aboutsummaryrefslogtreecommitdiffstats
path: root/alc/uhjfilter.cpp
blob: 13d44130e94a468fce140f1879b0268a032f2637 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

#include "config.h"

#include "uhjfilter.h"

#include <algorithm>
#include <iterator>

#include "AL/al.h"

#include "alnumeric.h"
#include "opthelpers.h"


namespace {

/* This is the maximum number of samples processed for each inner loop
 * iteration. */
#define MAX_UPDATE_SAMPLES  128


constexpr std::array<float,4> Filter1CoeffSqr{{
    0.479400865589f, 0.876218493539f, 0.976597589508f, 0.997499255936f
}};
constexpr std::array<float,4> Filter2CoeffSqr{{
    0.161758498368f, 0.733028932341f, 0.945349700329f, 0.990599156685f
}};

void allpass_process(al::span<AllPassState,4> state, float *dst, const float *src,
    const std::array<float,4> &coeffs, const size_t todo)
{
    const std::array<float,4> aa{coeffs};
    std::array<std::array<float,2>,4> z{{state[0].z, state[1].z, state[2].z, state[3].z}};
    auto proc_sample = [aa,&z](float sample) noexcept -> float
    {
        for(size_t i{0};i < 4;++i)
        {
            const float output{sample*aa[i] + z[i][0]};
            z[i][0] = z[i][1];
            z[i][1] = output*aa[i] - sample;
            sample = output;
        }
        return sample;
    };
    std::transform(src, src+todo, dst, proc_sample);
    state[0].z = z[0];
    state[1].z = z[1];
    state[2].z = z[2];
    state[3].z = z[3];
}

} // namespace


/* NOTE: There seems to be a bit of an inconsistency in how this encoding is
 * supposed to work. Some references, such as
 *
 * http://members.tripod.com/martin_leese/Ambisonic/UHJ_file_format.html
 *
 * specify a pre-scaling of sqrt(2) on the W channel input, while other
 * references, such as
 *
 * https://en.wikipedia.org/wiki/Ambisonic_UHJ_format#Encoding.5B1.5D
 * and
 * https://wiki.xiph.org/Ambisonics#UHJ_format
 *
 * do not. The sqrt(2) scaling is in line with B-Format decoder coefficients
 * which include such a scaling for the W channel input, however the original
 * source for this equation is a 1985 paper by Michael Gerzon, which does not
 * apparently include the scaling. Applying the extra scaling creates a louder
 * result with a narrower stereo image compared to not scaling, and I don't
 * know which is the intended result.
 */

void Uhj2Encoder::encode(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
    FloatBufferLine *InSamples, const size_t SamplesToDo)
{
    ASSUME(SamplesToDo > 0);

    const auto winput = al::assume_aligned<16>(InSamples[0].cbegin());
    const auto xinput = al::assume_aligned<16>(InSamples[1].cbegin());
    const auto yinput = al::assume_aligned<16>(InSamples[2].cbegin());

    /* D = 0.6554516*Y */
    std::transform(yinput, yinput+SamplesToDo, mTemp.begin(),
        [](const float y) noexcept -> float { return 0.6554516f*y; });
    /* NOTE: Filter1 requires a 1 sample delay for the final output, so take
     * the last processed sample from the previous run as the first output
     * sample.
     */
    mSide[0] = mLastY;
    allpass_process(mFilter1_Y, mSide.data()+1, mTemp.data(), Filter1CoeffSqr, SamplesToDo);
    mLastY = mSide[SamplesToDo];

    /* D += j(-0.3420201*W + 0.5098604*X) */
    std::transform(winput, winput+SamplesToDo, xinput, mTemp.begin(),
        [](const float w, const float x) noexcept -> float
        { return -0.3420201f*w + 0.5098604f*x; });
    allpass_process(mFilter2_WX, mTemp.data(), mTemp.data(), Filter2CoeffSqr, SamplesToDo);
    for(size_t i{0};i < SamplesToDo;++i)
        mSide[i] += mTemp[i];

    /* S = 0.9396926*W + 0.1855740*X */
    std::transform(winput, winput+SamplesToDo, xinput, mTemp.begin(),
        [](const float w, const float x) noexcept -> float
        { return 0.9396926f*w + 0.1855740f*x; });
    mMid[0] = mLastWX;
    allpass_process(mFilter1_WX, mMid.data()+1, mTemp.data(), Filter1CoeffSqr, SamplesToDo);
    mLastWX = mMid[SamplesToDo];

    /* Left = (S + D)/2.0 */
    float *RESTRICT left{al::assume_aligned<16>(LeftOut.data())};
    for(size_t i{0};i < SamplesToDo;i++)
        left[i] += (mMid[i] + mSide[i]) * 0.5f;
    /* Right = (S - D)/2.0 */
    float *RESTRICT right{al::assume_aligned<16>(RightOut.data())};
    for(size_t i{0};i < SamplesToDo;i++)
        right[i] += (mMid[i] - mSide[i]) * 0.5f;
}