirDelay)
+ {
+ WARN("Resampled delay exceeds max (%.2f > %d)\n", max_delay, MaxHrirDelay);
+ delay_scale *= float{MaxHrirDelay} / max_delay;
+ }
+
+ for(size_t i{0};i < irCount;++i)
+ {
+ ubyte2 &delays = const_cast<ubyte2&>(hrtf->delays[i]);
+ for(size_t j{0};j < 2;++j)
+ delays[j] = static_cast<ubyte>(float2int(new_delays[i][j]*delay_scale + 0.5f));
+ }
+
+ /* Scale the IR size for the new sample rate and update the stored
+ * sample rate.
+ */
+ const float newIrSize{std::round(static_cast<float>(hrtf->irSize) * rate_scale)};
+ hrtf->irSize = static_cast<uint>(minf(HrirLength, newIrSize));
+ hrtf->sampleRate = devrate;
+ }
+
+ TRACE("Loaded HRTF %s for sample rate %uhz, %u-sample filter\n", name.c_str(),
+ hrtf->sampleRate, hrtf->irSize);
+ handle = LoadedHrtfs.emplace(handle, LoadedHrtf{fname, std::move(hrtf)});
+
+ return HrtfStorePtr{handle->mEntry.get()};
+}
+
+
+void HrtfStore::add_ref()
+{
+ auto ref = IncrementRef(mRef);
+ TRACE("HrtfStore %p increasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
+}
+
+void HrtfStore::release()
+{
+ auto ref = DecrementRef(mRef);
+ TRACE("HrtfStore %p decreasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
+ if(ref == 0)
+ {
+ std::lock_guard<std::mutex> _{LoadedHrtfLock};
+
+ /* Go through and remove all unused HRTFs. */
+ auto remove_unused = [](LoadedHrtf &hrtf) -> bool
+ {
+ HrtfStore *entry{hrtf.mEntry.get()};
+ if(entry && ReadRef(entry->mRef) == 0)
+ {
+ TRACE("Unloading unused HRTF %s\n", hrtf.mFilename.data());
+ hrtf.mEntry = nullptr;
+ return true;
+ }
+ return false;
+ };
+ auto iter = std::remove_if(LoadedHrtfs.begin(), LoadedHrtfs.end(), remove_unused);
+ LoadedHrtfs.erase(iter, LoadedHrtfs.end());
+ }
+}