aboutsummaryrefslogtreecommitdiffstats
path: root/alc/uhjfilter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'alc/uhjfilter.cpp')
-rw-r--r--alc/uhjfilter.cpp161
1 files changed, 111 insertions, 50 deletions
diff --git a/alc/uhjfilter.cpp b/alc/uhjfilter.cpp
index 13d44130..99737cc9 100644
--- a/alc/uhjfilter.cpp
+++ b/alc/uhjfilter.cpp
@@ -3,50 +3,99 @@
#include "uhjfilter.h"
+#ifdef HAVE_SSE_INTRINSICS
+#include <xmmintrin.h>
+#endif
+
#include <algorithm>
#include <iterator>
#include "AL/al.h"
+#include "alcomplex.h"
#include "alnumeric.h"
#include "opthelpers.h"
namespace {
-/* This is the maximum number of samples processed for each inner loop
- * iteration. */
-#define MAX_UPDATE_SAMPLES 128
+using complex_d = std::complex<double>;
+
+std::array<float,Uhj2Encoder::sFilterSize> GenerateFilter()
+{
+ /* Some notes on this filter construction.
+ *
+ * An impulse in the frequency domain is represented by a continuous series
+ * of +1,-1 values, with a 0 imaginary term. Consequently, that impulse
+ * with a +90 degree phase offset would be represented by 0s with imaginary
+ * terms that alternate between +1,-1. Converting that to the time domain
+ * results in a FIR filter that can be convolved with the incoming signal
+ * to apply a wide-band 90-degree phase shift.
+ *
+ * A particularly notable aspect of the time-domain filter response is that
+ * every other coefficient is 0. This allows doubling the effective size of
+ * the filter, by only storing the non-0 coefficients and double-stepping
+ * over the input to apply it.
+ *
+ * Additionally, the resulting filter is independent of the sample rate.
+ * The same filter can be applied regardless of the device's sample rate
+ * and achieve the same effect, although a lower rate allows the filter to
+ * cover more time and improve the results.
+ */
+ constexpr complex_d c0{0.0, 1.0};
+ constexpr complex_d c1{0.0, -1.0};
+ constexpr size_t half_size{32768};
+
+ /* Generate a frequency domain impulse with a +90 degree phase offset. Keep
+ * the latter half clear for converting to the time domain.
+ */
+ auto fftBuffer = std::vector<complex_d>(half_size*2, complex_d{});
+ for(size_t i{0};i < half_size;i += 2)
+ {
+ fftBuffer[i ] = c0;
+ fftBuffer[i+1] = c1;
+ }
+ complex_fft(fftBuffer, 1.0);
+ /* Reverse and truncate the filter to a usable size, and store only the
+ * non-0 terms. Should this be windowed?
+ */
+ std::array<float,Uhj2Encoder::sFilterSize> ret;
+ auto fftiter = fftBuffer.data() + half_size + (Uhj2Encoder::sFilterSize-1);
+ for(float &coeff : ret)
+ {
+ coeff = static_cast<float>(fftiter->real() / half_size);
+ fftiter -= 2;
+ }
+ return ret;
+}
+const auto PShiftCoeffs = GenerateFilter();
-constexpr std::array<float,4> Filter1CoeffSqr{{
- 0.479400865589f, 0.876218493539f, 0.976597589508f, 0.997499255936f
-}};
-constexpr std::array<float,4> Filter2CoeffSqr{{
- 0.161758498368f, 0.733028932341f, 0.945349700329f, 0.990599156685f
-}};
-void allpass_process(al::span<AllPassState,4> state, float *dst, const float *src,
- const std::array<float,4> &coeffs, const size_t todo)
+void allpass_process(al::span<float> dst, const float *RESTRICT src)
{
- const std::array<float,4> aa{coeffs};
- std::array<std::array<float,2>,4> z{{state[0].z, state[1].z, state[2].z, state[3].z}};
- auto proc_sample = [aa,&z](float sample) noexcept -> float
+ for(float &output : dst)
{
- for(size_t i{0};i < 4;++i)
+#ifdef HAVE_SSE_INTRINSICS
+ constexpr size_t todo{PShiftCoeffs.size()>>2};
+ __m128 r4{_mm_setzero_ps()};
+ for(size_t i{0};i < todo;i+=4)
{
- const float output{sample*aa[i] + z[i][0]};
- z[i][0] = z[i][1];
- z[i][1] = output*aa[i] - sample;
- sample = output;
+ const __m128 coeffs{_mm_load_ps(&PShiftCoeffs[i])};
+ const __m128 s{_mm_setr_ps(src[i*2], src[i*2 + 2], src[i*2 + 4], src[i*2 + 6])};
+ r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
}
- return sample;
- };
- std::transform(src, src+todo, dst, proc_sample);
- state[0].z = z[0];
- state[1].z = z[1];
- state[2].z = z[2];
- state[3].z = z[3];
+ r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
+ r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
+ float ret{_mm_cvtss_f32(r4)};
+#else
+ float ret{0.0f};
+ for(size_t i{0};i < PShiftCoeffs.size();++i)
+ ret += src[i*2] * PShiftCoeffs[i];
+#endif
+ output += ret;
+ ++src;
+ }
}
} // namespace
@@ -73,40 +122,52 @@ void allpass_process(al::span<AllPassState,4> state, float *dst, const float *sr
*/
void Uhj2Encoder::encode(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
- FloatBufferLine *InSamples, const size_t SamplesToDo)
+ const FloatBufferLine *InSamples, const size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
- const auto winput = al::assume_aligned<16>(InSamples[0].cbegin());
- const auto xinput = al::assume_aligned<16>(InSamples[1].cbegin());
- const auto yinput = al::assume_aligned<16>(InSamples[2].cbegin());
+ const float *RESTRICT winput{al::assume_aligned<16>(InSamples[0].data())};
+ const float *RESTRICT xinput{al::assume_aligned<16>(InSamples[1].data())};
+ const float *RESTRICT yinput{al::assume_aligned<16>(InSamples[2].data())};
+
+ /* S = 0.9396926*W + 0.1855740*X */
+ std::transform(winput, winput+SamplesToDo, xinput, mMid.begin(),
+ [](const float w, const float x) noexcept -> float
+ { return 0.9396926f*w + 0.1855740f*x; });
/* D = 0.6554516*Y */
- std::transform(yinput, yinput+SamplesToDo, mTemp.begin(),
+ std::transform(yinput, yinput+SamplesToDo, mSide.begin(),
[](const float y) noexcept -> float { return 0.6554516f*y; });
- /* NOTE: Filter1 requires a 1 sample delay for the final output, so take
- * the last processed sample from the previous run as the first output
- * sample.
- */
- mSide[0] = mLastY;
- allpass_process(mFilter1_Y, mSide.data()+1, mTemp.data(), Filter1CoeffSqr, SamplesToDo);
- mLastY = mSide[SamplesToDo];
+
+ /* Apply a delay to the non-filtered signal to align with the filter delay. */
+ if LIKELY(SamplesToDo >= sFilterSize)
+ {
+ auto buffer_end = mMid.begin() + SamplesToDo;
+ auto delay_end = std::rotate(mMid.begin(), buffer_end - sFilterSize, buffer_end);
+ std::swap_ranges(mMid.begin(), delay_end, mMidDelay.begin());
+
+ buffer_end = mSide.begin() + SamplesToDo;
+ delay_end = std::rotate(mSide.begin(), buffer_end - sFilterSize, buffer_end);
+ std::swap_ranges(mSide.begin(), delay_end, mSideDelay.begin());
+ }
+ else
+ {
+ auto buffer_end = mMid.begin() + SamplesToDo;
+ auto delay_start = std::swap_ranges(mMid.begin(), buffer_end, mMidDelay.begin());
+ std::rotate(mMidDelay.begin(), delay_start, mMidDelay.end());
+
+ buffer_end = mSide.begin() + SamplesToDo;
+ delay_start = std::swap_ranges(mSide.begin(), buffer_end, mSideDelay.begin());
+ std::rotate(mSideDelay.begin(), delay_start, mSideDelay.end());
+ }
/* D += j(-0.3420201*W + 0.5098604*X) */
- std::transform(winput, winput+SamplesToDo, xinput, mTemp.begin(),
+ auto tmpiter = std::copy(mSideHistory.cbegin(), mSideHistory.cend(), mTemp.begin());
+ std::transform(winput, winput+SamplesToDo, xinput, tmpiter,
[](const float w, const float x) noexcept -> float
{ return -0.3420201f*w + 0.5098604f*x; });
- allpass_process(mFilter2_WX, mTemp.data(), mTemp.data(), Filter2CoeffSqr, SamplesToDo);
- for(size_t i{0};i < SamplesToDo;++i)
- mSide[i] += mTemp[i];
-
- /* S = 0.9396926*W + 0.1855740*X */
- std::transform(winput, winput+SamplesToDo, xinput, mTemp.begin(),
- [](const float w, const float x) noexcept -> float
- { return 0.9396926f*w + 0.1855740f*x; });
- mMid[0] = mLastWX;
- allpass_process(mFilter1_WX, mMid.data()+1, mTemp.data(), Filter1CoeffSqr, SamplesToDo);
- mLastWX = mMid[SamplesToDo];
+ std::copy_n(mTemp.cbegin()+SamplesToDo, mSideHistory.size(), mSideHistory.begin());
+ allpass_process({mSide.data(), SamplesToDo}, mTemp.data());
/* Left = (S + D)/2.0 */
float *RESTRICT left{al::assume_aligned<16>(LeftOut.data())};