aboutsummaryrefslogtreecommitdiffstats
path: root/alc
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2019-12-25 21:48:58 -0800
committerChris Robinson <[email protected]>2019-12-25 21:48:58 -0800
commit3b3d3d3a03c3f39e758b3b9b41649b86314eb413 (patch)
treeac65877d89e9fc97b79ac0fcd83a290d825f4247 /alc
parent06b7c63cef00a9641e7e36d972fdc3c0c78ca4b8 (diff)
Use a span for the band-splitter input
Diffstat (limited to 'alc')
-rw-r--r--alc/alu.cpp19
-rw-r--r--alc/bformatdec.cpp4
-rw-r--r--alc/effects/reverb.cpp4
-rw-r--r--alc/filters/splitter.cpp22
-rw-r--r--alc/filters/splitter.h8
-rw-r--r--alc/hrtf.cpp21
-rw-r--r--alc/voice.cpp6
7 files changed, 41 insertions, 43 deletions
diff --git a/alc/alu.cpp b/alc/alu.cpp
index 560903a1..da1d72b9 100644
--- a/alc/alu.cpp
+++ b/alc/alu.cpp
@@ -1712,13 +1712,13 @@ void ApplyStablizer(FrontStablizer *Stablizer, const al::span<FloatBufferLine> B
ALfloat (&lsplit)[2][BUFFERSIZE] = Stablizer->LSplit;
ALfloat (&rsplit)[2][BUFFERSIZE] = Stablizer->RSplit;
- auto &tmpbuf = Stablizer->TempBuf;
+ const al::span<float> tmpbuf{Stablizer->TempBuf, SamplesToDo+FrontStablizer::DelayLength};
/* This applies the band-splitter, preserving phase at the cost of some
* delay. The shorter the delay, the more error seeps into the result.
*/
- auto apply_splitter = [&tmpbuf,SamplesToDo](const FloatBufferLine &InBuf,
- ALfloat (&DelayBuf)[FrontStablizer::DelayLength], BandSplitter &Filter,
+ auto apply_splitter = [tmpbuf,SamplesToDo](const FloatBufferLine &InBuf,
+ const al::span<float,FrontStablizer::DelayLength> DelayBuf, BandSplitter &Filter,
ALfloat (&splitbuf)[2][BUFFERSIZE]) -> void
{
/* Combine the delayed samples and the input samples into the temp
@@ -1726,22 +1726,21 @@ void ApplyStablizer(FrontStablizer *Stablizer, const al::span<FloatBufferLine> B
* buffer for next time. Note that the delay buffer's samples are
* stored backwards here.
*/
- auto tmpbuf_end = std::begin(tmpbuf) + SamplesToDo;
- std::copy_n(std::begin(DelayBuf), FrontStablizer::DelayLength, tmpbuf_end);
- std::reverse_copy(InBuf.begin(), InBuf.begin()+SamplesToDo, std::begin(tmpbuf));
- std::copy_n(std::begin(tmpbuf), FrontStablizer::DelayLength, std::begin(DelayBuf));
+ std::copy_backward(DelayBuf.cbegin(), DelayBuf.cend(), tmpbuf.end());
+ std::reverse_copy(InBuf.begin(), InBuf.begin()+SamplesToDo, tmpbuf.begin());
+ std::copy_n(tmpbuf.cbegin(), DelayBuf.size(), DelayBuf.begin());
/* Apply an all-pass on the reversed signal, then reverse the samples
* to get the forward signal with a reversed phase shift.
*/
- Filter.applyAllpass(tmpbuf, SamplesToDo+FrontStablizer::DelayLength);
- std::reverse(std::begin(tmpbuf), tmpbuf_end+FrontStablizer::DelayLength);
+ Filter.applyAllpass(tmpbuf);
+ std::reverse(tmpbuf.begin(), tmpbuf.end());
/* Now apply the band-splitter, combining its phase shift with the
* reversed phase shift, restoring the original phase on the split
* signal.
*/
- Filter.process(splitbuf[1], splitbuf[0], tmpbuf, SamplesToDo);
+ Filter.process(tmpbuf.first(SamplesToDo), splitbuf[1], splitbuf[0]);
};
apply_splitter(Buffer[lidx], Stablizer->DelayBuf[lidx], Stablizer->LFilter, lsplit);
apply_splitter(Buffer[ridx], Stablizer->DelayBuf[ridx], Stablizer->RFilter, rsplit);
diff --git a/alc/bformatdec.cpp b/alc/bformatdec.cpp
index 9fbe32b8..a9510574 100644
--- a/alc/bformatdec.cpp
+++ b/alc/bformatdec.cpp
@@ -152,8 +152,8 @@ void BFormatDec::process(const al::span<FloatBufferLine> OutBuffer,
if(mDualBand)
{
for(ALuint i{0};i < mNumChannels;i++)
- mXOver[i].process(mSamplesHF[i].data(), mSamplesLF[i].data(), InSamples[i].data(),
- SamplesToDo);
+ mXOver[i].process({InSamples[i].data(), SamplesToDo}, mSamplesHF[i].data(),
+ mSamplesLF[i].data());
ALfloat (*mixmtx)[sNumBands][MAX_AMBI_CHANNELS]{mMatrix.Dual};
ALuint enabled{mEnabled};
diff --git a/alc/effects/reverb.cpp b/alc/effects/reverb.cpp
index c8ebba68..727c8352 100644
--- a/alc/effects/reverb.cpp
+++ b/alc/effects/reverb.cpp
@@ -448,7 +448,7 @@ struct ReverbState final : public EffectState {
* higher-order output.
*/
const ALfloat hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
- mAmbiSplitter[0][c].applyHfScale(tmpspan.data(), hfscale, todo);
+ mAmbiSplitter[0][c].applyHfScale(tmpspan, hfscale);
MixSamples(tmpspan, samplesOut, mEarly.CurrentGain[c], mEarly.PanGain[c], counter,
offset);
@@ -460,7 +460,7 @@ struct ReverbState final : public EffectState {
mLateSamples[0].size());
const ALfloat hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
- mAmbiSplitter[1][c].applyHfScale(tmpspan.data(), hfscale, todo);
+ mAmbiSplitter[1][c].applyHfScale(tmpspan, hfscale);
MixSamples(tmpspan, samplesOut, mLate.CurrentGain[c], mLate.PanGain[c], counter,
offset);
diff --git a/alc/filters/splitter.cpp b/alc/filters/splitter.cpp
index c6218e70..e8e01802 100644
--- a/alc/filters/splitter.cpp
+++ b/alc/filters/splitter.cpp
@@ -27,10 +27,8 @@ void BandSplitterR<Real>::init(Real f0norm)
}
template<typename Real>
-void BandSplitterR<Real>::process(Real *hpout, Real *lpout, const Real *input, const size_t count)
+void BandSplitterR<Real>::process(const al::span<const Real> input, Real *hpout, Real *lpout)
{
- ASSUME(count > 0);
-
const Real ap_coeff{mCoeff};
const Real lp_coeff{mCoeff*0.5f + 0.5f};
Real lp_z1{mLpZ1};
@@ -56,17 +54,15 @@ void BandSplitterR<Real>::process(Real *hpout, Real *lpout, const Real *input, c
/* High-pass generated from removing low-passed output. */
return ap_y - lp_y;
};
- std::transform(input, input+count, hpout, proc_sample);
+ std::transform(input.cbegin(), input.cend(), hpout, proc_sample);
mLpZ1 = lp_z1;
mLpZ2 = lp_z2;
mApZ1 = ap_z1;
}
template<typename Real>
-void BandSplitterR<Real>::applyHfScale(Real *samples, const Real hfscale, const size_t count)
+void BandSplitterR<Real>::applyHfScale(const al::span<Real> samples, const Real hfscale)
{
- ASSUME(count > 0);
-
const Real ap_coeff{mCoeff};
const Real lp_coeff{mCoeff*0.5f + 0.5f};
Real lp_z1{mLpZ1};
@@ -87,20 +83,20 @@ void BandSplitterR<Real>::applyHfScale(Real *samples, const Real hfscale, const
Real ap_y{in*ap_coeff + ap_z1};
ap_z1 = in - ap_y*ap_coeff;
- /* High-pass generated from removing low-passed output. */
+ /* High-pass generated by removing the low-passed signal, which is then
+ * scaled and added back to the low-passed signal.
+ */
return (ap_y-lp_y)*hfscale + lp_y;
};
- std::transform(samples, samples+count, samples, proc_sample);
+ std::transform(samples.begin(), samples.end(), samples.begin(), proc_sample);
mLpZ1 = lp_z1;
mLpZ2 = lp_z2;
mApZ1 = ap_z1;
}
template<typename Real>
-void BandSplitterR<Real>::applyAllpass(Real *samples, const size_t count) const
+void BandSplitterR<Real>::applyAllpass(const al::span<Real> samples) const
{
- ASSUME(count > 0);
-
const Real coeff{mCoeff};
Real z1{0.0f};
auto proc_sample = [coeff,&z1](const Real in) noexcept -> Real
@@ -109,7 +105,7 @@ void BandSplitterR<Real>::applyAllpass(Real *samples, const size_t count) const
z1 = in - out*coeff;
return out;
};
- std::transform(samples, samples+count, samples, proc_sample);
+ std::transform(samples.begin(), samples.end(), samples.begin(), proc_sample);
}
diff --git a/alc/filters/splitter.h b/alc/filters/splitter.h
index 5117a244..d88ef182 100644
--- a/alc/filters/splitter.h
+++ b/alc/filters/splitter.h
@@ -3,6 +3,8 @@
#include <cstddef>
+#include "alspan.h"
+
/* Band splitter. Splits a signal into two phase-matching frequency bands. */
template<typename Real>
@@ -19,15 +21,15 @@ public:
void init(Real f0norm);
void clear() noexcept { mLpZ1 = mLpZ2 = mApZ1 = 0.0f; }
- void process(Real *hpout, Real *lpout, const Real *input, const size_t count);
+ void process(const al::span<const Real> input, Real *hpout, Real *lpout);
- void applyHfScale(Real *samples, const Real hfscale, const size_t count);
+ void applyHfScale(const al::span<Real> samples, const Real hfscale);
/* The all-pass portion of the band splitter. Applies the same phase shift
* without splitting the signal. Note that each use of this method is
* indepedent, it does not track history between calls.
*/
- void applyAllpass(Real *samples, const size_t count) const;
+ void applyAllpass(const al::span<Real> samples) const;
};
using BandSplitter = BandSplitterR<float>;
diff --git a/alc/hrtf.cpp b/alc/hrtf.cpp
index 83df4b37..179938e0 100644
--- a/alc/hrtf.cpp
+++ b/alc/hrtf.cpp
@@ -372,6 +372,7 @@ void BuildBFormatHrtf(const HrtfStore *Hrtf, DirectHrtfState *state,
auto tmpres = al::vector<std::array<double2,HRIR_LENGTH>>(state->Coeffs.size());
auto tmpflt = al::vector<std::array<double,HRIR_LENGTH*4>>(3);
+ const al::span<double,HRIR_LENGTH*4> tempir{tmpflt[2].data(), tmpflt[2].size()};
for(size_t c{0u};c < AmbiPoints.size();++c)
{
const al::span<const double2,HRIR_LENGTH> hrir{impres[c].hrir};
@@ -402,23 +403,23 @@ void BuildBFormatHrtf(const HrtfStore *Hrtf, DirectHrtfState *state,
*/
/* Load the (left) HRIR backwards, into a temp buffer with padding. */
- std::fill(tmpflt[2].begin(), tmpflt[2].end(), 0.0);
- std::transform(hrir.cbegin(), hrir.cend(), tmpflt[2].rbegin() + HRIR_LENGTH*3,
+ std::fill(tempir.begin(), tempir.end(), 0.0);
+ std::transform(hrir.cbegin(), hrir.cend(), tempir.rbegin() + HRIR_LENGTH*3,
[](const double2 &ir) noexcept -> double { return ir[0]; });
/* Apply the all-pass on the reversed signal and reverse the resulting
* sample array. This produces the forward response with a backwards
* phase-shift (+n degrees becomes -n degrees).
*/
- splitter.applyAllpass(tmpflt[2].data(), tmpflt[2].size());
- std::reverse(tmpflt[2].begin(), tmpflt[2].end());
+ splitter.applyAllpass(tempir);
+ std::reverse(tempir.begin(), tempir.end());
/* Now apply the band-splitter. This applies the normal phase-shift,
* which cancels out with the backwards phase-shift to get the original
* phase on the split signal.
*/
splitter.clear();
- splitter.process(tmpflt[0].data(), tmpflt[1].data(), tmpflt[2].data(), tmpflt[2].size());
+ splitter.process(tempir, tmpflt[0].data(), tmpflt[1].data());
/* Apply left ear response with delay and HF scale. */
for(size_t i{0u};i < state->Coeffs.size();++i)
@@ -431,15 +432,15 @@ void BuildBFormatHrtf(const HrtfStore *Hrtf, DirectHrtfState *state,
}
/* Now run the same process on the right HRIR. */
- std::fill(tmpflt[2].begin(), tmpflt[2].end(), 0.0);
- std::transform(hrir.cbegin(), hrir.cend(), tmpflt[2].rbegin() + HRIR_LENGTH*3,
+ std::fill(tempir.begin(), tempir.end(), 0.0);
+ std::transform(hrir.cbegin(), hrir.cend(), tempir.rbegin() + HRIR_LENGTH*3,
[](const double2 &ir) noexcept -> double { return ir[1]; });
- splitter.applyAllpass(tmpflt[2].data(), tmpflt[2].size());
- std::reverse(tmpflt[2].begin(), tmpflt[2].end());
+ splitter.applyAllpass(tempir);
+ std::reverse(tempir.begin(), tempir.end());
splitter.clear();
- splitter.process(tmpflt[0].data(), tmpflt[1].data(), tmpflt[2].data(), tmpflt[2].size());
+ splitter.process(tempir, tmpflt[0].data(), tmpflt[1].data());
for(size_t i{0u};i < state->Coeffs.size();++i)
{
diff --git a/alc/voice.cpp b/alc/voice.cpp
index 4697cc56..ef26b630 100644
--- a/alc/voice.cpp
+++ b/alc/voice.cpp
@@ -678,15 +678,15 @@ void ALvoice::mix(const State vstate, ALCcontext *Context, const ALuint SamplesT
{Device->ResampledData, DstBufferSize})};
if((mFlags&VOICE_IS_AMBISONIC))
{
- const ALfloat hfscale{chandata.mAmbiScale};
+ const float hfscale{chandata.mAmbiScale};
/* Beware the evil const_cast. It's safe since it's pointing to
* either SourceData or ResampledData (both non-const), but the
* resample method takes the source as const float* and may
* return it without copying to output, making it currently
* unavoidable.
*/
- chandata.mAmbiSplitter.applyHfScale(const_cast<ALfloat*>(ResampledData), hfscale,
- DstBufferSize);
+ const al::span<float> samples{const_cast<float*>(ResampledData), DstBufferSize};
+ chandata.mAmbiSplitter.applyHfScale(samples, hfscale);
}
/* Now filter and mix to the appropriate outputs. */