diff options
author | Chris Robinson <[email protected]> | 2020-12-12 14:58:09 -0800 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2020-12-12 14:58:09 -0800 |
commit | e179bf0a12e80eb41041469bc04ba1fbcffe11e8 (patch) | |
tree | 0e42d2b17f1005fad29ec4f509b1530a15213b88 /alc/mixer | |
parent | 14df53411402bae0e5dcdea8bc0d2d3ba30e7923 (diff) |
Move the mixer functions to core
Diffstat (limited to 'alc/mixer')
-rw-r--r-- | alc/mixer/defs.h | 100 | ||||
-rw-r--r-- | alc/mixer/hrtfbase.h | 159 | ||||
-rw-r--r-- | alc/mixer/hrtfdefs.h | 52 | ||||
-rw-r--r-- | alc/mixer/mixer_c.cpp | 198 | ||||
-rw-r--r-- | alc/mixer/mixer_neon.cpp | 303 | ||||
-rw-r--r-- | alc/mixer/mixer_sse.cpp | 266 | ||||
-rw-r--r-- | alc/mixer/mixer_sse2.cpp | 85 | ||||
-rw-r--r-- | alc/mixer/mixer_sse3.cpp | 0 | ||||
-rw-r--r-- | alc/mixer/mixer_sse41.cpp | 90 |
9 files changed, 0 insertions, 1253 deletions
diff --git a/alc/mixer/defs.h b/alc/mixer/defs.h deleted file mode 100644 index a34fba26..00000000 --- a/alc/mixer/defs.h +++ /dev/null @@ -1,100 +0,0 @@ -#ifndef MIXER_DEFS_H -#define MIXER_DEFS_H - -#include <array> -#include <stdlib.h> - -#include "alspan.h" -#include "core/bufferline.h" - -struct HrtfChannelState; -struct HrtfFilter; -struct MixHrtfFilter; - -using uint = unsigned int; -using float2 = std::array<float,2>; - - -constexpr int MixerFracBits{12}; -constexpr int MixerFracOne{1 << MixerFracBits}; -constexpr int MixerFracMask{MixerFracOne - 1}; - -/* Maximum number of samples to pad on the ends of a buffer for resampling. - * Note that the padding is symmetric (half at the beginning and half at the - * end)! - */ -constexpr int MaxResamplerPadding{48}; - -constexpr float GainSilenceThreshold{0.00001f}; /* -100dB */ - - -enum class Resampler { - Point, - Linear, - Cubic, - FastBSinc12, - BSinc12, - FastBSinc24, - BSinc24, - - Max = BSinc24 -}; - -/* Interpolator state. Kind of a misnomer since the interpolator itself is - * stateless. This just keeps it from having to recompute scale-related - * mappings for every sample. - */ -struct BsincState { - float sf; /* Scale interpolation factor. */ - uint m; /* Coefficient count. */ - uint l; /* Left coefficient offset. */ - /* Filter coefficients, followed by the phase, scale, and scale-phase - * delta coefficients. Starting at phase index 0, each subsequent phase - * index follows contiguously. - */ - const float *filter; -}; - -union InterpState { - BsincState bsinc; -}; - -using ResamplerFunc = const float*(*)(const InterpState *state, const float *RESTRICT src, - uint frac, uint increment, const al::span<float> dst); - -ResamplerFunc PrepareResampler(Resampler resampler, uint increment, InterpState *state); - - -template<typename TypeTag, typename InstTag> -const float *Resample_(const InterpState *state, const float *RESTRICT src, uint frac, - uint increment, const al::span<float> dst); - -template<typename InstTag> -void Mix_(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer, - float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos); - -template<typename InstTag> -void MixHrtf_(const float *InSamples, float2 *AccumSamples, const uint IrSize, - const MixHrtfFilter *hrtfparams, const size_t BufferSize); -template<typename InstTag> -void MixHrtfBlend_(const float *InSamples, float2 *AccumSamples, const uint IrSize, - const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize); -template<typename InstTag> -void MixDirectHrtf_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, - const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, - float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize); - -/* Vectorized resampler helpers */ -inline void InitPosArrays(uint frac, uint increment, uint *frac_arr, uint *pos_arr, size_t size) -{ - pos_arr[0] = 0; - frac_arr[0] = frac; - for(size_t i{1};i < size;i++) - { - const uint frac_tmp{frac_arr[i-1] + increment}; - pos_arr[i] = pos_arr[i-1] + (frac_tmp>>MixerFracBits); - frac_arr[i] = frac_tmp&MixerFracMask; - } -} - -#endif /* MIXER_DEFS_H */ diff --git a/alc/mixer/hrtfbase.h b/alc/mixer/hrtfbase.h deleted file mode 100644 index f25801b5..00000000 --- a/alc/mixer/hrtfbase.h +++ /dev/null @@ -1,159 +0,0 @@ -#ifndef MIXER_HRTFBASE_H -#define MIXER_HRTFBASE_H - -#include <algorithm> -#include <cmath> - -#include "almalloc.h" -#include "hrtfdefs.h" -#include "opthelpers.h" - - -using uint = unsigned int; - -using ApplyCoeffsT = void(&)(float2 *RESTRICT Values, const uint_fast32_t irSize, - const HrirArray &Coeffs, const float left, const float right); - -template<ApplyCoeffsT ApplyCoeffs> -inline void MixHrtfBase(const float *InSamples, float2 *RESTRICT AccumSamples, const uint IrSize, - const MixHrtfFilter *hrtfparams, const size_t BufferSize) -{ - ASSUME(BufferSize > 0); - - const HrirArray &Coeffs = *hrtfparams->Coeffs; - const float gainstep{hrtfparams->GainStep}; - const float gain{hrtfparams->Gain}; - - size_t ldelay{HRTF_HISTORY_LENGTH - hrtfparams->Delay[0]}; - size_t rdelay{HRTF_HISTORY_LENGTH - hrtfparams->Delay[1]}; - float stepcount{0.0f}; - for(size_t i{0u};i < BufferSize;++i) - { - const float g{gain + gainstep*stepcount}; - const float left{InSamples[ldelay++] * g}; - const float right{InSamples[rdelay++] * g}; - ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, left, right); - - stepcount += 1.0f; - } -} - -template<ApplyCoeffsT ApplyCoeffs> -inline void MixHrtfBlendBase(const float *InSamples, float2 *RESTRICT AccumSamples, - const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams, - const size_t BufferSize) -{ - ASSUME(BufferSize > 0); - - const auto &OldCoeffs = oldparams->Coeffs; - const float oldGainStep{oldparams->Gain / static_cast<float>(BufferSize)}; - const auto &NewCoeffs = *newparams->Coeffs; - const float newGainStep{newparams->GainStep}; - - if LIKELY(oldparams->Gain > GainSilenceThreshold) - { - size_t ldelay{HRTF_HISTORY_LENGTH - oldparams->Delay[0]}; - size_t rdelay{HRTF_HISTORY_LENGTH - oldparams->Delay[1]}; - auto stepcount = static_cast<float>(BufferSize); - for(size_t i{0u};i < BufferSize;++i) - { - const float g{oldGainStep*stepcount}; - const float left{InSamples[ldelay++] * g}; - const float right{InSamples[rdelay++] * g}; - ApplyCoeffs(AccumSamples+i, IrSize, OldCoeffs, left, right); - - stepcount -= 1.0f; - } - } - - if LIKELY(newGainStep*static_cast<float>(BufferSize) > GainSilenceThreshold) - { - size_t ldelay{HRTF_HISTORY_LENGTH+1 - newparams->Delay[0]}; - size_t rdelay{HRTF_HISTORY_LENGTH+1 - newparams->Delay[1]}; - float stepcount{1.0f}; - for(size_t i{1u};i < BufferSize;++i) - { - const float g{newGainStep*stepcount}; - const float left{InSamples[ldelay++] * g}; - const float right{InSamples[rdelay++] * g}; - ApplyCoeffs(AccumSamples+i, IrSize, NewCoeffs, left, right); - - stepcount += 1.0f; - } - } -} - -template<ApplyCoeffsT ApplyCoeffs> -inline void MixDirectHrtfBase(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, - const al::span<const FloatBufferLine> InSamples, float2 *RESTRICT AccumSamples, - float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) -{ - ASSUME(BufferSize > 0); - - /* Add the existing signal directly to the accumulation buffer, unfiltered, - * and with a delay to align with the input delay. - */ - for(size_t i{0};i < BufferSize;++i) - { - AccumSamples[HRTF_DIRECT_DELAY+i][0] += LeftOut[i]; - AccumSamples[HRTF_DIRECT_DELAY+i][1] += RightOut[i]; - } - - for(const FloatBufferLine &input : InSamples) - { - /* For dual-band processing, the signal needs extra scaling applied to - * the high frequency response. The band-splitter alone creates a - * frequency-dependent phase shift, which is not ideal. To counteract - * it, combine it with a backwards phase shift. - */ - - /* Load the input signal backwards, into a temp buffer with delay - * padding. The delay serves to reduce the error caused by the IIR - * filter's phase shift on a partial input. - */ - al::span<float> tempbuf{al::assume_aligned<16>(TempBuf), HRTF_DIRECT_DELAY+BufferSize}; - auto tmpiter = std::reverse_copy(input.begin(), input.begin()+BufferSize, tempbuf.begin()); - std::copy(ChanState->mDelay.cbegin(), ChanState->mDelay.cend(), tmpiter); - - /* Save the unfiltered newest input samples for next time. */ - std::copy_n(tempbuf.begin(), ChanState->mDelay.size(), ChanState->mDelay.begin()); - - /* Apply the all-pass on the reversed signal and reverse the resulting - * sample array. This produces the forward response with a backwards - * phase shift (+n degrees becomes -n degrees). - */ - ChanState->mSplitter.applyAllpass(tempbuf); - tempbuf = tempbuf.subspan<HRTF_DIRECT_DELAY>(); - std::reverse(tempbuf.begin(), tempbuf.end()); - - /* Now apply the HF scale with the band-splitter. This applies the - * forward phase shift, which cancels out with the backwards phase - * shift to get the original phase on the scaled signal. - */ - ChanState->mSplitter.processHfScale(tempbuf, ChanState->mHfScale); - - /* Now apply the HRIR coefficients to this channel. */ - const auto &Coeffs = ChanState->mCoeffs; - for(size_t i{0u};i < BufferSize;++i) - { - const float insample{tempbuf[i]}; - ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, insample, insample); - } - - ++ChanState; - } - - for(size_t i{0u};i < BufferSize;++i) - LeftOut[i] = AccumSamples[i][0]; - for(size_t i{0u};i < BufferSize;++i) - RightOut[i] = AccumSamples[i][1]; - - /* Copy the new in-progress accumulation values to the front and clear the - * following samples for the next mix. - */ - auto accum_iter = std::copy_n(AccumSamples+BufferSize, HRIR_LENGTH+HRTF_DIRECT_DELAY, - AccumSamples); - std::fill_n(accum_iter, BufferSize, float2{}); -} - -#endif /* MIXER_HRTFBASE_H */ diff --git a/alc/mixer/hrtfdefs.h b/alc/mixer/hrtfdefs.h deleted file mode 100644 index 5f9711cf..00000000 --- a/alc/mixer/hrtfdefs.h +++ /dev/null @@ -1,52 +0,0 @@ -#ifndef MIXER_HRTFDEFS_H -#define MIXER_HRTFDEFS_H - -#include <array> - -#include "core/ambidefs.h" -#include "core/bufferline.h" -#include "core/filters/splitter.h" - - -#define HRTF_HISTORY_BITS 6 -#define HRTF_HISTORY_LENGTH (1<<HRTF_HISTORY_BITS) -#define HRTF_HISTORY_MASK (HRTF_HISTORY_LENGTH-1) - -#define HRIR_BITS 7 -#define HRIR_LENGTH (1<<HRIR_BITS) -#define HRIR_MASK (HRIR_LENGTH-1) - -#define MIN_IR_LENGTH 8 - -#define HRTF_DIRECT_DELAY 192 - -using float2 = std::array<float,2>; -using HrirArray = std::array<float2,HRIR_LENGTH>; -using ubyte = unsigned char; -using ubyte2 = std::array<ubyte,2>; -using ushort = unsigned short; -using uint = unsigned int; - - -struct MixHrtfFilter { - const HrirArray *Coeffs; - std::array<uint,2> Delay; - float Gain; - float GainStep; -}; - -struct HrtfFilter { - alignas(16) HrirArray Coeffs; - std::array<uint,2> Delay; - float Gain; -}; - - -struct HrtfChannelState { - std::array<float,HRTF_DIRECT_DELAY> mDelay{}; - BandSplitter mSplitter; - float mHfScale{}; - alignas(16) HrirArray mCoeffs{}; -}; - -#endif /* MIXER_HRTFDEFS_H */ diff --git a/alc/mixer/mixer_c.cpp b/alc/mixer/mixer_c.cpp deleted file mode 100644 index 24ccd175..00000000 --- a/alc/mixer/mixer_c.cpp +++ /dev/null @@ -1,198 +0,0 @@ -#include "config.h" - -#include <cassert> -#include <cmath> -#include <limits> - -#include "alnumeric.h" -#include "core/bsinc_tables.h" -#include "defs.h" -#include "hrtfbase.h" - -struct CTag; -struct CopyTag; -struct PointTag; -struct LerpTag; -struct CubicTag; -struct BSincTag; -struct FastBSincTag; - - -namespace { - -constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits}; -constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff}; - -inline float do_point(const InterpState&, const float *RESTRICT vals, const uint) -{ return vals[0]; } -inline float do_lerp(const InterpState&, const float *RESTRICT vals, const uint frac) -{ return lerp(vals[0], vals[1], static_cast<float>(frac)*(1.0f/MixerFracOne)); } -inline float do_cubic(const InterpState&, const float *RESTRICT vals, const uint frac) -{ return cubic(vals[0], vals[1], vals[2], vals[3], static_cast<float>(frac)*(1.0f/MixerFracOne)); } -inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac) -{ - const size_t m{istate.bsinc.m}; - - // Calculate the phase index and factor. - const uint pi{frac >> FracPhaseBitDiff}; - const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; - - const float *fil{istate.bsinc.filter + m*pi*4}; - const float *phd{fil + m}; - const float *scd{phd + m}; - const float *spd{scd + m}; - - // Apply the scale and phase interpolated filter. - float r{0.0f}; - for(size_t j_f{0};j_f < m;j_f++) - r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f]; - return r; -} -inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac) -{ - const size_t m{istate.bsinc.m}; - - // Calculate the phase index and factor. - const uint pi{frac >> FracPhaseBitDiff}; - const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; - - const float *fil{istate.bsinc.filter + m*pi*4}; - const float *phd{fil + m}; - - // Apply the phase interpolated filter. - float r{0.0f}; - for(size_t j_f{0};j_f < m;j_f++) - r += (fil[j_f] + pf*phd[j_f]) * vals[j_f]; - return r; -} - -using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const uint); -template<SamplerT Sampler> -const float *DoResample(const InterpState *state, const float *RESTRICT src, uint frac, - uint increment, const al::span<float> dst) -{ - const InterpState istate{*state}; - for(float &out : dst) - { - out = Sampler(istate, src, frac); - - frac += increment; - src += frac>>MixerFracBits; - frac &= MixerFracMask; - } - return dst.data(); -} - -inline void ApplyCoeffs(float2 *RESTRICT Values, const uint_fast32_t IrSize, - const HrirArray &Coeffs, const float left, const float right) -{ - ASSUME(IrSize >= MIN_IR_LENGTH); - for(size_t c{0};c < IrSize;++c) - { - Values[c][0] += Coeffs[c][0] * left; - Values[c][1] += Coeffs[c][1] * right; - } -} - -} // namespace - -template<> -const float *Resample_<CopyTag,CTag>(const InterpState*, const float *RESTRICT src, uint, uint, - const al::span<float> dst) -{ -#if defined(HAVE_SSE) || defined(HAVE_NEON) - /* Avoid copying the source data if it's aligned like the destination. */ - if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst.data())&15)) - return src; -#endif - std::copy_n(src, dst.size(), dst.begin()); - return dst.data(); -} - -template<> -const float *Resample_<PointTag,CTag>(const InterpState *state, const float *RESTRICT src, - uint frac, uint increment, const al::span<float> dst) -{ return DoResample<do_point>(state, src, frac, increment, dst); } - -template<> -const float *Resample_<LerpTag,CTag>(const InterpState *state, const float *RESTRICT src, - uint frac, uint increment, const al::span<float> dst) -{ return DoResample<do_lerp>(state, src, frac, increment, dst); } - -template<> -const float *Resample_<CubicTag,CTag>(const InterpState *state, const float *RESTRICT src, - uint frac, uint increment, const al::span<float> dst) -{ return DoResample<do_cubic>(state, src-1, frac, increment, dst); } - -template<> -const float *Resample_<BSincTag,CTag>(const InterpState *state, const float *RESTRICT src, - uint frac, uint increment, const al::span<float> dst) -{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); } - -template<> -const float *Resample_<FastBSincTag,CTag>(const InterpState *state, const float *RESTRICT src, - uint frac, uint increment, const al::span<float> dst) -{ return DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); } - - -template<> -void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, - const MixHrtfFilter *hrtfparams, const size_t BufferSize) -{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } - -template<> -void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, - const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) -{ - MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams, - BufferSize); -} - -template<> -void MixDirectHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, - const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, - float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) -{ - MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState, - IrSize, BufferSize); -} - - -template<> -void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer, - float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) -{ - const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f}; - const auto min_len = minz(Counter, InSamples.size()); - for(FloatBufferLine &output : OutBuffer) - { - float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; - float gain{*CurrentGains}; - const float step{(*TargetGains-gain) * delta}; - - size_t pos{0}; - if(!(std::abs(step) > std::numeric_limits<float>::epsilon())) - gain = *TargetGains; - else - { - float step_count{0.0f}; - for(;pos != min_len;++pos) - { - dst[pos] += InSamples[pos] * (gain + step*step_count); - step_count += 1.0f; - } - if(pos == Counter) - gain = *TargetGains; - else - gain += step*step_count; - } - *CurrentGains = gain; - ++CurrentGains; - ++TargetGains; - - if(!(std::abs(gain) > GainSilenceThreshold)) - continue; - for(;pos != InSamples.size();++pos) - dst[pos] += InSamples[pos] * gain; - } -} diff --git a/alc/mixer/mixer_neon.cpp b/alc/mixer/mixer_neon.cpp deleted file mode 100644 index af8f6b0c..00000000 --- a/alc/mixer/mixer_neon.cpp +++ /dev/null @@ -1,303 +0,0 @@ -#include "config.h" - -#include <arm_neon.h> - -#include <cmath> -#include <limits> - -#include "alnumeric.h" -#include "core/bsinc_defs.h" -#include "defs.h" -#include "hrtfbase.h" - -struct NEONTag; -struct LerpTag; -struct BSincTag; -struct FastBSincTag; - - -namespace { - -inline float32x4_t set_f4(float l0, float l1, float l2, float l3) -{ - float32x4_t ret{}; - ret = vsetq_lane_f32(l0, ret, 0); - ret = vsetq_lane_f32(l1, ret, 1); - ret = vsetq_lane_f32(l2, ret, 2); - ret = vsetq_lane_f32(l3, ret, 3); - return ret; -} - -constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits}; -constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff}; - -inline void ApplyCoeffs(float2 *RESTRICT Values, const uint_fast32_t IrSize, - const HrirArray &Coeffs, const float left, const float right) -{ - float32x4_t leftright4; - { - float32x2_t leftright2 = vdup_n_f32(0.0); - leftright2 = vset_lane_f32(left, leftright2, 0); - leftright2 = vset_lane_f32(right, leftright2, 1); - leftright4 = vcombine_f32(leftright2, leftright2); - } - - ASSUME(IrSize >= MIN_IR_LENGTH); - for(size_t c{0};c < IrSize;c += 2) - { - float32x4_t vals = vld1q_f32(&Values[c][0]); - float32x4_t coefs = vld1q_f32(&Coeffs[c][0]); - - vals = vmlaq_f32(vals, coefs, leftright4); - - vst1q_f32(&Values[c][0], vals); - } -} - -} // namespace - -template<> -const float *Resample_<LerpTag,NEONTag>(const InterpState*, const float *RESTRICT src, uint frac, - uint increment, const al::span<float> dst) -{ - const int32x4_t increment4 = vdupq_n_s32(static_cast<int>(increment*4)); - const float32x4_t fracOne4 = vdupq_n_f32(1.0f/MixerFracOne); - const int32x4_t fracMask4 = vdupq_n_s32(MixerFracMask); - alignas(16) uint pos_[4], frac_[4]; - int32x4_t pos4, frac4; - - InitPosArrays(frac, increment, frac_, pos_, 4); - frac4 = vld1q_s32(reinterpret_cast<int*>(frac_)); - pos4 = vld1q_s32(reinterpret_cast<int*>(pos_)); - - auto dst_iter = dst.begin(); - for(size_t todo{dst.size()>>2};todo;--todo) - { - const int pos0{vgetq_lane_s32(pos4, 0)}; - const int pos1{vgetq_lane_s32(pos4, 1)}; - const int pos2{vgetq_lane_s32(pos4, 2)}; - const int pos3{vgetq_lane_s32(pos4, 3)}; - const float32x4_t val1{set_f4(src[pos0], src[pos1], src[pos2], src[pos3])}; - const float32x4_t val2{set_f4(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])}; - - /* val1 + (val2-val1)*mu */ - const float32x4_t r0{vsubq_f32(val2, val1)}; - const float32x4_t mu{vmulq_f32(vcvtq_f32_s32(frac4), fracOne4)}; - const float32x4_t out{vmlaq_f32(val1, mu, r0)}; - - vst1q_f32(dst_iter, out); - dst_iter += 4; - - frac4 = vaddq_s32(frac4, increment4); - pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, MixerFracBits)); - frac4 = vandq_s32(frac4, fracMask4); - } - - if(size_t todo{dst.size()&3}) - { - src += static_cast<uint>(vgetq_lane_s32(pos4, 0)); - frac = static_cast<uint>(vgetq_lane_s32(frac4, 0)); - - do { - *(dst_iter++) = lerp(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne)); - - frac += increment; - src += frac>>MixerFracBits; - frac &= MixerFracMask; - } while(--todo); - } - return dst.data(); -} - -template<> -const float *Resample_<BSincTag,NEONTag>(const InterpState *state, const float *RESTRICT src, - uint frac, uint increment, const al::span<float> dst) -{ - const float *const filter{state->bsinc.filter}; - const float32x4_t sf4{vdupq_n_f32(state->bsinc.sf)}; - const size_t m{state->bsinc.m}; - - src -= state->bsinc.l; - for(float &out_sample : dst) - { - // Calculate the phase index and factor. - const uint pi{frac >> FracPhaseBitDiff}; - const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; - - // Apply the scale and phase interpolated filter. - float32x4_t r4{vdupq_n_f32(0.0f)}; - { - const float32x4_t pf4{vdupq_n_f32(pf)}; - const float *fil{filter + m*pi*4}; - const float *phd{fil + m}; - const float *scd{phd + m}; - const float *spd{scd + m}; - size_t td{m >> 2}; - size_t j{0u}; - - do { - /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ - const float32x4_t f4 = vmlaq_f32( - vmlaq_f32(vld1q_f32(&fil[j]), sf4, vld1q_f32(&scd[j])), - pf4, vmlaq_f32(vld1q_f32(&phd[j]), sf4, vld1q_f32(&spd[j]))); - /* r += f*src */ - r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j])); - j += 4; - } while(--td); - } - r4 = vaddq_f32(r4, vrev64q_f32(r4)); - out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); - - frac += increment; - src += frac>>MixerFracBits; - frac &= MixerFracMask; - } - return dst.data(); -} - -template<> -const float *Resample_<FastBSincTag,NEONTag>(const InterpState *state, - const float *RESTRICT src, uint frac, uint increment, const al::span<float> dst) -{ - const float *const filter{state->bsinc.filter}; - const size_t m{state->bsinc.m}; - - src -= state->bsinc.l; - for(float &out_sample : dst) - { - // Calculate the phase index and factor. - const uint pi{frac >> FracPhaseBitDiff}; - const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; - - // Apply the phase interpolated filter. - float32x4_t r4{vdupq_n_f32(0.0f)}; - { - const float32x4_t pf4{vdupq_n_f32(pf)}; - const float *fil{filter + m*pi*4}; - const float *phd{fil + m}; - size_t td{m >> 2}; - size_t j{0u}; - - do { - /* f = fil + pf*phd */ - const float32x4_t f4 = vmlaq_f32(vld1q_f32(&fil[j]), pf4, vld1q_f32(&phd[j])); - /* r += f*src */ - r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j])); - j += 4; - } while(--td); - } - r4 = vaddq_f32(r4, vrev64q_f32(r4)); - out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); - - frac += increment; - src += frac>>MixerFracBits; - frac &= MixerFracMask; - } - return dst.data(); -} - - -template<> -void MixHrtf_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, - const MixHrtfFilter *hrtfparams, const size_t BufferSize) -{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } - -template<> -void MixHrtfBlend_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, - const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) -{ - MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams, - BufferSize); -} - -template<> -void MixDirectHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, - const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, - float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) -{ - MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState, - IrSize, BufferSize); -} - - -template<> -void Mix_<NEONTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer, - float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) -{ - const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f}; - const auto min_len = minz(Counter, InSamples.size()); - const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len; - - for(FloatBufferLine &output : OutBuffer) - { - float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; - float gain{*CurrentGains}; - const float step{(*TargetGains-gain) * delta}; - - size_t pos{0}; - if(!(std::abs(step) > std::numeric_limits<float>::epsilon())) - gain = *TargetGains; - else - { - float step_count{0.0f}; - /* Mix with applying gain steps in aligned multiples of 4. */ - if(size_t todo{(min_len-pos) >> 2}) - { - const float32x4_t four4{vdupq_n_f32(4.0f)}; - const float32x4_t step4{vdupq_n_f32(step)}; - const float32x4_t gain4{vdupq_n_f32(gain)}; - float32x4_t step_count4{vdupq_n_f32(0.0f)}; - step_count4 = vsetq_lane_f32(1.0f, step_count4, 1); - step_count4 = vsetq_lane_f32(2.0f, step_count4, 2); - step_count4 = vsetq_lane_f32(3.0f, step_count4, 3); - - do { - const float32x4_t val4 = vld1q_f32(&InSamples[pos]); - float32x4_t dry4 = vld1q_f32(&dst[pos]); - dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4)); - step_count4 = vaddq_f32(step_count4, four4); - vst1q_f32(&dst[pos], dry4); - pos += 4; - } while(--todo); - /* NOTE: step_count4 now represents the next four counts after - * the last four mixed samples, so the lowest element - * represents the next step count to apply. - */ - step_count = vgetq_lane_f32(step_count4, 0); - } - /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ - for(size_t leftover{min_len&3};leftover;++pos,--leftover) - { - dst[pos] += InSamples[pos] * (gain + step*step_count); - step_count += 1.0f; - } - if(pos == Counter) - gain = *TargetGains; - else - gain += step*step_count; - - /* Mix until pos is aligned with 4 or the mix is done. */ - for(size_t leftover{aligned_len&3};leftover;++pos,--leftover) - dst[pos] += InSamples[pos] * gain; - } - *CurrentGains = gain; - ++CurrentGains; - ++TargetGains; - - if(!(std::abs(gain) > GainSilenceThreshold)) - continue; - if(size_t todo{(InSamples.size()-pos) >> 2}) - { - const float32x4_t gain4 = vdupq_n_f32(gain); - do { - const float32x4_t val4 = vld1q_f32(&InSamples[pos]); - float32x4_t dry4 = vld1q_f32(&dst[pos]); - dry4 = vmlaq_f32(dry4, val4, gain4); - vst1q_f32(&dst[pos], dry4); - pos += 4; - } while(--todo); - } - for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover) - dst[pos] += InSamples[pos] * gain; - } -} diff --git a/alc/mixer/mixer_sse.cpp b/alc/mixer/mixer_sse.cpp deleted file mode 100644 index 85b2f1ce..00000000 --- a/alc/mixer/mixer_sse.cpp +++ /dev/null @@ -1,266 +0,0 @@ -#include "config.h" - -#include <xmmintrin.h> - -#include <cmath> -#include <limits> - -#include "alnumeric.h" -#include "core/bsinc_defs.h" -#include "defs.h" -#include "hrtfbase.h" - -struct SSETag; -struct BSincTag; -struct FastBSincTag; - - -namespace { - -constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits}; -constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff}; - -#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z)) - -inline void ApplyCoeffs(float2 *RESTRICT Values, const uint_fast32_t IrSize, - const HrirArray &Coeffs, const float left, const float right) -{ - const __m128 lrlr{_mm_setr_ps(left, right, left, right)}; - - ASSUME(IrSize >= MIN_IR_LENGTH); - /* This isn't technically correct to test alignment, but it's true for - * systems that support SSE, which is the only one that needs to know the - * alignment of Values (which alternates between 8- and 16-byte aligned). - */ - if(reinterpret_cast<intptr_t>(Values)&0x8) - { - __m128 imp0, imp1; - __m128 coeffs{_mm_load_ps(&Coeffs[0][0])}; - __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))}; - imp0 = _mm_mul_ps(lrlr, coeffs); - vals = _mm_add_ps(imp0, vals); - _mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals); - uint_fast32_t td{((IrSize+1)>>1) - 1}; - size_t i{1}; - do { - coeffs = _mm_load_ps(&Coeffs[i+1][0]); - vals = _mm_load_ps(&Values[i][0]); - imp1 = _mm_mul_ps(lrlr, coeffs); - imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2)); - vals = _mm_add_ps(imp0, vals); - _mm_store_ps(&Values[i][0], vals); - imp0 = imp1; - i += 2; - } while(--td); - vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0])); - imp0 = _mm_movehl_ps(imp0, imp0); - vals = _mm_add_ps(imp0, vals); - _mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals); - } - else - { - for(size_t i{0};i < IrSize;i += 2) - { - const __m128 coeffs{_mm_load_ps(&Coeffs[i][0])}; - __m128 vals{_mm_load_ps(&Values[i][0])}; - vals = MLA4(vals, lrlr, coeffs); - _mm_store_ps(&Values[i][0], vals); - } - } -} - -} // namespace - -template<> -const float *Resample_<BSincTag,SSETag>(const InterpState *state, const float *RESTRICT src, - uint frac, uint increment, const al::span<float> dst) -{ - const float *const filter{state->bsinc.filter}; - const __m128 sf4{_mm_set1_ps(state->bsinc.sf)}; - const size_t m{state->bsinc.m}; - - src -= state->bsinc.l; - for(float &out_sample : dst) - { - // Calculate the phase index and factor. - const uint pi{frac >> FracPhaseBitDiff}; - const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; - - // Apply the scale and phase interpolated filter. - __m128 r4{_mm_setzero_ps()}; - { - const __m128 pf4{_mm_set1_ps(pf)}; - const float *fil{filter + m*pi*4}; - const float *phd{fil + m}; - const float *scd{phd + m}; - const float *spd{scd + m}; - size_t td{m >> 2}; - size_t j{0u}; - - do { - /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ - const __m128 f4 = MLA4( - MLA4(_mm_load_ps(&fil[j]), sf4, _mm_load_ps(&scd[j])), - pf4, MLA4(_mm_load_ps(&phd[j]), sf4, _mm_load_ps(&spd[j]))); - /* r += f*src */ - r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j])); - j += 4; - } while(--td); - } - r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); - r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); - out_sample = _mm_cvtss_f32(r4); - - frac += increment; - src += frac>>MixerFracBits; - frac &= MixerFracMask; - } - return dst.data(); -} - -template<> -const float *Resample_<FastBSincTag,SSETag>(const InterpState *state, const float *RESTRICT src, - uint frac, uint increment, const al::span<float> dst) -{ - const float *const filter{state->bsinc.filter}; - const size_t m{state->bsinc.m}; - - src -= state->bsinc.l; - for(float &out_sample : dst) - { - // Calculate the phase index and factor. - const uint pi{frac >> FracPhaseBitDiff}; - const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; - - // Apply the phase interpolated filter. - __m128 r4{_mm_setzero_ps()}; - { - const __m128 pf4{_mm_set1_ps(pf)}; - const float *fil{filter + m*pi*4}; - const float *phd{fil + m}; - size_t td{m >> 2}; - size_t j{0u}; - - do { - /* f = fil + pf*phd */ - const __m128 f4 = MLA4(_mm_load_ps(&fil[j]), pf4, _mm_load_ps(&phd[j])); - /* r += f*src */ - r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j])); - j += 4; - } while(--td); - } - r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); - r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); - out_sample = _mm_cvtss_f32(r4); - - frac += increment; - src += frac>>MixerFracBits; - frac &= MixerFracMask; - } - return dst.data(); -} - - -template<> -void MixHrtf_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, - const MixHrtfFilter *hrtfparams, const size_t BufferSize) -{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } - -template<> -void MixHrtfBlend_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, - const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) -{ - MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams, - BufferSize); -} - -template<> -void MixDirectHrtf_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, - const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, - float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) -{ - MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState, - IrSize, BufferSize); -} - - -template<> -void Mix_<SSETag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer, - float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) -{ - const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f}; - const auto min_len = minz(Counter, InSamples.size()); - const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len; - - for(FloatBufferLine &output : OutBuffer) - { - float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; - float gain{*CurrentGains}; - const float step{(*TargetGains-gain) * delta}; - - size_t pos{0}; - if(!(std::abs(step) > std::numeric_limits<float>::epsilon())) - gain = *TargetGains; - else - { - float step_count{0.0f}; - /* Mix with applying gain steps in aligned multiples of 4. */ - if(size_t todo{(min_len-pos) >> 2}) - { - const __m128 four4{_mm_set1_ps(4.0f)}; - const __m128 step4{_mm_set1_ps(step)}; - const __m128 gain4{_mm_set1_ps(gain)}; - __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)}; - do { - const __m128 val4{_mm_load_ps(&InSamples[pos])}; - __m128 dry4{_mm_load_ps(&dst[pos])}; - - /* dry += val * (gain + step*step_count) */ - dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4)); - - _mm_store_ps(&dst[pos], dry4); - step_count4 = _mm_add_ps(step_count4, four4); - pos += 4; - } while(--todo); - /* NOTE: step_count4 now represents the next four counts after - * the last four mixed samples, so the lowest element - * represents the next step count to apply. - */ - step_count = _mm_cvtss_f32(step_count4); - } - /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ - for(size_t leftover{min_len&3};leftover;++pos,--leftover) - { - dst[pos] += InSamples[pos] * (gain + step*step_count); - step_count += 1.0f; - } - if(pos == Counter) - gain = *TargetGains; - else - gain += step*step_count; - - /* Mix until pos is aligned with 4 or the mix is done. */ - for(size_t leftover{aligned_len&3};leftover;++pos,--leftover) - dst[pos] += InSamples[pos] * gain; - } - *CurrentGains = gain; - ++CurrentGains; - ++TargetGains; - - if(!(std::abs(gain) > GainSilenceThreshold)) - continue; - if(size_t todo{(InSamples.size()-pos) >> 2}) - { - const __m128 gain4{_mm_set1_ps(gain)}; - do { - const __m128 val4{_mm_load_ps(&InSamples[pos])}; - __m128 dry4{_mm_load_ps(&dst[pos])}; - dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); - _mm_store_ps(&dst[pos], dry4); - pos += 4; - } while(--todo); - } - for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover) - dst[pos] += InSamples[pos] * gain; - } -} diff --git a/alc/mixer/mixer_sse2.cpp b/alc/mixer/mixer_sse2.cpp deleted file mode 100644 index 69fac250..00000000 --- a/alc/mixer/mixer_sse2.cpp +++ /dev/null @@ -1,85 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2014 by Timothy Arceri <[email protected]>. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <xmmintrin.h> -#include <emmintrin.h> - -#include "alnumeric.h" -#include "defs.h" - -struct SSE2Tag; -struct LerpTag; - - -template<> -const float *Resample_<LerpTag,SSE2Tag>(const InterpState*, const float *RESTRICT src, uint frac, - uint increment, const al::span<float> dst) -{ - const __m128i increment4{_mm_set1_epi32(static_cast<int>(increment*4))}; - const __m128 fracOne4{_mm_set1_ps(1.0f/MixerFracOne)}; - const __m128i fracMask4{_mm_set1_epi32(MixerFracMask)}; - - alignas(16) uint pos_[4], frac_[4]; - InitPosArrays(frac, increment, frac_, pos_, 4); - __m128i frac4{_mm_setr_epi32(static_cast<int>(frac_[0]), static_cast<int>(frac_[1]), - static_cast<int>(frac_[2]), static_cast<int>(frac_[3]))}; - __m128i pos4{_mm_setr_epi32(static_cast<int>(pos_[0]), static_cast<int>(pos_[1]), - static_cast<int>(pos_[2]), static_cast<int>(pos_[3]))}; - - auto dst_iter = dst.begin(); - for(size_t todo{dst.size()>>2};todo;--todo) - { - const int pos0{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(0, 0, 0, 0)))}; - const int pos1{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(1, 1, 1, 1)))}; - const int pos2{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(2, 2, 2, 2)))}; - const int pos3{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(3, 3, 3, 3)))}; - const __m128 val1{_mm_setr_ps(src[pos0 ], src[pos1 ], src[pos2 ], src[pos3 ])}; - const __m128 val2{_mm_setr_ps(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])}; - - /* val1 + (val2-val1)*mu */ - const __m128 r0{_mm_sub_ps(val2, val1)}; - const __m128 mu{_mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4)}; - const __m128 out{_mm_add_ps(val1, _mm_mul_ps(mu, r0))}; - - _mm_store_ps(dst_iter, out); - dst_iter += 4; - - frac4 = _mm_add_epi32(frac4, increment4); - pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, MixerFracBits)); - frac4 = _mm_and_si128(frac4, fracMask4); - } - - if(size_t todo{dst.size()&3}) - { - src += static_cast<uint>(_mm_cvtsi128_si32(pos4)); - frac = static_cast<uint>(_mm_cvtsi128_si32(frac4)); - - do { - *(dst_iter++) = lerp(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne)); - - frac += increment; - src += frac>>MixerFracBits; - frac &= MixerFracMask; - } while(--todo); - } - return dst.data(); -} diff --git a/alc/mixer/mixer_sse3.cpp b/alc/mixer/mixer_sse3.cpp deleted file mode 100644 index e69de29b..00000000 --- a/alc/mixer/mixer_sse3.cpp +++ /dev/null diff --git a/alc/mixer/mixer_sse41.cpp b/alc/mixer/mixer_sse41.cpp deleted file mode 100644 index cacc9e64..00000000 --- a/alc/mixer/mixer_sse41.cpp +++ /dev/null @@ -1,90 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2014 by Timothy Arceri <[email protected]>. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <xmmintrin.h> -#include <emmintrin.h> -#include <smmintrin.h> - -#include "alnumeric.h" -#include "defs.h" - -struct SSE4Tag; -struct LerpTag; - - -template<> -const float *Resample_<LerpTag,SSE4Tag>(const InterpState*, const float *RESTRICT src, uint frac, - uint increment, const al::span<float> dst) -{ - const __m128i increment4{_mm_set1_epi32(static_cast<int>(increment*4))}; - const __m128 fracOne4{_mm_set1_ps(1.0f/MixerFracOne)}; - const __m128i fracMask4{_mm_set1_epi32(MixerFracMask)}; - - alignas(16) uint pos_[4], frac_[4]; - InitPosArrays(frac, increment, frac_, pos_, 4); - __m128i frac4{_mm_setr_epi32(static_cast<int>(frac_[0]), static_cast<int>(frac_[1]), - static_cast<int>(frac_[2]), static_cast<int>(frac_[3]))}; - __m128i pos4{_mm_setr_epi32(static_cast<int>(pos_[0]), static_cast<int>(pos_[1]), - static_cast<int>(pos_[2]), static_cast<int>(pos_[3]))}; - - auto dst_iter = dst.begin(); - for(size_t todo{dst.size()>>2};todo;--todo) - { - const int pos0{_mm_extract_epi32(pos4, 0)}; - const int pos1{_mm_extract_epi32(pos4, 1)}; - const int pos2{_mm_extract_epi32(pos4, 2)}; - const int pos3{_mm_extract_epi32(pos4, 3)}; - const __m128 val1{_mm_setr_ps(src[pos0 ], src[pos1 ], src[pos2 ], src[pos3 ])}; - const __m128 val2{_mm_setr_ps(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])}; - - /* val1 + (val2-val1)*mu */ - const __m128 r0{_mm_sub_ps(val2, val1)}; - const __m128 mu{_mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4)}; - const __m128 out{_mm_add_ps(val1, _mm_mul_ps(mu, r0))}; - - _mm_store_ps(dst_iter, out); - dst_iter += 4; - - frac4 = _mm_add_epi32(frac4, increment4); - pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, MixerFracBits)); - frac4 = _mm_and_si128(frac4, fracMask4); - } - - if(size_t todo{dst.size()&3}) - { - /* NOTE: These four elements represent the position *after* the last - * four samples, so the lowest element is the next position to - * resample. - */ - src += static_cast<uint>(_mm_cvtsi128_si32(pos4)); - frac = static_cast<uint>(_mm_cvtsi128_si32(frac4)); - - do { - *(dst_iter++) = lerp(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne)); - - frac += increment; - src += frac>>MixerFracBits; - frac &= MixerFracMask; - } while(--todo); - } - return dst.data(); -} |