aboutsummaryrefslogtreecommitdiffstats
path: root/alc/mixer/mixer_neon.cpp
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2019-07-28 18:56:04 -0700
committerChris Robinson <[email protected]>2019-07-28 18:56:04 -0700
commitcb3e96e75640730b9391f0d2d922eecd9ee2ce79 (patch)
tree23520551bddb2a80354e44da47f54201fdc084f0 /alc/mixer/mixer_neon.cpp
parent93e60919c8f387c36c267ca9faa1ac653254aea6 (diff)
Rename Alc to alc
Diffstat (limited to 'alc/mixer/mixer_neon.cpp')
-rw-r--r--alc/mixer/mixer_neon.cpp307
1 files changed, 307 insertions, 0 deletions
diff --git a/alc/mixer/mixer_neon.cpp b/alc/mixer/mixer_neon.cpp
new file mode 100644
index 00000000..fa487d97
--- /dev/null
+++ b/alc/mixer/mixer_neon.cpp
@@ -0,0 +1,307 @@
+#include "config.h"
+
+#include <arm_neon.h>
+
+#include <limits>
+
+#include "AL/al.h"
+#include "AL/alc.h"
+#include "alcmain.h"
+#include "alu.h"
+#include "hrtf.h"
+#include "defs.h"
+#include "hrtfbase.h"
+
+
+
+template<>
+const ALfloat *Resample_<LerpTag,NEONTag>(const InterpState*, const ALfloat *RESTRICT src,
+ ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
+{
+ const int32x4_t increment4 = vdupq_n_s32(increment*4);
+ const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE);
+ const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK);
+ alignas(16) ALsizei pos_[4], frac_[4];
+ int32x4_t pos4, frac4;
+ ALsizei todo, pos, i;
+
+ ASSUME(frac >= 0);
+ ASSUME(increment > 0);
+ ASSUME(dstlen > 0);
+
+ InitiatePositionArrays(frac, increment, frac_, pos_, 4);
+ frac4 = vld1q_s32(frac_);
+ pos4 = vld1q_s32(pos_);
+
+ todo = dstlen & ~3;
+ for(i = 0;i < todo;i += 4)
+ {
+ const int pos0 = vgetq_lane_s32(pos4, 0);
+ const int pos1 = vgetq_lane_s32(pos4, 1);
+ const int pos2 = vgetq_lane_s32(pos4, 2);
+ const int pos3 = vgetq_lane_s32(pos4, 3);
+ const float32x4_t val1 = (float32x4_t){src[pos0], src[pos1], src[pos2], src[pos3]};
+ const float32x4_t val2 = (float32x4_t){src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1]};
+
+ /* val1 + (val2-val1)*mu */
+ const float32x4_t r0 = vsubq_f32(val2, val1);
+ const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4);
+ const float32x4_t out = vmlaq_f32(val1, mu, r0);
+
+ vst1q_f32(&dst[i], out);
+
+ frac4 = vaddq_s32(frac4, increment4);
+ pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS));
+ frac4 = vandq_s32(frac4, fracMask4);
+ }
+
+ /* NOTE: These four elements represent the position *after* the last four
+ * samples, so the lowest element is the next position to resample.
+ */
+ pos = vgetq_lane_s32(pos4, 0);
+ frac = vgetq_lane_s32(frac4, 0);
+
+ for(;i < dstlen;++i)
+ {
+ dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
+
+ frac += increment;
+ pos += frac>>FRACTIONBITS;
+ frac &= FRACTIONMASK;
+ }
+ return dst;
+}
+
+template<>
+const ALfloat *Resample_<BSincTag,NEONTag>(const InterpState *state, const ALfloat *RESTRICT src,
+ ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
+{
+ const ALfloat *const filter = state->bsinc.filter;
+ const float32x4_t sf4 = vdupq_n_f32(state->bsinc.sf);
+ const ALsizei m = state->bsinc.m;
+ const float32x4_t *fil, *scd, *phd, *spd;
+ ALsizei pi, i, j, offset;
+ float32x4_t r4;
+ ALfloat pf;
+
+ ASSUME(m > 0);
+ ASSUME(dstlen > 0);
+ ASSUME(increment > 0);
+ ASSUME(frac >= 0);
+
+ src -= state->bsinc.l;
+ for(i = 0;i < dstlen;i++)
+ {
+ // Calculate the phase index and factor.
+#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
+ pi = frac >> FRAC_PHASE_BITDIFF;
+ pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
+#undef FRAC_PHASE_BITDIFF
+
+ offset = m*pi*4;
+ fil = (const float32x4_t*)(filter + offset); offset += m;
+ scd = (const float32x4_t*)(filter + offset); offset += m;
+ phd = (const float32x4_t*)(filter + offset); offset += m;
+ spd = (const float32x4_t*)(filter + offset);
+
+ // Apply the scale and phase interpolated filter.
+ r4 = vdupq_n_f32(0.0f);
+ {
+ const ALsizei count = m >> 2;
+ const float32x4_t pf4 = vdupq_n_f32(pf);
+
+ ASSUME(count > 0);
+
+ for(j = 0;j < count;j++)
+ {
+ /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
+ const float32x4_t f4 = vmlaq_f32(
+ vmlaq_f32(fil[j], sf4, scd[j]),
+ pf4, vmlaq_f32(phd[j], sf4, spd[j])
+ );
+ /* r += f*src */
+ r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j*4]));
+ }
+ }
+ r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)),
+ vrev64_f32(vget_low_f32(r4))));
+ dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
+
+ frac += increment;
+ src += frac>>FRACTIONBITS;
+ frac &= FRACTIONMASK;
+ }
+ return dst;
+}
+
+
+static inline void ApplyCoeffs(ALsizei /*Offset*/, float2 *RESTRICT Values, const ALsizei IrSize,
+ const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right)
+{
+ ASSUME(IrSize >= 2);
+
+ float32x4_t leftright4;
+ {
+ float32x2_t leftright2 = vdup_n_f32(0.0);
+ leftright2 = vset_lane_f32(left, leftright2, 0);
+ leftright2 = vset_lane_f32(right, leftright2, 1);
+ leftright4 = vcombine_f32(leftright2, leftright2);
+ }
+
+ for(ALsizei c{0};c < IrSize;c += 2)
+ {
+ float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[c ][0]),
+ vld1_f32((float32_t*)&Values[c+1][0]));
+ float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);
+
+ vals = vmlaq_f32(vals, coefs, leftright4);
+
+ vst1_f32((float32_t*)&Values[c ][0], vget_low_f32(vals));
+ vst1_f32((float32_t*)&Values[c+1][0], vget_high_f32(vals));
+ }
+}
+
+template<>
+void MixHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
+ const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
+ MixHrtfFilter *hrtfparams, const ALsizei BufferSize)
+{
+ MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize,
+ hrtfparams, BufferSize);
+}
+
+template<>
+void MixHrtfBlend_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
+ const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
+ const HrtfFilter *oldparams, MixHrtfFilter *newparams, const ALsizei BufferSize)
+{
+ MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize,
+ oldparams, newparams, BufferSize);
+}
+
+template<>
+void MixDirectHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
+ const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State,
+ const ALsizei BufferSize)
+{
+ MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize);
+}
+
+
+template<>
+void Mix_<NEONTag>(const ALfloat *data, const al::span<FloatBufferLine> OutBuffer,
+ ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos,
+ const ALsizei BufferSize)
+{
+ ASSUME(BufferSize > 0);
+
+ const ALfloat delta{(Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f};
+ for(FloatBufferLine &output : OutBuffer)
+ {
+ ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
+ ALfloat gain{*CurrentGains};
+ const ALfloat diff{*TargetGains - gain};
+
+ ALsizei pos{0};
+ if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
+ {
+ ALsizei minsize{mini(BufferSize, Counter)};
+ const ALfloat step{diff * delta};
+ ALfloat step_count{0.0f};
+ /* Mix with applying gain steps in aligned multiples of 4. */
+ if(LIKELY(minsize > 3))
+ {
+ const float32x4_t four4{vdupq_n_f32(4.0f)};
+ const float32x4_t step4{vdupq_n_f32(step)};
+ const float32x4_t gain4{vdupq_n_f32(gain)};
+ float32x4_t step_count4{vsetq_lane_f32(0.0f,
+ vsetq_lane_f32(1.0f,
+ vsetq_lane_f32(2.0f,
+ vsetq_lane_f32(3.0f, vdupq_n_f32(0.0f), 3),
+ 2), 1), 0
+ )};
+ ALsizei todo{minsize >> 2};
+
+ do {
+ const float32x4_t val4 = vld1q_f32(&data[pos]);
+ float32x4_t dry4 = vld1q_f32(&dst[pos]);
+ dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4));
+ step_count4 = vaddq_f32(step_count4, four4);
+ vst1q_f32(&dst[pos], dry4);
+ pos += 4;
+ } while(--todo);
+ /* NOTE: step_count4 now represents the next four counts after
+ * the last four mixed samples, so the lowest element
+ * represents the next step count to apply.
+ */
+ step_count = vgetq_lane_f32(step_count4, 0);
+ }
+ /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
+ for(;pos < minsize;pos++)
+ {
+ dst[pos] += data[pos]*(gain + step*step_count);
+ step_count += 1.0f;
+ }
+ if(pos == Counter)
+ gain = *TargetGains;
+ else
+ gain += step*step_count;
+ *CurrentGains = gain;
+
+ /* Mix until pos is aligned with 4 or the mix is done. */
+ minsize = mini(BufferSize, (pos+3)&~3);
+ for(;pos < minsize;pos++)
+ dst[pos] += data[pos]*gain;
+ }
+ ++CurrentGains;
+ ++TargetGains;
+
+ if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
+ continue;
+ if(LIKELY(BufferSize-pos > 3))
+ {
+ ALsizei todo{(BufferSize-pos) >> 2};
+ const float32x4_t gain4 = vdupq_n_f32(gain);
+ do {
+ const float32x4_t val4 = vld1q_f32(&data[pos]);
+ float32x4_t dry4 = vld1q_f32(&dst[pos]);
+ dry4 = vmlaq_f32(dry4, val4, gain4);
+ vst1q_f32(&dst[pos], dry4);
+ pos += 4;
+ } while(--todo);
+ }
+ for(;pos < BufferSize;pos++)
+ dst[pos] += data[pos]*gain;
+ }
+}
+
+template<>
+void MixRow_<NEONTag>(FloatBufferLine &OutBuffer, const ALfloat *Gains,
+ const al::span<const FloatBufferLine> InSamples, const ALsizei InPos, const ALsizei BufferSize)
+{
+ ASSUME(BufferSize > 0);
+
+ for(const FloatBufferLine &input : InSamples)
+ {
+ const ALfloat *RESTRICT src{al::assume_aligned<16>(input.data()+InPos)};
+ const ALfloat gain{*(Gains++)};
+ if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
+ continue;
+
+ ALsizei pos{0};
+ if(LIKELY(BufferSize > 3))
+ {
+ ALsizei todo{BufferSize >> 2};
+ float32x4_t gain4{vdupq_n_f32(gain)};
+ do {
+ const float32x4_t val4 = vld1q_f32(&src[pos]);
+ float32x4_t dry4 = vld1q_f32(&OutBuffer[pos]);
+ dry4 = vmlaq_f32(dry4, val4, gain4);
+ vst1q_f32(&OutBuffer[pos], dry4);
+ pos += 4;
+ } while(--todo);
+ }
+ for(;pos < BufferSize;pos++)
+ OutBuffer[pos] += src[pos]*gain;
+ }
+}