aboutsummaryrefslogtreecommitdiffstats
path: root/alc/mixer
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2020-12-12 14:58:09 -0800
committerChris Robinson <[email protected]>2020-12-12 14:58:09 -0800
commite179bf0a12e80eb41041469bc04ba1fbcffe11e8 (patch)
tree0e42d2b17f1005fad29ec4f509b1530a15213b88 /alc/mixer
parent14df53411402bae0e5dcdea8bc0d2d3ba30e7923 (diff)
Move the mixer functions to core
Diffstat (limited to 'alc/mixer')
-rw-r--r--alc/mixer/defs.h100
-rw-r--r--alc/mixer/hrtfbase.h159
-rw-r--r--alc/mixer/hrtfdefs.h52
-rw-r--r--alc/mixer/mixer_c.cpp198
-rw-r--r--alc/mixer/mixer_neon.cpp303
-rw-r--r--alc/mixer/mixer_sse.cpp266
-rw-r--r--alc/mixer/mixer_sse2.cpp85
-rw-r--r--alc/mixer/mixer_sse3.cpp0
-rw-r--r--alc/mixer/mixer_sse41.cpp90
9 files changed, 0 insertions, 1253 deletions
diff --git a/alc/mixer/defs.h b/alc/mixer/defs.h
deleted file mode 100644
index a34fba26..00000000
--- a/alc/mixer/defs.h
+++ /dev/null
@@ -1,100 +0,0 @@
-#ifndef MIXER_DEFS_H
-#define MIXER_DEFS_H
-
-#include <array>
-#include <stdlib.h>
-
-#include "alspan.h"
-#include "core/bufferline.h"
-
-struct HrtfChannelState;
-struct HrtfFilter;
-struct MixHrtfFilter;
-
-using uint = unsigned int;
-using float2 = std::array<float,2>;
-
-
-constexpr int MixerFracBits{12};
-constexpr int MixerFracOne{1 << MixerFracBits};
-constexpr int MixerFracMask{MixerFracOne - 1};
-
-/* Maximum number of samples to pad on the ends of a buffer for resampling.
- * Note that the padding is symmetric (half at the beginning and half at the
- * end)!
- */
-constexpr int MaxResamplerPadding{48};
-
-constexpr float GainSilenceThreshold{0.00001f}; /* -100dB */
-
-
-enum class Resampler {
- Point,
- Linear,
- Cubic,
- FastBSinc12,
- BSinc12,
- FastBSinc24,
- BSinc24,
-
- Max = BSinc24
-};
-
-/* Interpolator state. Kind of a misnomer since the interpolator itself is
- * stateless. This just keeps it from having to recompute scale-related
- * mappings for every sample.
- */
-struct BsincState {
- float sf; /* Scale interpolation factor. */
- uint m; /* Coefficient count. */
- uint l; /* Left coefficient offset. */
- /* Filter coefficients, followed by the phase, scale, and scale-phase
- * delta coefficients. Starting at phase index 0, each subsequent phase
- * index follows contiguously.
- */
- const float *filter;
-};
-
-union InterpState {
- BsincState bsinc;
-};
-
-using ResamplerFunc = const float*(*)(const InterpState *state, const float *RESTRICT src,
- uint frac, uint increment, const al::span<float> dst);
-
-ResamplerFunc PrepareResampler(Resampler resampler, uint increment, InterpState *state);
-
-
-template<typename TypeTag, typename InstTag>
-const float *Resample_(const InterpState *state, const float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst);
-
-template<typename InstTag>
-void Mix_(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
- float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos);
-
-template<typename InstTag>
-void MixHrtf_(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const MixHrtfFilter *hrtfparams, const size_t BufferSize);
-template<typename InstTag>
-void MixHrtfBlend_(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize);
-template<typename InstTag>
-void MixDirectHrtf_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
- const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
- float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize);
-
-/* Vectorized resampler helpers */
-inline void InitPosArrays(uint frac, uint increment, uint *frac_arr, uint *pos_arr, size_t size)
-{
- pos_arr[0] = 0;
- frac_arr[0] = frac;
- for(size_t i{1};i < size;i++)
- {
- const uint frac_tmp{frac_arr[i-1] + increment};
- pos_arr[i] = pos_arr[i-1] + (frac_tmp>>MixerFracBits);
- frac_arr[i] = frac_tmp&MixerFracMask;
- }
-}
-
-#endif /* MIXER_DEFS_H */
diff --git a/alc/mixer/hrtfbase.h b/alc/mixer/hrtfbase.h
deleted file mode 100644
index f25801b5..00000000
--- a/alc/mixer/hrtfbase.h
+++ /dev/null
@@ -1,159 +0,0 @@
-#ifndef MIXER_HRTFBASE_H
-#define MIXER_HRTFBASE_H
-
-#include <algorithm>
-#include <cmath>
-
-#include "almalloc.h"
-#include "hrtfdefs.h"
-#include "opthelpers.h"
-
-
-using uint = unsigned int;
-
-using ApplyCoeffsT = void(&)(float2 *RESTRICT Values, const uint_fast32_t irSize,
- const HrirArray &Coeffs, const float left, const float right);
-
-template<ApplyCoeffsT ApplyCoeffs>
-inline void MixHrtfBase(const float *InSamples, float2 *RESTRICT AccumSamples, const uint IrSize,
- const MixHrtfFilter *hrtfparams, const size_t BufferSize)
-{
- ASSUME(BufferSize > 0);
-
- const HrirArray &Coeffs = *hrtfparams->Coeffs;
- const float gainstep{hrtfparams->GainStep};
- const float gain{hrtfparams->Gain};
-
- size_t ldelay{HRTF_HISTORY_LENGTH - hrtfparams->Delay[0]};
- size_t rdelay{HRTF_HISTORY_LENGTH - hrtfparams->Delay[1]};
- float stepcount{0.0f};
- for(size_t i{0u};i < BufferSize;++i)
- {
- const float g{gain + gainstep*stepcount};
- const float left{InSamples[ldelay++] * g};
- const float right{InSamples[rdelay++] * g};
- ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, left, right);
-
- stepcount += 1.0f;
- }
-}
-
-template<ApplyCoeffsT ApplyCoeffs>
-inline void MixHrtfBlendBase(const float *InSamples, float2 *RESTRICT AccumSamples,
- const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams,
- const size_t BufferSize)
-{
- ASSUME(BufferSize > 0);
-
- const auto &OldCoeffs = oldparams->Coeffs;
- const float oldGainStep{oldparams->Gain / static_cast<float>(BufferSize)};
- const auto &NewCoeffs = *newparams->Coeffs;
- const float newGainStep{newparams->GainStep};
-
- if LIKELY(oldparams->Gain > GainSilenceThreshold)
- {
- size_t ldelay{HRTF_HISTORY_LENGTH - oldparams->Delay[0]};
- size_t rdelay{HRTF_HISTORY_LENGTH - oldparams->Delay[1]};
- auto stepcount = static_cast<float>(BufferSize);
- for(size_t i{0u};i < BufferSize;++i)
- {
- const float g{oldGainStep*stepcount};
- const float left{InSamples[ldelay++] * g};
- const float right{InSamples[rdelay++] * g};
- ApplyCoeffs(AccumSamples+i, IrSize, OldCoeffs, left, right);
-
- stepcount -= 1.0f;
- }
- }
-
- if LIKELY(newGainStep*static_cast<float>(BufferSize) > GainSilenceThreshold)
- {
- size_t ldelay{HRTF_HISTORY_LENGTH+1 - newparams->Delay[0]};
- size_t rdelay{HRTF_HISTORY_LENGTH+1 - newparams->Delay[1]};
- float stepcount{1.0f};
- for(size_t i{1u};i < BufferSize;++i)
- {
- const float g{newGainStep*stepcount};
- const float left{InSamples[ldelay++] * g};
- const float right{InSamples[rdelay++] * g};
- ApplyCoeffs(AccumSamples+i, IrSize, NewCoeffs, left, right);
-
- stepcount += 1.0f;
- }
- }
-}
-
-template<ApplyCoeffsT ApplyCoeffs>
-inline void MixDirectHrtfBase(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
- const al::span<const FloatBufferLine> InSamples, float2 *RESTRICT AccumSamples,
- float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
-{
- ASSUME(BufferSize > 0);
-
- /* Add the existing signal directly to the accumulation buffer, unfiltered,
- * and with a delay to align with the input delay.
- */
- for(size_t i{0};i < BufferSize;++i)
- {
- AccumSamples[HRTF_DIRECT_DELAY+i][0] += LeftOut[i];
- AccumSamples[HRTF_DIRECT_DELAY+i][1] += RightOut[i];
- }
-
- for(const FloatBufferLine &input : InSamples)
- {
- /* For dual-band processing, the signal needs extra scaling applied to
- * the high frequency response. The band-splitter alone creates a
- * frequency-dependent phase shift, which is not ideal. To counteract
- * it, combine it with a backwards phase shift.
- */
-
- /* Load the input signal backwards, into a temp buffer with delay
- * padding. The delay serves to reduce the error caused by the IIR
- * filter's phase shift on a partial input.
- */
- al::span<float> tempbuf{al::assume_aligned<16>(TempBuf), HRTF_DIRECT_DELAY+BufferSize};
- auto tmpiter = std::reverse_copy(input.begin(), input.begin()+BufferSize, tempbuf.begin());
- std::copy(ChanState->mDelay.cbegin(), ChanState->mDelay.cend(), tmpiter);
-
- /* Save the unfiltered newest input samples for next time. */
- std::copy_n(tempbuf.begin(), ChanState->mDelay.size(), ChanState->mDelay.begin());
-
- /* Apply the all-pass on the reversed signal and reverse the resulting
- * sample array. This produces the forward response with a backwards
- * phase shift (+n degrees becomes -n degrees).
- */
- ChanState->mSplitter.applyAllpass(tempbuf);
- tempbuf = tempbuf.subspan<HRTF_DIRECT_DELAY>();
- std::reverse(tempbuf.begin(), tempbuf.end());
-
- /* Now apply the HF scale with the band-splitter. This applies the
- * forward phase shift, which cancels out with the backwards phase
- * shift to get the original phase on the scaled signal.
- */
- ChanState->mSplitter.processHfScale(tempbuf, ChanState->mHfScale);
-
- /* Now apply the HRIR coefficients to this channel. */
- const auto &Coeffs = ChanState->mCoeffs;
- for(size_t i{0u};i < BufferSize;++i)
- {
- const float insample{tempbuf[i]};
- ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, insample, insample);
- }
-
- ++ChanState;
- }
-
- for(size_t i{0u};i < BufferSize;++i)
- LeftOut[i] = AccumSamples[i][0];
- for(size_t i{0u};i < BufferSize;++i)
- RightOut[i] = AccumSamples[i][1];
-
- /* Copy the new in-progress accumulation values to the front and clear the
- * following samples for the next mix.
- */
- auto accum_iter = std::copy_n(AccumSamples+BufferSize, HRIR_LENGTH+HRTF_DIRECT_DELAY,
- AccumSamples);
- std::fill_n(accum_iter, BufferSize, float2{});
-}
-
-#endif /* MIXER_HRTFBASE_H */
diff --git a/alc/mixer/hrtfdefs.h b/alc/mixer/hrtfdefs.h
deleted file mode 100644
index 5f9711cf..00000000
--- a/alc/mixer/hrtfdefs.h
+++ /dev/null
@@ -1,52 +0,0 @@
-#ifndef MIXER_HRTFDEFS_H
-#define MIXER_HRTFDEFS_H
-
-#include <array>
-
-#include "core/ambidefs.h"
-#include "core/bufferline.h"
-#include "core/filters/splitter.h"
-
-
-#define HRTF_HISTORY_BITS 6
-#define HRTF_HISTORY_LENGTH (1<<HRTF_HISTORY_BITS)
-#define HRTF_HISTORY_MASK (HRTF_HISTORY_LENGTH-1)
-
-#define HRIR_BITS 7
-#define HRIR_LENGTH (1<<HRIR_BITS)
-#define HRIR_MASK (HRIR_LENGTH-1)
-
-#define MIN_IR_LENGTH 8
-
-#define HRTF_DIRECT_DELAY 192
-
-using float2 = std::array<float,2>;
-using HrirArray = std::array<float2,HRIR_LENGTH>;
-using ubyte = unsigned char;
-using ubyte2 = std::array<ubyte,2>;
-using ushort = unsigned short;
-using uint = unsigned int;
-
-
-struct MixHrtfFilter {
- const HrirArray *Coeffs;
- std::array<uint,2> Delay;
- float Gain;
- float GainStep;
-};
-
-struct HrtfFilter {
- alignas(16) HrirArray Coeffs;
- std::array<uint,2> Delay;
- float Gain;
-};
-
-
-struct HrtfChannelState {
- std::array<float,HRTF_DIRECT_DELAY> mDelay{};
- BandSplitter mSplitter;
- float mHfScale{};
- alignas(16) HrirArray mCoeffs{};
-};
-
-#endif /* MIXER_HRTFDEFS_H */
diff --git a/alc/mixer/mixer_c.cpp b/alc/mixer/mixer_c.cpp
deleted file mode 100644
index 24ccd175..00000000
--- a/alc/mixer/mixer_c.cpp
+++ /dev/null
@@ -1,198 +0,0 @@
-#include "config.h"
-
-#include <cassert>
-#include <cmath>
-#include <limits>
-
-#include "alnumeric.h"
-#include "core/bsinc_tables.h"
-#include "defs.h"
-#include "hrtfbase.h"
-
-struct CTag;
-struct CopyTag;
-struct PointTag;
-struct LerpTag;
-struct CubicTag;
-struct BSincTag;
-struct FastBSincTag;
-
-
-namespace {
-
-constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits};
-constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff};
-
-inline float do_point(const InterpState&, const float *RESTRICT vals, const uint)
-{ return vals[0]; }
-inline float do_lerp(const InterpState&, const float *RESTRICT vals, const uint frac)
-{ return lerp(vals[0], vals[1], static_cast<float>(frac)*(1.0f/MixerFracOne)); }
-inline float do_cubic(const InterpState&, const float *RESTRICT vals, const uint frac)
-{ return cubic(vals[0], vals[1], vals[2], vals[3], static_cast<float>(frac)*(1.0f/MixerFracOne)); }
-inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac)
-{
- const size_t m{istate.bsinc.m};
-
- // Calculate the phase index and factor.
- const uint pi{frac >> FracPhaseBitDiff};
- const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
-
- const float *fil{istate.bsinc.filter + m*pi*4};
- const float *phd{fil + m};
- const float *scd{phd + m};
- const float *spd{scd + m};
-
- // Apply the scale and phase interpolated filter.
- float r{0.0f};
- for(size_t j_f{0};j_f < m;j_f++)
- r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
- return r;
-}
-inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac)
-{
- const size_t m{istate.bsinc.m};
-
- // Calculate the phase index and factor.
- const uint pi{frac >> FracPhaseBitDiff};
- const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
-
- const float *fil{istate.bsinc.filter + m*pi*4};
- const float *phd{fil + m};
-
- // Apply the phase interpolated filter.
- float r{0.0f};
- for(size_t j_f{0};j_f < m;j_f++)
- r += (fil[j_f] + pf*phd[j_f]) * vals[j_f];
- return r;
-}
-
-using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const uint);
-template<SamplerT Sampler>
-const float *DoResample(const InterpState *state, const float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
-{
- const InterpState istate{*state};
- for(float &out : dst)
- {
- out = Sampler(istate, src, frac);
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- }
- return dst.data();
-}
-
-inline void ApplyCoeffs(float2 *RESTRICT Values, const uint_fast32_t IrSize,
- const HrirArray &Coeffs, const float left, const float right)
-{
- ASSUME(IrSize >= MIN_IR_LENGTH);
- for(size_t c{0};c < IrSize;++c)
- {
- Values[c][0] += Coeffs[c][0] * left;
- Values[c][1] += Coeffs[c][1] * right;
- }
-}
-
-} // namespace
-
-template<>
-const float *Resample_<CopyTag,CTag>(const InterpState*, const float *RESTRICT src, uint, uint,
- const al::span<float> dst)
-{
-#if defined(HAVE_SSE) || defined(HAVE_NEON)
- /* Avoid copying the source data if it's aligned like the destination. */
- if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst.data())&15))
- return src;
-#endif
- std::copy_n(src, dst.size(), dst.begin());
- return dst.data();
-}
-
-template<>
-const float *Resample_<PointTag,CTag>(const InterpState *state, const float *RESTRICT src,
- uint frac, uint increment, const al::span<float> dst)
-{ return DoResample<do_point>(state, src, frac, increment, dst); }
-
-template<>
-const float *Resample_<LerpTag,CTag>(const InterpState *state, const float *RESTRICT src,
- uint frac, uint increment, const al::span<float> dst)
-{ return DoResample<do_lerp>(state, src, frac, increment, dst); }
-
-template<>
-const float *Resample_<CubicTag,CTag>(const InterpState *state, const float *RESTRICT src,
- uint frac, uint increment, const al::span<float> dst)
-{ return DoResample<do_cubic>(state, src-1, frac, increment, dst); }
-
-template<>
-const float *Resample_<BSincTag,CTag>(const InterpState *state, const float *RESTRICT src,
- uint frac, uint increment, const al::span<float> dst)
-{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); }
-
-template<>
-const float *Resample_<FastBSincTag,CTag>(const InterpState *state, const float *RESTRICT src,
- uint frac, uint increment, const al::span<float> dst)
-{ return DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); }
-
-
-template<>
-void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const MixHrtfFilter *hrtfparams, const size_t BufferSize)
-{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
-
-template<>
-void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
-{
- MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
- BufferSize);
-}
-
-template<>
-void MixDirectHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
- const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
- float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
-{
- MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
- IrSize, BufferSize);
-}
-
-
-template<>
-void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
- float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
-{
- const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
- const auto min_len = minz(Counter, InSamples.size());
- for(FloatBufferLine &output : OutBuffer)
- {
- float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
- float gain{*CurrentGains};
- const float step{(*TargetGains-gain) * delta};
-
- size_t pos{0};
- if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
- gain = *TargetGains;
- else
- {
- float step_count{0.0f};
- for(;pos != min_len;++pos)
- {
- dst[pos] += InSamples[pos] * (gain + step*step_count);
- step_count += 1.0f;
- }
- if(pos == Counter)
- gain = *TargetGains;
- else
- gain += step*step_count;
- }
- *CurrentGains = gain;
- ++CurrentGains;
- ++TargetGains;
-
- if(!(std::abs(gain) > GainSilenceThreshold))
- continue;
- for(;pos != InSamples.size();++pos)
- dst[pos] += InSamples[pos] * gain;
- }
-}
diff --git a/alc/mixer/mixer_neon.cpp b/alc/mixer/mixer_neon.cpp
deleted file mode 100644
index af8f6b0c..00000000
--- a/alc/mixer/mixer_neon.cpp
+++ /dev/null
@@ -1,303 +0,0 @@
-#include "config.h"
-
-#include <arm_neon.h>
-
-#include <cmath>
-#include <limits>
-
-#include "alnumeric.h"
-#include "core/bsinc_defs.h"
-#include "defs.h"
-#include "hrtfbase.h"
-
-struct NEONTag;
-struct LerpTag;
-struct BSincTag;
-struct FastBSincTag;
-
-
-namespace {
-
-inline float32x4_t set_f4(float l0, float l1, float l2, float l3)
-{
- float32x4_t ret{};
- ret = vsetq_lane_f32(l0, ret, 0);
- ret = vsetq_lane_f32(l1, ret, 1);
- ret = vsetq_lane_f32(l2, ret, 2);
- ret = vsetq_lane_f32(l3, ret, 3);
- return ret;
-}
-
-constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits};
-constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff};
-
-inline void ApplyCoeffs(float2 *RESTRICT Values, const uint_fast32_t IrSize,
- const HrirArray &Coeffs, const float left, const float right)
-{
- float32x4_t leftright4;
- {
- float32x2_t leftright2 = vdup_n_f32(0.0);
- leftright2 = vset_lane_f32(left, leftright2, 0);
- leftright2 = vset_lane_f32(right, leftright2, 1);
- leftright4 = vcombine_f32(leftright2, leftright2);
- }
-
- ASSUME(IrSize >= MIN_IR_LENGTH);
- for(size_t c{0};c < IrSize;c += 2)
- {
- float32x4_t vals = vld1q_f32(&Values[c][0]);
- float32x4_t coefs = vld1q_f32(&Coeffs[c][0]);
-
- vals = vmlaq_f32(vals, coefs, leftright4);
-
- vst1q_f32(&Values[c][0], vals);
- }
-}
-
-} // namespace
-
-template<>
-const float *Resample_<LerpTag,NEONTag>(const InterpState*, const float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
-{
- const int32x4_t increment4 = vdupq_n_s32(static_cast<int>(increment*4));
- const float32x4_t fracOne4 = vdupq_n_f32(1.0f/MixerFracOne);
- const int32x4_t fracMask4 = vdupq_n_s32(MixerFracMask);
- alignas(16) uint pos_[4], frac_[4];
- int32x4_t pos4, frac4;
-
- InitPosArrays(frac, increment, frac_, pos_, 4);
- frac4 = vld1q_s32(reinterpret_cast<int*>(frac_));
- pos4 = vld1q_s32(reinterpret_cast<int*>(pos_));
-
- auto dst_iter = dst.begin();
- for(size_t todo{dst.size()>>2};todo;--todo)
- {
- const int pos0{vgetq_lane_s32(pos4, 0)};
- const int pos1{vgetq_lane_s32(pos4, 1)};
- const int pos2{vgetq_lane_s32(pos4, 2)};
- const int pos3{vgetq_lane_s32(pos4, 3)};
- const float32x4_t val1{set_f4(src[pos0], src[pos1], src[pos2], src[pos3])};
- const float32x4_t val2{set_f4(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])};
-
- /* val1 + (val2-val1)*mu */
- const float32x4_t r0{vsubq_f32(val2, val1)};
- const float32x4_t mu{vmulq_f32(vcvtq_f32_s32(frac4), fracOne4)};
- const float32x4_t out{vmlaq_f32(val1, mu, r0)};
-
- vst1q_f32(dst_iter, out);
- dst_iter += 4;
-
- frac4 = vaddq_s32(frac4, increment4);
- pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, MixerFracBits));
- frac4 = vandq_s32(frac4, fracMask4);
- }
-
- if(size_t todo{dst.size()&3})
- {
- src += static_cast<uint>(vgetq_lane_s32(pos4, 0));
- frac = static_cast<uint>(vgetq_lane_s32(frac4, 0));
-
- do {
- *(dst_iter++) = lerp(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne));
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- } while(--todo);
- }
- return dst.data();
-}
-
-template<>
-const float *Resample_<BSincTag,NEONTag>(const InterpState *state, const float *RESTRICT src,
- uint frac, uint increment, const al::span<float> dst)
-{
- const float *const filter{state->bsinc.filter};
- const float32x4_t sf4{vdupq_n_f32(state->bsinc.sf)};
- const size_t m{state->bsinc.m};
-
- src -= state->bsinc.l;
- for(float &out_sample : dst)
- {
- // Calculate the phase index and factor.
- const uint pi{frac >> FracPhaseBitDiff};
- const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
-
- // Apply the scale and phase interpolated filter.
- float32x4_t r4{vdupq_n_f32(0.0f)};
- {
- const float32x4_t pf4{vdupq_n_f32(pf)};
- const float *fil{filter + m*pi*4};
- const float *phd{fil + m};
- const float *scd{phd + m};
- const float *spd{scd + m};
- size_t td{m >> 2};
- size_t j{0u};
-
- do {
- /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
- const float32x4_t f4 = vmlaq_f32(
- vmlaq_f32(vld1q_f32(&fil[j]), sf4, vld1q_f32(&scd[j])),
- pf4, vmlaq_f32(vld1q_f32(&phd[j]), sf4, vld1q_f32(&spd[j])));
- /* r += f*src */
- r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
- j += 4;
- } while(--td);
- }
- r4 = vaddq_f32(r4, vrev64q_f32(r4));
- out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- }
- return dst.data();
-}
-
-template<>
-const float *Resample_<FastBSincTag,NEONTag>(const InterpState *state,
- const float *RESTRICT src, uint frac, uint increment, const al::span<float> dst)
-{
- const float *const filter{state->bsinc.filter};
- const size_t m{state->bsinc.m};
-
- src -= state->bsinc.l;
- for(float &out_sample : dst)
- {
- // Calculate the phase index and factor.
- const uint pi{frac >> FracPhaseBitDiff};
- const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
-
- // Apply the phase interpolated filter.
- float32x4_t r4{vdupq_n_f32(0.0f)};
- {
- const float32x4_t pf4{vdupq_n_f32(pf)};
- const float *fil{filter + m*pi*4};
- const float *phd{fil + m};
- size_t td{m >> 2};
- size_t j{0u};
-
- do {
- /* f = fil + pf*phd */
- const float32x4_t f4 = vmlaq_f32(vld1q_f32(&fil[j]), pf4, vld1q_f32(&phd[j]));
- /* r += f*src */
- r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
- j += 4;
- } while(--td);
- }
- r4 = vaddq_f32(r4, vrev64q_f32(r4));
- out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- }
- return dst.data();
-}
-
-
-template<>
-void MixHrtf_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const MixHrtfFilter *hrtfparams, const size_t BufferSize)
-{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
-
-template<>
-void MixHrtfBlend_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
-{
- MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
- BufferSize);
-}
-
-template<>
-void MixDirectHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
- const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
- float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
-{
- MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
- IrSize, BufferSize);
-}
-
-
-template<>
-void Mix_<NEONTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
- float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
-{
- const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
- const auto min_len = minz(Counter, InSamples.size());
- const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
-
- for(FloatBufferLine &output : OutBuffer)
- {
- float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
- float gain{*CurrentGains};
- const float step{(*TargetGains-gain) * delta};
-
- size_t pos{0};
- if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
- gain = *TargetGains;
- else
- {
- float step_count{0.0f};
- /* Mix with applying gain steps in aligned multiples of 4. */
- if(size_t todo{(min_len-pos) >> 2})
- {
- const float32x4_t four4{vdupq_n_f32(4.0f)};
- const float32x4_t step4{vdupq_n_f32(step)};
- const float32x4_t gain4{vdupq_n_f32(gain)};
- float32x4_t step_count4{vdupq_n_f32(0.0f)};
- step_count4 = vsetq_lane_f32(1.0f, step_count4, 1);
- step_count4 = vsetq_lane_f32(2.0f, step_count4, 2);
- step_count4 = vsetq_lane_f32(3.0f, step_count4, 3);
-
- do {
- const float32x4_t val4 = vld1q_f32(&InSamples[pos]);
- float32x4_t dry4 = vld1q_f32(&dst[pos]);
- dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4));
- step_count4 = vaddq_f32(step_count4, four4);
- vst1q_f32(&dst[pos], dry4);
- pos += 4;
- } while(--todo);
- /* NOTE: step_count4 now represents the next four counts after
- * the last four mixed samples, so the lowest element
- * represents the next step count to apply.
- */
- step_count = vgetq_lane_f32(step_count4, 0);
- }
- /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
- for(size_t leftover{min_len&3};leftover;++pos,--leftover)
- {
- dst[pos] += InSamples[pos] * (gain + step*step_count);
- step_count += 1.0f;
- }
- if(pos == Counter)
- gain = *TargetGains;
- else
- gain += step*step_count;
-
- /* Mix until pos is aligned with 4 or the mix is done. */
- for(size_t leftover{aligned_len&3};leftover;++pos,--leftover)
- dst[pos] += InSamples[pos] * gain;
- }
- *CurrentGains = gain;
- ++CurrentGains;
- ++TargetGains;
-
- if(!(std::abs(gain) > GainSilenceThreshold))
- continue;
- if(size_t todo{(InSamples.size()-pos) >> 2})
- {
- const float32x4_t gain4 = vdupq_n_f32(gain);
- do {
- const float32x4_t val4 = vld1q_f32(&InSamples[pos]);
- float32x4_t dry4 = vld1q_f32(&dst[pos]);
- dry4 = vmlaq_f32(dry4, val4, gain4);
- vst1q_f32(&dst[pos], dry4);
- pos += 4;
- } while(--todo);
- }
- for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover)
- dst[pos] += InSamples[pos] * gain;
- }
-}
diff --git a/alc/mixer/mixer_sse.cpp b/alc/mixer/mixer_sse.cpp
deleted file mode 100644
index 85b2f1ce..00000000
--- a/alc/mixer/mixer_sse.cpp
+++ /dev/null
@@ -1,266 +0,0 @@
-#include "config.h"
-
-#include <xmmintrin.h>
-
-#include <cmath>
-#include <limits>
-
-#include "alnumeric.h"
-#include "core/bsinc_defs.h"
-#include "defs.h"
-#include "hrtfbase.h"
-
-struct SSETag;
-struct BSincTag;
-struct FastBSincTag;
-
-
-namespace {
-
-constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits};
-constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff};
-
-#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
-
-inline void ApplyCoeffs(float2 *RESTRICT Values, const uint_fast32_t IrSize,
- const HrirArray &Coeffs, const float left, const float right)
-{
- const __m128 lrlr{_mm_setr_ps(left, right, left, right)};
-
- ASSUME(IrSize >= MIN_IR_LENGTH);
- /* This isn't technically correct to test alignment, but it's true for
- * systems that support SSE, which is the only one that needs to know the
- * alignment of Values (which alternates between 8- and 16-byte aligned).
- */
- if(reinterpret_cast<intptr_t>(Values)&0x8)
- {
- __m128 imp0, imp1;
- __m128 coeffs{_mm_load_ps(&Coeffs[0][0])};
- __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))};
- imp0 = _mm_mul_ps(lrlr, coeffs);
- vals = _mm_add_ps(imp0, vals);
- _mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals);
- uint_fast32_t td{((IrSize+1)>>1) - 1};
- size_t i{1};
- do {
- coeffs = _mm_load_ps(&Coeffs[i+1][0]);
- vals = _mm_load_ps(&Values[i][0]);
- imp1 = _mm_mul_ps(lrlr, coeffs);
- imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
- vals = _mm_add_ps(imp0, vals);
- _mm_store_ps(&Values[i][0], vals);
- imp0 = imp1;
- i += 2;
- } while(--td);
- vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0]));
- imp0 = _mm_movehl_ps(imp0, imp0);
- vals = _mm_add_ps(imp0, vals);
- _mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals);
- }
- else
- {
- for(size_t i{0};i < IrSize;i += 2)
- {
- const __m128 coeffs{_mm_load_ps(&Coeffs[i][0])};
- __m128 vals{_mm_load_ps(&Values[i][0])};
- vals = MLA4(vals, lrlr, coeffs);
- _mm_store_ps(&Values[i][0], vals);
- }
- }
-}
-
-} // namespace
-
-template<>
-const float *Resample_<BSincTag,SSETag>(const InterpState *state, const float *RESTRICT src,
- uint frac, uint increment, const al::span<float> dst)
-{
- const float *const filter{state->bsinc.filter};
- const __m128 sf4{_mm_set1_ps(state->bsinc.sf)};
- const size_t m{state->bsinc.m};
-
- src -= state->bsinc.l;
- for(float &out_sample : dst)
- {
- // Calculate the phase index and factor.
- const uint pi{frac >> FracPhaseBitDiff};
- const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
-
- // Apply the scale and phase interpolated filter.
- __m128 r4{_mm_setzero_ps()};
- {
- const __m128 pf4{_mm_set1_ps(pf)};
- const float *fil{filter + m*pi*4};
- const float *phd{fil + m};
- const float *scd{phd + m};
- const float *spd{scd + m};
- size_t td{m >> 2};
- size_t j{0u};
-
- do {
- /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
- const __m128 f4 = MLA4(
- MLA4(_mm_load_ps(&fil[j]), sf4, _mm_load_ps(&scd[j])),
- pf4, MLA4(_mm_load_ps(&phd[j]), sf4, _mm_load_ps(&spd[j])));
- /* r += f*src */
- r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
- j += 4;
- } while(--td);
- }
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
- out_sample = _mm_cvtss_f32(r4);
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- }
- return dst.data();
-}
-
-template<>
-const float *Resample_<FastBSincTag,SSETag>(const InterpState *state, const float *RESTRICT src,
- uint frac, uint increment, const al::span<float> dst)
-{
- const float *const filter{state->bsinc.filter};
- const size_t m{state->bsinc.m};
-
- src -= state->bsinc.l;
- for(float &out_sample : dst)
- {
- // Calculate the phase index and factor.
- const uint pi{frac >> FracPhaseBitDiff};
- const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
-
- // Apply the phase interpolated filter.
- __m128 r4{_mm_setzero_ps()};
- {
- const __m128 pf4{_mm_set1_ps(pf)};
- const float *fil{filter + m*pi*4};
- const float *phd{fil + m};
- size_t td{m >> 2};
- size_t j{0u};
-
- do {
- /* f = fil + pf*phd */
- const __m128 f4 = MLA4(_mm_load_ps(&fil[j]), pf4, _mm_load_ps(&phd[j]));
- /* r += f*src */
- r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
- j += 4;
- } while(--td);
- }
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
- out_sample = _mm_cvtss_f32(r4);
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- }
- return dst.data();
-}
-
-
-template<>
-void MixHrtf_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const MixHrtfFilter *hrtfparams, const size_t BufferSize)
-{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
-
-template<>
-void MixHrtfBlend_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
-{
- MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
- BufferSize);
-}
-
-template<>
-void MixDirectHrtf_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
- const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
- float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
-{
- MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
- IrSize, BufferSize);
-}
-
-
-template<>
-void Mix_<SSETag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
- float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
-{
- const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
- const auto min_len = minz(Counter, InSamples.size());
- const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
-
- for(FloatBufferLine &output : OutBuffer)
- {
- float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
- float gain{*CurrentGains};
- const float step{(*TargetGains-gain) * delta};
-
- size_t pos{0};
- if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
- gain = *TargetGains;
- else
- {
- float step_count{0.0f};
- /* Mix with applying gain steps in aligned multiples of 4. */
- if(size_t todo{(min_len-pos) >> 2})
- {
- const __m128 four4{_mm_set1_ps(4.0f)};
- const __m128 step4{_mm_set1_ps(step)};
- const __m128 gain4{_mm_set1_ps(gain)};
- __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)};
- do {
- const __m128 val4{_mm_load_ps(&InSamples[pos])};
- __m128 dry4{_mm_load_ps(&dst[pos])};
-
- /* dry += val * (gain + step*step_count) */
- dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
-
- _mm_store_ps(&dst[pos], dry4);
- step_count4 = _mm_add_ps(step_count4, four4);
- pos += 4;
- } while(--todo);
- /* NOTE: step_count4 now represents the next four counts after
- * the last four mixed samples, so the lowest element
- * represents the next step count to apply.
- */
- step_count = _mm_cvtss_f32(step_count4);
- }
- /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
- for(size_t leftover{min_len&3};leftover;++pos,--leftover)
- {
- dst[pos] += InSamples[pos] * (gain + step*step_count);
- step_count += 1.0f;
- }
- if(pos == Counter)
- gain = *TargetGains;
- else
- gain += step*step_count;
-
- /* Mix until pos is aligned with 4 or the mix is done. */
- for(size_t leftover{aligned_len&3};leftover;++pos,--leftover)
- dst[pos] += InSamples[pos] * gain;
- }
- *CurrentGains = gain;
- ++CurrentGains;
- ++TargetGains;
-
- if(!(std::abs(gain) > GainSilenceThreshold))
- continue;
- if(size_t todo{(InSamples.size()-pos) >> 2})
- {
- const __m128 gain4{_mm_set1_ps(gain)};
- do {
- const __m128 val4{_mm_load_ps(&InSamples[pos])};
- __m128 dry4{_mm_load_ps(&dst[pos])};
- dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
- _mm_store_ps(&dst[pos], dry4);
- pos += 4;
- } while(--todo);
- }
- for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover)
- dst[pos] += InSamples[pos] * gain;
- }
-}
diff --git a/alc/mixer/mixer_sse2.cpp b/alc/mixer/mixer_sse2.cpp
deleted file mode 100644
index 69fac250..00000000
--- a/alc/mixer/mixer_sse2.cpp
+++ /dev/null
@@ -1,85 +0,0 @@
-/**
- * OpenAL cross platform audio library
- * Copyright (C) 2014 by Timothy Arceri <[email protected]>.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
-
-#include "config.h"
-
-#include <xmmintrin.h>
-#include <emmintrin.h>
-
-#include "alnumeric.h"
-#include "defs.h"
-
-struct SSE2Tag;
-struct LerpTag;
-
-
-template<>
-const float *Resample_<LerpTag,SSE2Tag>(const InterpState*, const float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
-{
- const __m128i increment4{_mm_set1_epi32(static_cast<int>(increment*4))};
- const __m128 fracOne4{_mm_set1_ps(1.0f/MixerFracOne)};
- const __m128i fracMask4{_mm_set1_epi32(MixerFracMask)};
-
- alignas(16) uint pos_[4], frac_[4];
- InitPosArrays(frac, increment, frac_, pos_, 4);
- __m128i frac4{_mm_setr_epi32(static_cast<int>(frac_[0]), static_cast<int>(frac_[1]),
- static_cast<int>(frac_[2]), static_cast<int>(frac_[3]))};
- __m128i pos4{_mm_setr_epi32(static_cast<int>(pos_[0]), static_cast<int>(pos_[1]),
- static_cast<int>(pos_[2]), static_cast<int>(pos_[3]))};
-
- auto dst_iter = dst.begin();
- for(size_t todo{dst.size()>>2};todo;--todo)
- {
- const int pos0{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(0, 0, 0, 0)))};
- const int pos1{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(1, 1, 1, 1)))};
- const int pos2{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(2, 2, 2, 2)))};
- const int pos3{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(3, 3, 3, 3)))};
- const __m128 val1{_mm_setr_ps(src[pos0 ], src[pos1 ], src[pos2 ], src[pos3 ])};
- const __m128 val2{_mm_setr_ps(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])};
-
- /* val1 + (val2-val1)*mu */
- const __m128 r0{_mm_sub_ps(val2, val1)};
- const __m128 mu{_mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4)};
- const __m128 out{_mm_add_ps(val1, _mm_mul_ps(mu, r0))};
-
- _mm_store_ps(dst_iter, out);
- dst_iter += 4;
-
- frac4 = _mm_add_epi32(frac4, increment4);
- pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, MixerFracBits));
- frac4 = _mm_and_si128(frac4, fracMask4);
- }
-
- if(size_t todo{dst.size()&3})
- {
- src += static_cast<uint>(_mm_cvtsi128_si32(pos4));
- frac = static_cast<uint>(_mm_cvtsi128_si32(frac4));
-
- do {
- *(dst_iter++) = lerp(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne));
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- } while(--todo);
- }
- return dst.data();
-}
diff --git a/alc/mixer/mixer_sse3.cpp b/alc/mixer/mixer_sse3.cpp
deleted file mode 100644
index e69de29b..00000000
--- a/alc/mixer/mixer_sse3.cpp
+++ /dev/null
diff --git a/alc/mixer/mixer_sse41.cpp b/alc/mixer/mixer_sse41.cpp
deleted file mode 100644
index cacc9e64..00000000
--- a/alc/mixer/mixer_sse41.cpp
+++ /dev/null
@@ -1,90 +0,0 @@
-/**
- * OpenAL cross platform audio library
- * Copyright (C) 2014 by Timothy Arceri <[email protected]>.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
-
-#include "config.h"
-
-#include <xmmintrin.h>
-#include <emmintrin.h>
-#include <smmintrin.h>
-
-#include "alnumeric.h"
-#include "defs.h"
-
-struct SSE4Tag;
-struct LerpTag;
-
-
-template<>
-const float *Resample_<LerpTag,SSE4Tag>(const InterpState*, const float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
-{
- const __m128i increment4{_mm_set1_epi32(static_cast<int>(increment*4))};
- const __m128 fracOne4{_mm_set1_ps(1.0f/MixerFracOne)};
- const __m128i fracMask4{_mm_set1_epi32(MixerFracMask)};
-
- alignas(16) uint pos_[4], frac_[4];
- InitPosArrays(frac, increment, frac_, pos_, 4);
- __m128i frac4{_mm_setr_epi32(static_cast<int>(frac_[0]), static_cast<int>(frac_[1]),
- static_cast<int>(frac_[2]), static_cast<int>(frac_[3]))};
- __m128i pos4{_mm_setr_epi32(static_cast<int>(pos_[0]), static_cast<int>(pos_[1]),
- static_cast<int>(pos_[2]), static_cast<int>(pos_[3]))};
-
- auto dst_iter = dst.begin();
- for(size_t todo{dst.size()>>2};todo;--todo)
- {
- const int pos0{_mm_extract_epi32(pos4, 0)};
- const int pos1{_mm_extract_epi32(pos4, 1)};
- const int pos2{_mm_extract_epi32(pos4, 2)};
- const int pos3{_mm_extract_epi32(pos4, 3)};
- const __m128 val1{_mm_setr_ps(src[pos0 ], src[pos1 ], src[pos2 ], src[pos3 ])};
- const __m128 val2{_mm_setr_ps(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])};
-
- /* val1 + (val2-val1)*mu */
- const __m128 r0{_mm_sub_ps(val2, val1)};
- const __m128 mu{_mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4)};
- const __m128 out{_mm_add_ps(val1, _mm_mul_ps(mu, r0))};
-
- _mm_store_ps(dst_iter, out);
- dst_iter += 4;
-
- frac4 = _mm_add_epi32(frac4, increment4);
- pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, MixerFracBits));
- frac4 = _mm_and_si128(frac4, fracMask4);
- }
-
- if(size_t todo{dst.size()&3})
- {
- /* NOTE: These four elements represent the position *after* the last
- * four samples, so the lowest element is the next position to
- * resample.
- */
- src += static_cast<uint>(_mm_cvtsi128_si32(pos4));
- frac = static_cast<uint>(_mm_cvtsi128_si32(frac4));
-
- do {
- *(dst_iter++) = lerp(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne));
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- } while(--todo);
- }
- return dst.data();
-}