diff options
author | Chris Robinson <[email protected]> | 2019-07-28 18:56:04 -0700 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2019-07-28 18:56:04 -0700 |
commit | cb3e96e75640730b9391f0d2d922eecd9ee2ce79 (patch) | |
tree | 23520551bddb2a80354e44da47f54201fdc084f0 /alc/mixer/mixer_neon.cpp | |
parent | 93e60919c8f387c36c267ca9faa1ac653254aea6 (diff) |
Rename Alc to alc
Diffstat (limited to 'alc/mixer/mixer_neon.cpp')
-rw-r--r-- | alc/mixer/mixer_neon.cpp | 307 |
1 files changed, 307 insertions, 0 deletions
diff --git a/alc/mixer/mixer_neon.cpp b/alc/mixer/mixer_neon.cpp new file mode 100644 index 00000000..fa487d97 --- /dev/null +++ b/alc/mixer/mixer_neon.cpp @@ -0,0 +1,307 @@ +#include "config.h" + +#include <arm_neon.h> + +#include <limits> + +#include "AL/al.h" +#include "AL/alc.h" +#include "alcmain.h" +#include "alu.h" +#include "hrtf.h" +#include "defs.h" +#include "hrtfbase.h" + + + +template<> +const ALfloat *Resample_<LerpTag,NEONTag>(const InterpState*, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ + const int32x4_t increment4 = vdupq_n_s32(increment*4); + const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE); + const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK); + alignas(16) ALsizei pos_[4], frac_[4]; + int32x4_t pos4, frac4; + ALsizei todo, pos, i; + + ASSUME(frac >= 0); + ASSUME(increment > 0); + ASSUME(dstlen > 0); + + InitiatePositionArrays(frac, increment, frac_, pos_, 4); + frac4 = vld1q_s32(frac_); + pos4 = vld1q_s32(pos_); + + todo = dstlen & ~3; + for(i = 0;i < todo;i += 4) + { + const int pos0 = vgetq_lane_s32(pos4, 0); + const int pos1 = vgetq_lane_s32(pos4, 1); + const int pos2 = vgetq_lane_s32(pos4, 2); + const int pos3 = vgetq_lane_s32(pos4, 3); + const float32x4_t val1 = (float32x4_t){src[pos0], src[pos1], src[pos2], src[pos3]}; + const float32x4_t val2 = (float32x4_t){src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1]}; + + /* val1 + (val2-val1)*mu */ + const float32x4_t r0 = vsubq_f32(val2, val1); + const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4); + const float32x4_t out = vmlaq_f32(val1, mu, r0); + + vst1q_f32(&dst[i], out); + + frac4 = vaddq_s32(frac4, increment4); + pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS)); + frac4 = vandq_s32(frac4, fracMask4); + } + + /* NOTE: These four elements represent the position *after* the last four + * samples, so the lowest element is the next position to resample. + */ + pos = vgetq_lane_s32(pos4, 0); + frac = vgetq_lane_s32(frac4, 0); + + for(;i < dstlen;++i) + { + dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE)); + + frac += increment; + pos += frac>>FRACTIONBITS; + frac &= FRACTIONMASK; + } + return dst; +} + +template<> +const ALfloat *Resample_<BSincTag,NEONTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ + const ALfloat *const filter = state->bsinc.filter; + const float32x4_t sf4 = vdupq_n_f32(state->bsinc.sf); + const ALsizei m = state->bsinc.m; + const float32x4_t *fil, *scd, *phd, *spd; + ALsizei pi, i, j, offset; + float32x4_t r4; + ALfloat pf; + + ASSUME(m > 0); + ASSUME(dstlen > 0); + ASSUME(increment > 0); + ASSUME(frac >= 0); + + src -= state->bsinc.l; + for(i = 0;i < dstlen;i++) + { + // Calculate the phase index and factor. +#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) + pi = frac >> FRAC_PHASE_BITDIFF; + pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF)); +#undef FRAC_PHASE_BITDIFF + + offset = m*pi*4; + fil = (const float32x4_t*)(filter + offset); offset += m; + scd = (const float32x4_t*)(filter + offset); offset += m; + phd = (const float32x4_t*)(filter + offset); offset += m; + spd = (const float32x4_t*)(filter + offset); + + // Apply the scale and phase interpolated filter. + r4 = vdupq_n_f32(0.0f); + { + const ALsizei count = m >> 2; + const float32x4_t pf4 = vdupq_n_f32(pf); + + ASSUME(count > 0); + + for(j = 0;j < count;j++) + { + /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ + const float32x4_t f4 = vmlaq_f32( + vmlaq_f32(fil[j], sf4, scd[j]), + pf4, vmlaq_f32(phd[j], sf4, spd[j]) + ); + /* r += f*src */ + r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j*4])); + } + } + r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)), + vrev64_f32(vget_low_f32(r4)))); + dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); + + frac += increment; + src += frac>>FRACTIONBITS; + frac &= FRACTIONMASK; + } + return dst; +} + + +static inline void ApplyCoeffs(ALsizei /*Offset*/, float2 *RESTRICT Values, const ALsizei IrSize, + const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right) +{ + ASSUME(IrSize >= 2); + + float32x4_t leftright4; + { + float32x2_t leftright2 = vdup_n_f32(0.0); + leftright2 = vset_lane_f32(left, leftright2, 0); + leftright2 = vset_lane_f32(right, leftright2, 1); + leftright4 = vcombine_f32(leftright2, leftright2); + } + + for(ALsizei c{0};c < IrSize;c += 2) + { + float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[c ][0]), + vld1_f32((float32_t*)&Values[c+1][0])); + float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]); + + vals = vmlaq_f32(vals, coefs, leftright4); + + vst1_f32((float32_t*)&Values[c ][0], vget_low_f32(vals)); + vst1_f32((float32_t*)&Values[c+1][0], vget_high_f32(vals)); + } +} + +template<> +void MixHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, + MixHrtfFilter *hrtfparams, const ALsizei BufferSize) +{ + MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, + hrtfparams, BufferSize); +} + +template<> +void MixHrtfBlend_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, + const HrtfFilter *oldparams, MixHrtfFilter *newparams, const ALsizei BufferSize) +{ + MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, + oldparams, newparams, BufferSize); +} + +template<> +void MixDirectHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State, + const ALsizei BufferSize) +{ + MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); +} + + +template<> +void Mix_<NEONTag>(const ALfloat *data, const al::span<FloatBufferLine> OutBuffer, + ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos, + const ALsizei BufferSize) +{ + ASSUME(BufferSize > 0); + + const ALfloat delta{(Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f}; + for(FloatBufferLine &output : OutBuffer) + { + ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; + ALfloat gain{*CurrentGains}; + const ALfloat diff{*TargetGains - gain}; + + ALsizei pos{0}; + if(std::fabs(diff) > std::numeric_limits<float>::epsilon()) + { + ALsizei minsize{mini(BufferSize, Counter)}; + const ALfloat step{diff * delta}; + ALfloat step_count{0.0f}; + /* Mix with applying gain steps in aligned multiples of 4. */ + if(LIKELY(minsize > 3)) + { + const float32x4_t four4{vdupq_n_f32(4.0f)}; + const float32x4_t step4{vdupq_n_f32(step)}; + const float32x4_t gain4{vdupq_n_f32(gain)}; + float32x4_t step_count4{vsetq_lane_f32(0.0f, + vsetq_lane_f32(1.0f, + vsetq_lane_f32(2.0f, + vsetq_lane_f32(3.0f, vdupq_n_f32(0.0f), 3), + 2), 1), 0 + )}; + ALsizei todo{minsize >> 2}; + + do { + const float32x4_t val4 = vld1q_f32(&data[pos]); + float32x4_t dry4 = vld1q_f32(&dst[pos]); + dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4)); + step_count4 = vaddq_f32(step_count4, four4); + vst1q_f32(&dst[pos], dry4); + pos += 4; + } while(--todo); + /* NOTE: step_count4 now represents the next four counts after + * the last four mixed samples, so the lowest element + * represents the next step count to apply. + */ + step_count = vgetq_lane_f32(step_count4, 0); + } + /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ + for(;pos < minsize;pos++) + { + dst[pos] += data[pos]*(gain + step*step_count); + step_count += 1.0f; + } + if(pos == Counter) + gain = *TargetGains; + else + gain += step*step_count; + *CurrentGains = gain; + + /* Mix until pos is aligned with 4 or the mix is done. */ + minsize = mini(BufferSize, (pos+3)&~3); + for(;pos < minsize;pos++) + dst[pos] += data[pos]*gain; + } + ++CurrentGains; + ++TargetGains; + + if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + if(LIKELY(BufferSize-pos > 3)) + { + ALsizei todo{(BufferSize-pos) >> 2}; + const float32x4_t gain4 = vdupq_n_f32(gain); + do { + const float32x4_t val4 = vld1q_f32(&data[pos]); + float32x4_t dry4 = vld1q_f32(&dst[pos]); + dry4 = vmlaq_f32(dry4, val4, gain4); + vst1q_f32(&dst[pos], dry4); + pos += 4; + } while(--todo); + } + for(;pos < BufferSize;pos++) + dst[pos] += data[pos]*gain; + } +} + +template<> +void MixRow_<NEONTag>(FloatBufferLine &OutBuffer, const ALfloat *Gains, + const al::span<const FloatBufferLine> InSamples, const ALsizei InPos, const ALsizei BufferSize) +{ + ASSUME(BufferSize > 0); + + for(const FloatBufferLine &input : InSamples) + { + const ALfloat *RESTRICT src{al::assume_aligned<16>(input.data()+InPos)}; + const ALfloat gain{*(Gains++)}; + if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + + ALsizei pos{0}; + if(LIKELY(BufferSize > 3)) + { + ALsizei todo{BufferSize >> 2}; + float32x4_t gain4{vdupq_n_f32(gain)}; + do { + const float32x4_t val4 = vld1q_f32(&src[pos]); + float32x4_t dry4 = vld1q_f32(&OutBuffer[pos]); + dry4 = vmlaq_f32(dry4, val4, gain4); + vst1q_f32(&OutBuffer[pos], dry4); + pos += 4; + } while(--todo); + } + for(;pos < BufferSize;pos++) + OutBuffer[pos] += src[pos]*gain; + } +} |