diff options
Diffstat (limited to 'Alc/effects/reverb.cpp')
-rw-r--r-- | Alc/effects/reverb.cpp | 2102 |
1 files changed, 0 insertions, 2102 deletions
diff --git a/Alc/effects/reverb.cpp b/Alc/effects/reverb.cpp deleted file mode 100644 index ac996b3f..00000000 --- a/Alc/effects/reverb.cpp +++ /dev/null @@ -1,2102 +0,0 @@ -/** - * Ambisonic reverb engine for the OpenAL cross platform audio library - * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <cstdio> -#include <cstdlib> -#include <cmath> - -#include <array> -#include <numeric> -#include <algorithm> -#include <functional> - -#include "alcmain.h" -#include "alcontext.h" -#include "alu.h" -#include "alAuxEffectSlot.h" -#include "alListener.h" -#include "alError.h" -#include "bformatdec.h" -#include "filters/biquad.h" -#include "vector.h" -#include "vecmat.h" - -/* This is a user config option for modifying the overall output of the reverb - * effect. - */ -ALfloat ReverbBoost = 1.0f; - -namespace { - -using namespace std::placeholders; - -/* The number of samples used for cross-faded delay lines. This can be used - * to balance the compensation for abrupt line changes and attenuation due to - * minimally lengthed recursive lines. Try to keep this below the device - * update size. - */ -constexpr int FADE_SAMPLES{128}; - -/* The number of spatialized lines or channels to process. Four channels allows - * for a 3D A-Format response. NOTE: This can't be changed without taking care - * of the conversion matrices, and a few places where the length arrays are - * assumed to have 4 elements. - */ -constexpr int NUM_LINES{4}; - - -/* The B-Format to A-Format conversion matrix. The arrangement of rows is - * deliberately chosen to align the resulting lines to their spatial opposites - * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below - * back left). It's not quite opposite, since the A-Format results in a - * tetrahedron, but it's close enough. Should the model be extended to 8-lines - * in the future, true opposites can be used. - */ -alignas(16) constexpr ALfloat B2A[NUM_LINES][MAX_AMBI_CHANNELS]{ - { 0.288675134595f, 0.288675134595f, 0.288675134595f, 0.288675134595f }, - { 0.288675134595f, -0.288675134595f, -0.288675134595f, 0.288675134595f }, - { 0.288675134595f, 0.288675134595f, -0.288675134595f, -0.288675134595f }, - { 0.288675134595f, -0.288675134595f, 0.288675134595f, -0.288675134595f } -}; - -/* Converts A-Format to B-Format. */ -alignas(16) constexpr ALfloat A2B[NUM_LINES][NUM_LINES]{ - { 0.866025403785f, 0.866025403785f, 0.866025403785f, 0.866025403785f }, - { 0.866025403785f, -0.866025403785f, 0.866025403785f, -0.866025403785f }, - { 0.866025403785f, -0.866025403785f, -0.866025403785f, 0.866025403785f }, - { 0.866025403785f, 0.866025403785f, -0.866025403785f, -0.866025403785f } -}; - - -constexpr ALfloat FadeStep{1.0f / FADE_SAMPLES}; - -/* The all-pass and delay lines have a variable length dependent on the - * effect's density parameter, which helps alter the perceived environment - * size. The size-to-density conversion is a cubed scale: - * - * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE); - * - * The line lengths scale linearly with room size, so the inverse density - * conversion is needed, taking the cube root of the re-scaled density to - * calculate the line length multiplier: - * - * length_mult = max(5.0, cbrt(density*DENSITY_SCALE)); - * - * The density scale below will result in a max line multiplier of 50, for an - * effective size range of 5m to 50m. - */ -constexpr ALfloat DENSITY_SCALE{125000.0f}; - -/* All delay line lengths are specified in seconds. - * - * To approximate early reflections, we break them up into primary (those - * arriving from the same direction as the source) and secondary (those - * arriving from the opposite direction). - * - * The early taps decorrelate the 4-channel signal to approximate an average - * room response for the primary reflections after the initial early delay. - * - * Given an average room dimension (d_a) and the speed of sound (c) we can - * calculate the average reflection delay (r_a) regardless of listener and - * source positions as: - * - * r_a = d_a / c - * c = 343.3 - * - * This can extended to finding the average difference (r_d) between the - * maximum (r_1) and minimum (r_0) reflection delays: - * - * r_0 = 2 / 3 r_a - * = r_a - r_d / 2 - * = r_d - * r_1 = 4 / 3 r_a - * = r_a + r_d / 2 - * = 2 r_d - * r_d = 2 / 3 r_a - * = r_1 - r_0 - * - * As can be determined by integrating the 1D model with a source (s) and - * listener (l) positioned across the dimension of length (d_a): - * - * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c - * - * The initial taps (T_(i=0)^N) are then specified by taking a power series - * that ranges between r_0 and half of r_1 less r_0: - * - * R_i = 2^(i / (2 N - 1)) r_d - * = r_0 + (2^(i / (2 N - 1)) - 1) r_d - * = r_0 + T_i - * T_i = R_i - r_0 - * = (2^(i / (2 N - 1)) - 1) r_d - * - * Assuming an average of 1m, we get the following taps: - */ -constexpr std::array<ALfloat,NUM_LINES> EARLY_TAP_LENGTHS{{ - 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f -}}; - -/* The early all-pass filter lengths are based on the early tap lengths: - * - * A_i = R_i / a - * - * Where a is the approximate maximum all-pass cycle limit (20). - */ -constexpr std::array<ALfloat,NUM_LINES> EARLY_ALLPASS_LENGTHS{{ - 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f -}}; - -/* The early delay lines are used to transform the primary reflections into - * the secondary reflections. The A-format is arranged in such a way that - * the channels/lines are spatially opposite: - * - * C_i is opposite C_(N-i-1) - * - * The delays of the two opposing reflections (R_i and O_i) from a source - * anywhere along a particular dimension always sum to twice its full delay: - * - * 2 r_a = R_i + O_i - * - * With that in mind we can determine the delay between the two reflections - * and thus specify our early line lengths (L_(i=0)^N) using: - * - * O_i = 2 r_a - R_(N-i-1) - * L_i = O_i - R_(N-i-1) - * = 2 (r_a - R_(N-i-1)) - * = 2 (r_a - T_(N-i-1) - r_0) - * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1))) - * - * Using an average dimension of 1m, we get: - */ -constexpr std::array<ALfloat,NUM_LINES> EARLY_LINE_LENGTHS{{ - 5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f -}}; - -/* The late all-pass filter lengths are based on the late line lengths: - * - * A_i = (5 / 3) L_i / r_1 - */ -constexpr std::array<ALfloat,NUM_LINES> LATE_ALLPASS_LENGTHS{{ - 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f -}}; -constexpr auto LATE_ALLPASS_LENGTHS_size = LATE_ALLPASS_LENGTHS.size(); - -/* The late lines are used to approximate the decaying cycle of recursive - * late reflections. - * - * Splitting the lines in half, we start with the shortest reflection paths - * (L_(i=0)^(N/2)): - * - * L_i = 2^(i / (N - 1)) r_d - * - * Then for the opposite (longest) reflection paths (L_(i=N/2)^N): - * - * L_i = 2 r_a - L_(i-N/2) - * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d - * - * For our 1m average room, we get: - */ -constexpr std::array<ALfloat,NUM_LINES> LATE_LINE_LENGTHS{{ - 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f -}}; -constexpr auto LATE_LINE_LENGTHS_size = LATE_LINE_LENGTHS.size(); - - -struct DelayLineI { - /* The delay lines use interleaved samples, with the lengths being powers - * of 2 to allow the use of bit-masking instead of a modulus for wrapping. - */ - ALsizei Mask{0}; - ALfloat (*Line)[NUM_LINES]{nullptr}; - - - void write(ALsizei offset, const ALsizei c, const ALfloat *RESTRICT in, const ALsizei count) const noexcept - { - ASSUME(count > 0); - for(ALsizei i{0};i < count;) - { - offset &= Mask; - ALsizei td{mini(Mask+1 - offset, count - i)}; - do { - Line[offset++][c] = in[i++]; - } while(--td); - } - } -}; - -struct VecAllpass { - DelayLineI Delay; - ALfloat Coeff{0.0f}; - ALsizei Offset[NUM_LINES][2]{}; - - void processFaded(const al::span<FloatBufferLine,NUM_LINES> samples, ALsizei offset, - const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade, const ALsizei todo); - void processUnfaded(const al::span<FloatBufferLine,NUM_LINES> samples, ALsizei offset, - const ALfloat xCoeff, const ALfloat yCoeff, const ALsizei todo); -}; - -struct T60Filter { - /* Two filters are used to adjust the signal. One to control the low - * frequencies, and one to control the high frequencies. - */ - ALfloat MidGain[2]{0.0f, 0.0f}; - BiquadFilter HFFilter, LFFilter; - - void calcCoeffs(const ALfloat length, const ALfloat lfDecayTime, const ALfloat mfDecayTime, - const ALfloat hfDecayTime, const ALfloat lf0norm, const ALfloat hf0norm); - - /* Applies the two T60 damping filter sections. */ - void process(ALfloat *samples, const ALsizei todo) - { - HFFilter.process(samples, samples, todo); - LFFilter.process(samples, samples, todo); - } -}; - -struct EarlyReflections { - /* A Gerzon vector all-pass filter is used to simulate initial diffusion. - * The spread from this filter also helps smooth out the reverb tail. - */ - VecAllpass VecAp; - - /* An echo line is used to complete the second half of the early - * reflections. - */ - DelayLineI Delay; - ALsizei Offset[NUM_LINES][2]{}; - ALfloat Coeff[NUM_LINES][2]{}; - - /* The gain for each output channel based on 3D panning. */ - ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{}; - ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{}; - - void updateLines(const ALfloat density, const ALfloat diffusion, const ALfloat decayTime, - const ALfloat frequency); -}; - -struct LateReverb { - /* A recursive delay line is used fill in the reverb tail. */ - DelayLineI Delay; - ALsizei Offset[NUM_LINES][2]{}; - - /* Attenuation to compensate for the modal density and decay rate of the - * late lines. - */ - ALfloat DensityGain[2]{0.0f, 0.0f}; - - /* T60 decay filters are used to simulate absorption. */ - T60Filter T60[NUM_LINES]; - - /* A Gerzon vector all-pass filter is used to simulate diffusion. */ - VecAllpass VecAp; - - /* The gain for each output channel based on 3D panning. */ - ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{}; - ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{}; - - void updateLines(const ALfloat density, const ALfloat diffusion, const ALfloat lfDecayTime, - const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm, - const ALfloat hf0norm, const ALfloat frequency); -}; - -struct ReverbState final : public EffectState { - /* All delay lines are allocated as a single buffer to reduce memory - * fragmentation and management code. - */ - al::vector<ALfloat,16> mSampleBuffer; - - struct { - /* Calculated parameters which indicate if cross-fading is needed after - * an update. - */ - ALfloat Density{AL_EAXREVERB_DEFAULT_DENSITY}; - ALfloat Diffusion{AL_EAXREVERB_DEFAULT_DIFFUSION}; - ALfloat DecayTime{AL_EAXREVERB_DEFAULT_DECAY_TIME}; - ALfloat HFDecayTime{AL_EAXREVERB_DEFAULT_DECAY_HFRATIO * AL_EAXREVERB_DEFAULT_DECAY_TIME}; - ALfloat LFDecayTime{AL_EAXREVERB_DEFAULT_DECAY_LFRATIO * AL_EAXREVERB_DEFAULT_DECAY_TIME}; - ALfloat HFReference{AL_EAXREVERB_DEFAULT_HFREFERENCE}; - ALfloat LFReference{AL_EAXREVERB_DEFAULT_LFREFERENCE}; - } mParams; - - /* Master effect filters */ - struct { - BiquadFilter Lp; - BiquadFilter Hp; - } mFilter[NUM_LINES]; - - /* Core delay line (early reflections and late reverb tap from this). */ - DelayLineI mDelay; - - /* Tap points for early reflection delay. */ - ALsizei mEarlyDelayTap[NUM_LINES][2]{}; - ALfloat mEarlyDelayCoeff[NUM_LINES][2]{}; - - /* Tap points for late reverb feed and delay. */ - ALsizei mLateFeedTap{}; - ALsizei mLateDelayTap[NUM_LINES][2]{}; - - /* Coefficients for the all-pass and line scattering matrices. */ - ALfloat mMixX{0.0f}; - ALfloat mMixY{0.0f}; - - EarlyReflections mEarly; - - LateReverb mLate; - - /* Indicates the cross-fade point for delay line reads [0,FADE_SAMPLES]. */ - ALsizei mFadeCount{0}; - - /* Maximum number of samples to process at once. */ - ALsizei mMaxUpdate[2]{BUFFERSIZE, BUFFERSIZE}; - - /* The current write offset for all delay lines. */ - ALsizei mOffset{0}; - - /* Temporary storage used when processing. */ - alignas(16) std::array<FloatBufferLine,NUM_LINES> mTempSamples{}; - alignas(16) std::array<FloatBufferLine,NUM_LINES> mEarlyBuffer{}; - alignas(16) std::array<FloatBufferLine,NUM_LINES> mLateBuffer{}; - - using MixOutT = void (ReverbState::*)(const al::span<FloatBufferLine> samplesOut, - const ALsizei todo); - - MixOutT mMixOut{&ReverbState::MixOutPlain}; - std::array<ALfloat,MAX_AMBI_ORDER+1> mOrderScales{}; - std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter; - - - void MixOutPlain(const al::span<FloatBufferLine> samplesOut, const ALsizei todo) - { - ASSUME(todo > 0); - - /* Convert back to B-Format, and mix the results to output. */ - for(ALsizei c{0};c < NUM_LINES;c++) - { - std::fill_n(mTempSamples[0].begin(), todo, 0.0f); - MixRowSamples(mTempSamples[0], A2B[c], mEarlyBuffer, 0, todo); - MixSamples(mTempSamples[0].data(), samplesOut, mEarly.CurrentGain[c], - mEarly.PanGain[c], todo, 0, todo); - } - - for(ALsizei c{0};c < NUM_LINES;c++) - { - std::fill_n(mTempSamples[0].begin(), todo, 0.0f); - MixRowSamples(mTempSamples[0], A2B[c], mLateBuffer, 0, todo); - MixSamples(mTempSamples[0].data(), samplesOut, mLate.CurrentGain[c], mLate.PanGain[c], - todo, 0, todo); - } - } - - void MixOutAmbiUp(const al::span<FloatBufferLine> samplesOut, const ALsizei todo) - { - ASSUME(todo > 0); - - for(ALsizei c{0};c < NUM_LINES;c++) - { - std::fill_n(mTempSamples[0].begin(), todo, 0.0f); - MixRowSamples(mTempSamples[0], A2B[c], mEarlyBuffer, 0, todo); - - /* Apply scaling to the B-Format's HF response to "upsample" it to - * higher-order output. - */ - const ALfloat hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]}; - mAmbiSplitter[0][c].applyHfScale(mTempSamples[0].data(), hfscale, todo); - - MixSamples(mTempSamples[0].data(), samplesOut, mEarly.CurrentGain[c], - mEarly.PanGain[c], todo, 0, todo); - } - - for(ALsizei c{0};c < NUM_LINES;c++) - { - std::fill_n(mTempSamples[0].begin(), todo, 0.0f); - MixRowSamples(mTempSamples[0], A2B[c], mLateBuffer, 0, todo); - - const ALfloat hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]}; - mAmbiSplitter[1][c].applyHfScale(mTempSamples[0].data(), hfscale, todo); - - MixSamples(mTempSamples[0].data(), samplesOut, mLate.CurrentGain[c], mLate.PanGain[c], - todo, 0, todo); - } - } - - bool allocLines(const ALfloat frequency); - - void updateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, const ALfloat density, - const ALfloat decayTime, const ALfloat frequency); - void update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, - const ALfloat earlyGain, const ALfloat lateGain, const EffectTarget &target); - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(ReverbState) -}; - -/************************************** - * Device Update * - **************************************/ - -inline ALfloat CalcDelayLengthMult(ALfloat density) -{ return maxf(5.0f, std::cbrt(density*DENSITY_SCALE)); } - -/* Given the allocated sample buffer, this function updates each delay line - * offset. - */ -inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLineI *Delay) -{ - union { - ALfloat *f; - ALfloat (*f4)[NUM_LINES]; - } u; - u.f = &sampleBuffer[reinterpret_cast<ptrdiff_t>(Delay->Line) * NUM_LINES]; - Delay->Line = u.f4; -} - -/* Calculate the length of a delay line and store its mask and offset. */ -ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALfloat frequency, - const ALuint extra, DelayLineI *Delay) -{ - /* All line lengths are powers of 2, calculated from their lengths in - * seconds, rounded up. - */ - auto samples = static_cast<ALuint>(float2int(std::ceil(length*frequency))); - samples = NextPowerOf2(samples + extra); - - /* All lines share a single sample buffer. */ - Delay->Mask = samples - 1; - Delay->Line = reinterpret_cast<ALfloat(*)[NUM_LINES]>(offset); - - /* Return the sample count for accumulation. */ - return samples; -} - -/* Calculates the delay line metrics and allocates the shared sample buffer - * for all lines given the sample rate (frequency). If an allocation failure - * occurs, it returns AL_FALSE. - */ -bool ReverbState::allocLines(const ALfloat frequency) -{ - /* All delay line lengths are calculated to accomodate the full range of - * lengths given their respective paramters. - */ - ALuint totalSamples{0u}; - - /* Multiplier for the maximum density value, i.e. density=1, which is - * actually the least density... - */ - ALfloat multiplier{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY)}; - - /* The main delay length includes the maximum early reflection delay, the - * largest early tap width, the maximum late reverb delay, and the - * largest late tap width. Finally, it must also be extended by the - * update size (BUFFERSIZE) for block processing. - */ - ALfloat length{AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS.back()*multiplier + - AL_EAXREVERB_MAX_LATE_REVERB_DELAY + - (LATE_LINE_LENGTHS.back() - LATE_LINE_LENGTHS.front())/float{LATE_LINE_LENGTHS_size}*multiplier}; - totalSamples += CalcLineLength(length, totalSamples, frequency, BUFFERSIZE, &mDelay); - - /* The early vector all-pass line. */ - length = EARLY_ALLPASS_LENGTHS.back() * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mEarly.VecAp.Delay); - - /* The early reflection line. */ - length = EARLY_LINE_LENGTHS.back() * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mEarly.Delay); - - /* The late vector all-pass line. */ - length = LATE_ALLPASS_LENGTHS.back() * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mLate.VecAp.Delay); - - /* The late delay lines are calculated from the largest maximum density - * line length. - */ - length = LATE_LINE_LENGTHS.back() * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mLate.Delay); - - totalSamples *= NUM_LINES; - if(totalSamples != mSampleBuffer.size()) - { - mSampleBuffer.resize(totalSamples); - mSampleBuffer.shrink_to_fit(); - } - - /* Clear the sample buffer. */ - std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f); - - /* Update all delays to reflect the new sample buffer. */ - RealizeLineOffset(mSampleBuffer.data(), &mDelay); - RealizeLineOffset(mSampleBuffer.data(), &mEarly.VecAp.Delay); - RealizeLineOffset(mSampleBuffer.data(), &mEarly.Delay); - RealizeLineOffset(mSampleBuffer.data(), &mLate.VecAp.Delay); - RealizeLineOffset(mSampleBuffer.data(), &mLate.Delay); - - return true; -} - -ALboolean ReverbState::deviceUpdate(const ALCdevice *device) -{ - const auto frequency = static_cast<ALfloat>(device->Frequency); - - /* Allocate the delay lines. */ - if(!allocLines(frequency)) - return AL_FALSE; - - const ALfloat multiplier{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY)}; - - /* The late feed taps are set a fixed position past the latest delay tap. */ - mLateFeedTap = float2int( - (AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS.back()*multiplier) * frequency); - - /* Clear filters and gain coefficients since the delay lines were all just - * cleared (if not reallocated). - */ - for(auto &filter : mFilter) - { - filter.Lp.clear(); - filter.Hp.clear(); - } - - for(auto &coeff : mEarlyDelayCoeff) - std::fill(std::begin(coeff), std::end(coeff), 0.0f); - for(auto &coeff : mEarly.Coeff) - std::fill(std::begin(coeff), std::end(coeff), 0.0f); - - mLate.DensityGain[0] = 0.0f; - mLate.DensityGain[1] = 0.0f; - for(auto &t60 : mLate.T60) - { - t60.MidGain[0] = 0.0f; - t60.MidGain[1] = 0.0f; - t60.HFFilter.clear(); - t60.LFFilter.clear(); - } - - for(auto &gains : mEarly.CurrentGain) - std::fill(std::begin(gains), std::end(gains), 0.0f); - for(auto &gains : mEarly.PanGain) - std::fill(std::begin(gains), std::end(gains), 0.0f); - for(auto &gains : mLate.CurrentGain) - std::fill(std::begin(gains), std::end(gains), 0.0f); - for(auto &gains : mLate.PanGain) - std::fill(std::begin(gains), std::end(gains), 0.0f); - - /* Reset counters and offset base. */ - mFadeCount = 0; - std::fill(std::begin(mMaxUpdate), std::end(mMaxUpdate), BUFFERSIZE); - mOffset = 0; - - if(device->mAmbiOrder > 1) - { - mMixOut = &ReverbState::MixOutAmbiUp; - mOrderScales = BFormatDec::GetHFOrderScales(1, device->mAmbiOrder); - } - else - { - mMixOut = &ReverbState::MixOutPlain; - mOrderScales.fill(1.0f); - } - mAmbiSplitter[0][0].init(400.0f / frequency); - std::fill(mAmbiSplitter[0].begin()+1, mAmbiSplitter[0].end(), mAmbiSplitter[0][0]); - std::fill(mAmbiSplitter[1].begin(), mAmbiSplitter[1].end(), mAmbiSplitter[0][0]); - - return AL_TRUE; -} - -/************************************** - * Effect Update * - **************************************/ - -/* Calculate a decay coefficient given the length of each cycle and the time - * until the decay reaches -60 dB. - */ -inline ALfloat CalcDecayCoeff(const ALfloat length, const ALfloat decayTime) -{ return std::pow(REVERB_DECAY_GAIN, length/decayTime); } - -/* Calculate a decay length from a coefficient and the time until the decay - * reaches -60 dB. - */ -inline ALfloat CalcDecayLength(const ALfloat coeff, const ALfloat decayTime) -{ return std::log10(coeff) * decayTime / std::log10(REVERB_DECAY_GAIN); } - -/* Calculate an attenuation to be applied to the input of any echo models to - * compensate for modal density and decay time. - */ -inline ALfloat CalcDensityGain(const ALfloat a) -{ - /* The energy of a signal can be obtained by finding the area under the - * squared signal. This takes the form of Sum(x_n^2), where x is the - * amplitude for the sample n. - * - * Decaying feedback matches exponential decay of the form Sum(a^n), - * where a is the attenuation coefficient, and n is the sample. The area - * under this decay curve can be calculated as: 1 / (1 - a). - * - * Modifying the above equation to find the area under the squared curve - * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be - * calculated by inverting the square root of this approximation, - * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2). - */ - return std::sqrt(1.0f - a*a); -} - -/* Calculate the scattering matrix coefficients given a diffusion factor. */ -inline ALvoid CalcMatrixCoeffs(const ALfloat diffusion, ALfloat *x, ALfloat *y) -{ - /* The matrix is of order 4, so n is sqrt(4 - 1). */ - ALfloat n{std::sqrt(3.0f)}; - ALfloat t{diffusion * std::atan(n)}; - - /* Calculate the first mixing matrix coefficient. */ - *x = std::cos(t); - /* Calculate the second mixing matrix coefficient. */ - *y = std::sin(t) / n; -} - -/* Calculate the limited HF ratio for use with the late reverb low-pass - * filters. - */ -ALfloat CalcLimitedHfRatio(const ALfloat hfRatio, const ALfloat airAbsorptionGainHF, - const ALfloat decayTime, const ALfloat SpeedOfSound) -{ - /* Find the attenuation due to air absorption in dB (converting delay - * time to meters using the speed of sound). Then reversing the decay - * equation, solve for HF ratio. The delay length is cancelled out of - * the equation, so it can be calculated once for all lines. - */ - ALfloat limitRatio{1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) * SpeedOfSound)}; - - /* Using the limit calculated above, apply the upper bound to the HF ratio. - */ - return minf(limitRatio, hfRatio); -} - - -/* Calculates the 3-band T60 damping coefficients for a particular delay line - * of specified length, using a combination of two shelf filter sections given - * decay times for each band split at two reference frequencies. - */ -void T60Filter::calcCoeffs(const ALfloat length, const ALfloat lfDecayTime, - const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm, - const ALfloat hf0norm) -{ - const ALfloat mfGain{CalcDecayCoeff(length, mfDecayTime)}; - const ALfloat lfGain{maxf(CalcDecayCoeff(length, lfDecayTime)/mfGain, 0.001f)}; - const ALfloat hfGain{maxf(CalcDecayCoeff(length, hfDecayTime)/mfGain, 0.001f)}; - - MidGain[1] = mfGain; - LFFilter.setParams(BiquadType::LowShelf, lfGain, lf0norm, - LFFilter.rcpQFromSlope(lfGain, 1.0f)); - HFFilter.setParams(BiquadType::HighShelf, hfGain, hf0norm, - HFFilter.rcpQFromSlope(hfGain, 1.0f)); -} - -/* Update the early reflection line lengths and gain coefficients. */ -void EarlyReflections::updateLines(const ALfloat density, const ALfloat diffusion, - const ALfloat decayTime, const ALfloat frequency) -{ - const ALfloat multiplier{CalcDelayLengthMult(density)}; - - /* Calculate the all-pass feed-back/forward coefficient. */ - VecAp.Coeff = std::sqrt(0.5f) * std::pow(diffusion, 2.0f); - - for(ALsizei i{0};i < NUM_LINES;i++) - { - /* Calculate the length (in seconds) of each all-pass line. */ - ALfloat length{EARLY_ALLPASS_LENGTHS[i] * multiplier}; - - /* Calculate the delay offset for each all-pass line. */ - VecAp.Offset[i][1] = float2int(length * frequency); - - /* Calculate the length (in seconds) of each delay line. */ - length = EARLY_LINE_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each delay line. */ - Offset[i][1] = float2int(length * frequency); - - /* Calculate the gain (coefficient) for each line. */ - Coeff[i][1] = CalcDecayCoeff(length, decayTime); - } -} - -/* Update the late reverb line lengths and T60 coefficients. */ -void LateReverb::updateLines(const ALfloat density, const ALfloat diffusion, - const ALfloat lfDecayTime, const ALfloat mfDecayTime, const ALfloat hfDecayTime, - const ALfloat lf0norm, const ALfloat hf0norm, const ALfloat frequency) -{ - /* Scaling factor to convert the normalized reference frequencies from - * representing 0...freq to 0...max_reference. - */ - const ALfloat norm_weight_factor{frequency / AL_EAXREVERB_MAX_HFREFERENCE}; - - const ALfloat late_allpass_avg{ - std::accumulate(LATE_ALLPASS_LENGTHS.begin(), LATE_ALLPASS_LENGTHS.end(), 0.0f) / - float{LATE_ALLPASS_LENGTHS_size}}; - - /* To compensate for changes in modal density and decay time of the late - * reverb signal, the input is attenuated based on the maximal energy of - * the outgoing signal. This approximation is used to keep the apparent - * energy of the signal equal for all ranges of density and decay time. - * - * The average length of the delay lines is used to calculate the - * attenuation coefficient. - */ - const ALfloat multiplier{CalcDelayLengthMult(density)}; - ALfloat length{std::accumulate(LATE_LINE_LENGTHS.begin(), LATE_LINE_LENGTHS.end(), 0.0f) / - float{LATE_LINE_LENGTHS_size} * multiplier}; - length += late_allpass_avg * multiplier; - /* The density gain calculation uses an average decay time weighted by - * approximate bandwidth. This attempts to compensate for losses of energy - * that reduce decay time due to scattering into highly attenuated bands. - */ - const ALfloat bandWeights[3]{ - lf0norm*norm_weight_factor, - hf0norm*norm_weight_factor - lf0norm*norm_weight_factor, - 1.0f - hf0norm*norm_weight_factor}; - DensityGain[1] = CalcDensityGain( - CalcDecayCoeff(length, - bandWeights[0]*lfDecayTime + bandWeights[1]*mfDecayTime + bandWeights[2]*hfDecayTime - ) - ); - - /* Calculate the all-pass feed-back/forward coefficient. */ - VecAp.Coeff = std::sqrt(0.5f) * std::pow(diffusion, 2.0f); - - for(ALsizei i{0};i < NUM_LINES;i++) - { - /* Calculate the length (in seconds) of each all-pass line. */ - length = LATE_ALLPASS_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each all-pass line. */ - VecAp.Offset[i][1] = float2int(length * frequency); - - /* Calculate the length (in seconds) of each delay line. */ - length = LATE_LINE_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each delay line. */ - Offset[i][1] = float2int(length*frequency + 0.5f); - - /* Approximate the absorption that the vector all-pass would exhibit - * given the current diffusion so we don't have to process a full T60 - * filter for each of its four lines. - */ - length += lerp(LATE_ALLPASS_LENGTHS[i], late_allpass_avg, diffusion) * multiplier; - - /* Calculate the T60 damping coefficients for each line. */ - T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm); - } -} - - -/* Update the offsets for the main effect delay line. */ -void ReverbState::updateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, - const ALfloat density, const ALfloat decayTime, const ALfloat frequency) -{ - const ALfloat multiplier{CalcDelayLengthMult(density)}; - - /* Early reflection taps are decorrelated by means of an average room - * reflection approximation described above the definition of the taps. - * This approximation is linear and so the above density multiplier can - * be applied to adjust the width of the taps. A single-band decay - * coefficient is applied to simulate initial attenuation and absorption. - * - * Late reverb taps are based on the late line lengths to allow a zero- - * delay path and offsets that would continue the propagation naturally - * into the late lines. - */ - for(ALsizei i{0};i < NUM_LINES;i++) - { - ALfloat length{earlyDelay + EARLY_TAP_LENGTHS[i]*multiplier}; - mEarlyDelayTap[i][1] = float2int(length * frequency); - - length = EARLY_TAP_LENGTHS[i]*multiplier; - mEarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime); - - length = lateDelay + (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front()) / - float{LATE_LINE_LENGTHS_size} * multiplier; - mLateDelayTap[i][1] = mLateFeedTap + float2int(length * frequency); - } -} - -/* Creates a transform matrix given a reverb vector. The vector pans the reverb - * reflections toward the given direction, using its magnitude (up to 1) as a - * focal strength. This function results in a B-Format transformation matrix - * that spatially focuses the signal in the desired direction. - */ -alu::Matrix GetTransformFromVector(const ALfloat *vec) -{ - /* Normalize the panning vector according to the N3D scale, which has an - * extra sqrt(3) term on the directional components. Converting from OpenAL - * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however - * that the reverb panning vectors use left-handed coordinates, unlike the - * rest of OpenAL which use right-handed. This is fixed by negating Z, - * which cancels out with the B-Format Z negation. - */ - ALfloat norm[3]; - ALfloat mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])}; - if(mag > 1.0f) - { - norm[0] = vec[0] / mag * -al::MathDefs<float>::Sqrt3(); - norm[1] = vec[1] / mag * al::MathDefs<float>::Sqrt3(); - norm[2] = vec[2] / mag * al::MathDefs<float>::Sqrt3(); - mag = 1.0f; - } - else - { - /* If the magnitude is less than or equal to 1, just apply the sqrt(3) - * term. There's no need to renormalize the magnitude since it would - * just be reapplied in the matrix. - */ - norm[0] = vec[0] * -al::MathDefs<float>::Sqrt3(); - norm[1] = vec[1] * al::MathDefs<float>::Sqrt3(); - norm[2] = vec[2] * al::MathDefs<float>::Sqrt3(); - } - - return alu::Matrix{ - 1.0f, 0.0f, 0.0f, 0.0f, - norm[0], 1.0f-mag, 0.0f, 0.0f, - norm[1], 0.0f, 1.0f-mag, 0.0f, - norm[2], 0.0f, 0.0f, 1.0f-mag - }; -} - -/* Update the early and late 3D panning gains. */ -void ReverbState::update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, - const ALfloat earlyGain, const ALfloat lateGain, const EffectTarget &target) -{ - /* Create matrices that transform a B-Format signal according to the - * panning vectors. - */ - const alu::Matrix earlymat{GetTransformFromVector(ReflectionsPan)}; - const alu::Matrix latemat{GetTransformFromVector(LateReverbPan)}; - - mOutTarget = target.Main->Buffer; - for(ALsizei i{0};i < NUM_LINES;i++) - { - const ALfloat coeffs[MAX_AMBI_CHANNELS]{earlymat[0][i], earlymat[1][i], earlymat[2][i], - earlymat[3][i]}; - ComputePanGains(target.Main, coeffs, earlyGain, mEarly.PanGain[i]); - } - for(ALsizei i{0};i < NUM_LINES;i++) - { - const ALfloat coeffs[MAX_AMBI_CHANNELS]{latemat[0][i], latemat[1][i], latemat[2][i], - latemat[3][i]}; - ComputePanGains(target.Main, coeffs, lateGain, mLate.PanGain[i]); - } -} - -void ReverbState::update(const ALCcontext *Context, const ALeffectslot *Slot, const EffectProps *props, const EffectTarget target) -{ - const ALCdevice *Device{Context->Device}; - const ALlistener &Listener = Context->Listener; - const auto frequency = static_cast<ALfloat>(Device->Frequency); - - /* Calculate the master filters */ - ALfloat hf0norm{minf(props->Reverb.HFReference / frequency, 0.49f)}; - /* Restrict the filter gains from going below -60dB to keep the filter from - * killing most of the signal. - */ - ALfloat gainhf{maxf(props->Reverb.GainHF, 0.001f)}; - mFilter[0].Lp.setParams(BiquadType::HighShelf, gainhf, hf0norm, - mFilter[0].Lp.rcpQFromSlope(gainhf, 1.0f)); - ALfloat lf0norm{minf(props->Reverb.LFReference / frequency, 0.49f)}; - ALfloat gainlf{maxf(props->Reverb.GainLF, 0.001f)}; - mFilter[0].Hp.setParams(BiquadType::LowShelf, gainlf, lf0norm, - mFilter[0].Hp.rcpQFromSlope(gainlf, 1.0f)); - for(ALsizei i{1};i < NUM_LINES;i++) - { - mFilter[i].Lp.copyParamsFrom(mFilter[0].Lp); - mFilter[i].Hp.copyParamsFrom(mFilter[0].Hp); - } - - /* Update the main effect delay and associated taps. */ - updateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay, - props->Reverb.Density, props->Reverb.DecayTime, frequency); - - /* Update the early lines. */ - mEarly.updateLines(props->Reverb.Density, props->Reverb.Diffusion, props->Reverb.DecayTime, - frequency); - - /* Get the mixing matrix coefficients. */ - CalcMatrixCoeffs(props->Reverb.Diffusion, &mMixX, &mMixY); - - /* If the HF limit parameter is flagged, calculate an appropriate limit - * based on the air absorption parameter. - */ - ALfloat hfRatio{props->Reverb.DecayHFRatio}; - if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f) - hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF, - props->Reverb.DecayTime, Listener.Params.ReverbSpeedOfSound - ); - - /* Calculate the LF/HF decay times. */ - const ALfloat lfDecayTime{clampf(props->Reverb.DecayTime * props->Reverb.DecayLFRatio, - AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME)}; - const ALfloat hfDecayTime{clampf(props->Reverb.DecayTime * hfRatio, - AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME)}; - - /* Update the late lines. */ - mLate.updateLines(props->Reverb.Density, props->Reverb.Diffusion, lfDecayTime, - props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, frequency); - - /* Update early and late 3D panning. */ - const ALfloat gain{props->Reverb.Gain * Slot->Params.Gain * ReverbBoost}; - update3DPanning(props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan, - props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, target); - - /* Calculate the max update size from the smallest relevant delay. */ - mMaxUpdate[1] = mini(BUFFERSIZE, mini(mEarly.Offset[0][1], mLate.Offset[0][1])); - - /* Determine if delay-line cross-fading is required. Density is essentially - * a master control for the feedback delays, so changes the offsets of many - * delay lines. - */ - if(mParams.Density != props->Reverb.Density || - /* Diffusion and decay times influences the decay rate (gain) of the - * late reverb T60 filter. - */ - mParams.Diffusion != props->Reverb.Diffusion || - mParams.DecayTime != props->Reverb.DecayTime || - mParams.HFDecayTime != hfDecayTime || - mParams.LFDecayTime != lfDecayTime || - /* HF/LF References control the weighting used to calculate the density - * gain. - */ - mParams.HFReference != props->Reverb.HFReference || - mParams.LFReference != props->Reverb.LFReference) - mFadeCount = 0; - mParams.Density = props->Reverb.Density; - mParams.Diffusion = props->Reverb.Diffusion; - mParams.DecayTime = props->Reverb.DecayTime; - mParams.HFDecayTime = hfDecayTime; - mParams.LFDecayTime = lfDecayTime; - mParams.HFReference = props->Reverb.HFReference; - mParams.LFReference = props->Reverb.LFReference; -} - - -/************************************** - * Effect Processing * - **************************************/ - -/* Applies a scattering matrix to the 4-line (vector) input. This is used - * for both the below vector all-pass model and to perform modal feed-back - * delay network (FDN) mixing. - * - * The matrix is derived from a skew-symmetric matrix to form a 4D rotation - * matrix with a single unitary rotational parameter: - * - * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2 - * [ -a, d, c, -b ] - * [ -b, -c, d, a ] - * [ -c, b, -a, d ] - * - * The rotation is constructed from the effect's diffusion parameter, - * yielding: - * - * 1 = x^2 + 3 y^2 - * - * Where a, b, and c are the coefficient y with differing signs, and d is the - * coefficient x. The final matrix is thus: - * - * [ x, y, -y, y ] n = sqrt(matrix_order - 1) - * [ -y, x, y, y ] t = diffusion_parameter * atan(n) - * [ y, -y, x, y ] x = cos(t) - * [ -y, -y, -y, x ] y = sin(t) / n - * - * Any square orthogonal matrix with an order that is a power of two will - * work (where ^T is transpose, ^-1 is inverse): - * - * M^T = M^-1 - * - * Using that knowledge, finding an appropriate matrix can be accomplished - * naively by searching all combinations of: - * - * M = D + S - S^T - * - * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y) - * whose combination of signs are being iterated. - */ -inline void VectorPartialScatter(ALfloat *RESTRICT out, const ALfloat *RESTRICT in, - const ALfloat xCoeff, const ALfloat yCoeff) -{ - out[0] = xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]); - out[1] = xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]); - out[2] = xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]); - out[3] = xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] ); -} - -/* Utilizes the above, but reverses the input channels. */ -void VectorScatterRevDelayIn(const DelayLineI delay, ALint offset, const ALfloat xCoeff, - const ALfloat yCoeff, const ALsizei base, const al::span<const FloatBufferLine,NUM_LINES> in, - const ALsizei count) -{ - ASSUME(base >= 0); - ASSUME(count > 0); - - for(ALsizei i{0};i < count;) - { - offset &= delay.Mask; - ALsizei td{mini(delay.Mask+1 - offset, count-i)}; - do { - ALfloat f[NUM_LINES]; - for(ALsizei j{0};j < NUM_LINES;j++) - f[NUM_LINES-1-j] = in[j][base+i]; - ++i; - - VectorPartialScatter(delay.Line[offset++], f, xCoeff, yCoeff); - } while(--td); - } -} - -/* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass - * filter to the 4-line input. - * - * It works by vectorizing a regular all-pass filter and replacing the delay - * element with a scattering matrix (like the one above) and a diagonal - * matrix of delay elements. - * - * Two static specializations are used for transitional (cross-faded) delay - * line processing and non-transitional processing. - */ -void VecAllpass::processUnfaded(const al::span<FloatBufferLine,NUM_LINES> samples, ALsizei offset, - const ALfloat xCoeff, const ALfloat yCoeff, const ALsizei todo) -{ - const DelayLineI delay{Delay}; - const ALfloat feedCoeff{Coeff}; - - ASSUME(todo > 0); - - ALsizei vap_offset[NUM_LINES]; - for(ALsizei j{0};j < NUM_LINES;j++) - vap_offset[j] = offset - Offset[j][0]; - for(ALsizei i{0};i < todo;) - { - for(ALsizei j{0};j < NUM_LINES;j++) - vap_offset[j] &= delay.Mask; - offset &= delay.Mask; - - ALsizei maxoff{offset}; - for(ALsizei j{0};j < NUM_LINES;j++) - maxoff = maxi(maxoff, vap_offset[j]); - ALsizei td{mini(delay.Mask+1 - maxoff, todo - i)}; - - do { - ALfloat f[NUM_LINES]; - for(ALsizei j{0};j < NUM_LINES;j++) - { - const ALfloat input{samples[j][i]}; - const ALfloat out{delay.Line[vap_offset[j]++][j] - feedCoeff*input}; - f[j] = input + feedCoeff*out; - - samples[j][i] = out; - } - ++i; - - VectorPartialScatter(delay.Line[offset++], f, xCoeff, yCoeff); - } while(--td); - } -} -void VecAllpass::processFaded(const al::span<FloatBufferLine,NUM_LINES> samples, ALsizei offset, - const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade, const ALsizei todo) -{ - const DelayLineI delay{Delay}; - const ALfloat feedCoeff{Coeff}; - - ASSUME(todo > 0); - - fade *= 1.0f/FADE_SAMPLES; - ALsizei vap_offset[NUM_LINES][2]; - for(ALsizei j{0};j < NUM_LINES;j++) - { - vap_offset[j][0] = offset - Offset[j][0]; - vap_offset[j][1] = offset - Offset[j][1]; - } - for(ALsizei i{0};i < todo;) - { - for(ALsizei j{0};j < NUM_LINES;j++) - { - vap_offset[j][0] &= delay.Mask; - vap_offset[j][1] &= delay.Mask; - } - offset &= delay.Mask; - - ALsizei maxoff{offset}; - for(ALsizei j{0};j < NUM_LINES;j++) - maxoff = maxi(maxoff, maxi(vap_offset[j][0], vap_offset[j][1])); - ALsizei td{mini(delay.Mask+1 - maxoff, todo - i)}; - - do { - fade += FadeStep; - ALfloat f[NUM_LINES]; - for(ALsizei j{0};j < NUM_LINES;j++) - f[j] = delay.Line[vap_offset[j][0]++][j]*(1.0f-fade) + - delay.Line[vap_offset[j][1]++][j]*fade; - - for(ALsizei j{0};j < NUM_LINES;j++) - { - const ALfloat input{samples[j][i]}; - const ALfloat out{f[j] - feedCoeff*input}; - f[j] = input + feedCoeff*out; - - samples[j][i] = out; - } - ++i; - - VectorPartialScatter(delay.Line[offset++], f, xCoeff, yCoeff); - } while(--td); - } -} - -/* This generates early reflections. - * - * This is done by obtaining the primary reflections (those arriving from the - * same direction as the source) from the main delay line. These are - * attenuated and all-pass filtered (based on the diffusion parameter). - * - * The early lines are then fed in reverse (according to the approximately - * opposite spatial location of the A-Format lines) to create the secondary - * reflections (those arriving from the opposite direction as the source). - * - * The early response is then completed by combining the primary reflections - * with the delayed and attenuated output from the early lines. - * - * Finally, the early response is reversed, scattered (based on diffusion), - * and fed into the late reverb section of the main delay line. - * - * Two static specializations are used for transitional (cross-faded) delay - * line processing and non-transitional processing. - */ -void EarlyReflection_Unfaded(ReverbState *State, const ALsizei offset, const ALsizei todo, - const ALsizei base, const al::span<FloatBufferLine,NUM_LINES> out) -{ - const al::span<FloatBufferLine,NUM_LINES> temps{State->mTempSamples}; - const DelayLineI early_delay{State->mEarly.Delay}; - const DelayLineI main_delay{State->mDelay}; - const ALfloat mixX{State->mMixX}; - const ALfloat mixY{State->mMixY}; - - ASSUME(todo > 0); - - /* First, load decorrelated samples from the main delay line as the primary - * reflections. - */ - for(ALsizei j{0};j < NUM_LINES;j++) - { - ALsizei early_delay_tap{offset - State->mEarlyDelayTap[j][0]}; - const ALfloat coeff{State->mEarlyDelayCoeff[j][0]}; - for(ALsizei i{0};i < todo;) - { - early_delay_tap &= main_delay.Mask; - ALsizei td{mini(main_delay.Mask+1 - early_delay_tap, todo - i)}; - do { - temps[j][i++] = main_delay.Line[early_delay_tap++][j] * coeff; - } while(--td); - } - } - - /* Apply a vector all-pass, to help color the initial reflections based on - * the diffusion strength. - */ - State->mEarly.VecAp.processUnfaded(temps, offset, mixX, mixY, todo); - - /* Apply a delay and bounce to generate secondary reflections, combine with - * the primary reflections and write out the result for mixing. - */ - for(ALsizei j{0};j < NUM_LINES;j++) - { - ALint feedb_tap{offset - State->mEarly.Offset[j][0]}; - const ALfloat feedb_coeff{State->mEarly.Coeff[j][0]}; - - ASSUME(base >= 0); - for(ALsizei i{0};i < todo;) - { - feedb_tap &= early_delay.Mask; - ALsizei td{mini(early_delay.Mask+1 - feedb_tap, todo - i)}; - do { - out[j][base+i] = temps[j][i] + early_delay.Line[feedb_tap++][j]*feedb_coeff; - ++i; - } while(--td); - } - } - for(ALsizei j{0};j < NUM_LINES;j++) - early_delay.write(offset, NUM_LINES-1-j, temps[j].data(), todo); - - /* Also write the result back to the main delay line for the late reverb - * stage to pick up at the appropriate time, appplying a scatter and - * bounce to improve the initial diffusion in the late reverb. - */ - const ALsizei late_feed_tap{offset - State->mLateFeedTap}; - VectorScatterRevDelayIn(main_delay, late_feed_tap, mixX, mixY, base, - {out.cbegin(), out.cend()}, todo); -} -void EarlyReflection_Faded(ReverbState *State, const ALsizei offset, const ALsizei todo, - const ALfloat fade, const ALsizei base, const al::span<FloatBufferLine,NUM_LINES> out) -{ - const al::span<FloatBufferLine,NUM_LINES> temps{State->mTempSamples}; - const DelayLineI early_delay{State->mEarly.Delay}; - const DelayLineI main_delay{State->mDelay}; - const ALfloat mixX{State->mMixX}; - const ALfloat mixY{State->mMixY}; - - ASSUME(todo > 0); - - for(ALsizei j{0};j < NUM_LINES;j++) - { - ALsizei early_delay_tap0{offset - State->mEarlyDelayTap[j][0]}; - ALsizei early_delay_tap1{offset - State->mEarlyDelayTap[j][1]}; - const ALfloat oldCoeff{State->mEarlyDelayCoeff[j][0]}; - const ALfloat oldCoeffStep{-oldCoeff / FADE_SAMPLES}; - const ALfloat newCoeffStep{State->mEarlyDelayCoeff[j][1] / FADE_SAMPLES}; - ALfloat fadeCount{fade}; - - for(ALsizei i{0};i < todo;) - { - early_delay_tap0 &= main_delay.Mask; - early_delay_tap1 &= main_delay.Mask; - ALsizei td{mini(main_delay.Mask+1 - maxi(early_delay_tap0, early_delay_tap1), todo-i)}; - do { - fadeCount += 1.0f; - const ALfloat fade0{oldCoeff + oldCoeffStep*fadeCount}; - const ALfloat fade1{newCoeffStep*fadeCount}; - temps[j][i++] = - main_delay.Line[early_delay_tap0++][j]*fade0 + - main_delay.Line[early_delay_tap1++][j]*fade1; - } while(--td); - } - } - - State->mEarly.VecAp.processFaded(temps, offset, mixX, mixY, fade, todo); - - for(ALsizei j{0};j < NUM_LINES;j++) - { - ALint feedb_tap0{offset - State->mEarly.Offset[j][0]}; - ALint feedb_tap1{offset - State->mEarly.Offset[j][1]}; - const ALfloat feedb_oldCoeff{State->mEarly.Coeff[j][0]}; - const ALfloat feedb_oldCoeffStep{-feedb_oldCoeff / FADE_SAMPLES}; - const ALfloat feedb_newCoeffStep{State->mEarly.Coeff[j][1] / FADE_SAMPLES}; - ALfloat fadeCount{fade}; - - ASSUME(base >= 0); - for(ALsizei i{0};i < todo;) - { - feedb_tap0 &= early_delay.Mask; - feedb_tap1 &= early_delay.Mask; - ALsizei td{mini(early_delay.Mask+1 - maxi(feedb_tap0, feedb_tap1), todo - i)}; - - do { - fadeCount += 1.0f; - const ALfloat fade0{feedb_oldCoeff + feedb_oldCoeffStep*fadeCount}; - const ALfloat fade1{feedb_newCoeffStep*fadeCount}; - out[j][base+i] = temps[j][i] + - early_delay.Line[feedb_tap0++][j]*fade0 + - early_delay.Line[feedb_tap1++][j]*fade1; - ++i; - } while(--td); - } - } - for(ALsizei j{0};j < NUM_LINES;j++) - early_delay.write(offset, NUM_LINES-1-j, temps[j].data(), todo); - - const ALsizei late_feed_tap{offset - State->mLateFeedTap}; - VectorScatterRevDelayIn(main_delay, late_feed_tap, mixX, mixY, base, - {out.cbegin(), out.cend()}, todo); -} - -/* This generates the reverb tail using a modified feed-back delay network - * (FDN). - * - * Results from the early reflections are mixed with the output from the late - * delay lines. - * - * The late response is then completed by T60 and all-pass filtering the mix. - * - * Finally, the lines are reversed (so they feed their opposite directions) - * and scattered with the FDN matrix before re-feeding the delay lines. - * - * Two variations are made, one for for transitional (cross-faded) delay line - * processing and one for non-transitional processing. - */ -void LateReverb_Unfaded(ReverbState *State, const ALsizei offset, const ALsizei todo, - const ALsizei base, const al::span<FloatBufferLine,NUM_LINES> out) -{ - const al::span<FloatBufferLine,NUM_LINES> temps{State->mTempSamples}; - const DelayLineI late_delay{State->mLate.Delay}; - const DelayLineI main_delay{State->mDelay}; - const ALfloat mixX{State->mMixX}; - const ALfloat mixY{State->mMixY}; - - ASSUME(todo > 0); - - /* First, load decorrelated samples from the main and feedback delay lines. - * Filter the signal to apply its frequency-dependent decay. - */ - for(ALsizei j{0};j < NUM_LINES;j++) - { - ALsizei late_delay_tap{offset - State->mLateDelayTap[j][0]}; - ALsizei late_feedb_tap{offset - State->mLate.Offset[j][0]}; - const ALfloat midGain{State->mLate.T60[j].MidGain[0]}; - const ALfloat densityGain{State->mLate.DensityGain[0] * midGain}; - for(ALsizei i{0};i < todo;) - { - late_delay_tap &= main_delay.Mask; - late_feedb_tap &= late_delay.Mask; - ALsizei td{mini( - mini(main_delay.Mask+1 - late_delay_tap, late_delay.Mask+1 - late_feedb_tap), - todo - i)}; - do { - temps[j][i++] = - main_delay.Line[late_delay_tap++][j]*densityGain + - late_delay.Line[late_feedb_tap++][j]*midGain; - } while(--td); - } - State->mLate.T60[j].process(temps[j].data(), todo); - } - - /* Apply a vector all-pass to improve micro-surface diffusion, and write - * out the results for mixing. - */ - State->mLate.VecAp.processUnfaded(temps, offset, mixX, mixY, todo); - - for(ALsizei j{0};j < NUM_LINES;j++) - std::copy_n(temps[j].begin(), todo, out[j].begin()+base); - - /* Finally, scatter and bounce the results to refeed the feedback buffer. */ - VectorScatterRevDelayIn(late_delay, offset, mixX, mixY, base, - {out.cbegin(), out.cend()}, todo); -} -void LateReverb_Faded(ReverbState *State, const ALsizei offset, const ALsizei todo, - const ALfloat fade, const ALsizei base, const al::span<FloatBufferLine,NUM_LINES> out) -{ - const al::span<FloatBufferLine,NUM_LINES> temps{State->mTempSamples}; - const DelayLineI late_delay{State->mLate.Delay}; - const DelayLineI main_delay{State->mDelay}; - const ALfloat mixX{State->mMixX}; - const ALfloat mixY{State->mMixY}; - - ASSUME(todo > 0); - - for(ALsizei j{0};j < NUM_LINES;j++) - { - const ALfloat oldMidGain{State->mLate.T60[j].MidGain[0]}; - const ALfloat midGain{State->mLate.T60[j].MidGain[1]}; - const ALfloat oldMidStep{-oldMidGain / FADE_SAMPLES}; - const ALfloat midStep{midGain / FADE_SAMPLES}; - const ALfloat oldDensityGain{State->mLate.DensityGain[0] * oldMidGain}; - const ALfloat densityGain{State->mLate.DensityGain[1] * midGain}; - const ALfloat oldDensityStep{-oldDensityGain / FADE_SAMPLES}; - const ALfloat densityStep{densityGain / FADE_SAMPLES}; - ALsizei late_delay_tap0{offset - State->mLateDelayTap[j][0]}; - ALsizei late_delay_tap1{offset - State->mLateDelayTap[j][1]}; - ALsizei late_feedb_tap0{offset - State->mLate.Offset[j][0]}; - ALsizei late_feedb_tap1{offset - State->mLate.Offset[j][1]}; - ALfloat fadeCount{fade}; - - for(ALsizei i{0};i < todo;) - { - late_delay_tap0 &= main_delay.Mask; - late_delay_tap1 &= main_delay.Mask; - late_feedb_tap0 &= late_delay.Mask; - late_feedb_tap1 &= late_delay.Mask; - ALsizei td{mini( - mini(main_delay.Mask+1 - maxi(late_delay_tap0, late_delay_tap1), - late_delay.Mask+1 - maxi(late_feedb_tap0, late_feedb_tap1)), - todo - i)}; - do { - fadeCount += 1.0f; - const ALfloat fade0{oldDensityGain + oldDensityStep*fadeCount}; - const ALfloat fade1{densityStep*fadeCount}; - const ALfloat gfade0{oldMidGain + oldMidStep*fadeCount}; - const ALfloat gfade1{midStep*fadeCount}; - temps[j][i++] = - main_delay.Line[late_delay_tap0++][j]*fade0 + - main_delay.Line[late_delay_tap1++][j]*fade1 + - late_delay.Line[late_feedb_tap0++][j]*gfade0 + - late_delay.Line[late_feedb_tap1++][j]*gfade1; - } while(--td); - } - State->mLate.T60[j].process(temps[j].data(), todo); - } - - State->mLate.VecAp.processFaded(temps, offset, mixX, mixY, fade, todo); - - for(ALsizei j{0};j < NUM_LINES;j++) - std::copy_n(temps[j].begin(), todo, out[j].begin()+base); - - VectorScatterRevDelayIn(late_delay, offset, mixX, mixY, base, - {out.cbegin(), out.cend()}, todo); -} - -void ReverbState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) -{ - ALsizei fadeCount{mFadeCount}; - - ASSUME(samplesToDo > 0); - - /* Convert B-Format to A-Format for processing. */ - const al::span<FloatBufferLine,NUM_LINES> afmt{mTempSamples}; - for(ALsizei c{0};c < NUM_LINES;c++) - { - std::fill_n(afmt[c].begin(), samplesToDo, 0.0f); - MixRowSamples(afmt[c], B2A[c], {samplesIn, samplesIn+numInput}, 0, samplesToDo); - - /* Band-pass the incoming samples. */ - mFilter[c].Lp.process(afmt[c].data(), afmt[c].data(), samplesToDo); - mFilter[c].Hp.process(afmt[c].data(), afmt[c].data(), samplesToDo); - } - - /* Process reverb for these samples. */ - for(ALsizei base{0};base < samplesToDo;) - { - ALsizei todo{samplesToDo - base}; - /* If cross-fading, don't do more samples than there are to fade. */ - if(FADE_SAMPLES-fadeCount > 0) - { - todo = mini(todo, FADE_SAMPLES-fadeCount); - todo = mini(todo, mMaxUpdate[0]); - } - todo = mini(todo, mMaxUpdate[1]); - ASSUME(todo > 0 && todo <= BUFFERSIZE); - - const ALsizei offset{mOffset + base}; - ASSUME(offset >= 0); - - /* Feed the initial delay line. */ - for(ALsizei c{0};c < NUM_LINES;c++) - mDelay.write(offset, c, afmt[c].data()+base, todo); - - /* Process the samples for reverb. */ - if(UNLIKELY(fadeCount < FADE_SAMPLES)) - { - auto fade = static_cast<ALfloat>(fadeCount); - - /* Generate early reflections and late reverb. */ - EarlyReflection_Faded(this, offset, todo, fade, base, mEarlyBuffer); - - LateReverb_Faded(this, offset, todo, fade, base, mLateBuffer); - - /* Step fading forward. */ - fadeCount += todo; - if(fadeCount >= FADE_SAMPLES) - { - /* Update the cross-fading delay line taps. */ - fadeCount = FADE_SAMPLES; - for(ALsizei c{0};c < NUM_LINES;c++) - { - mEarlyDelayTap[c][0] = mEarlyDelayTap[c][1]; - mEarlyDelayCoeff[c][0] = mEarlyDelayCoeff[c][1]; - mEarly.VecAp.Offset[c][0] = mEarly.VecAp.Offset[c][1]; - mEarly.Offset[c][0] = mEarly.Offset[c][1]; - mEarly.Coeff[c][0] = mEarly.Coeff[c][1]; - mLateDelayTap[c][0] = mLateDelayTap[c][1]; - mLate.VecAp.Offset[c][0] = mLate.VecAp.Offset[c][1]; - mLate.Offset[c][0] = mLate.Offset[c][1]; - mLate.T60[c].MidGain[0] = mLate.T60[c].MidGain[1]; - } - mLate.DensityGain[0] = mLate.DensityGain[1]; - mMaxUpdate[0] = mMaxUpdate[1]; - } - } - else - { - /* Generate early reflections and late reverb. */ - EarlyReflection_Unfaded(this, offset, todo, base, mEarlyBuffer); - - LateReverb_Unfaded(this, offset, todo, base, mLateBuffer); - } - - base += todo; - } - mOffset = (mOffset+samplesToDo) & 0x3fffffff; - mFadeCount = fadeCount; - - /* Finally, mix early reflections and late reverb. */ - (this->*mMixOut)(samplesOut, samplesToDo); -} - - -void EAXReverb_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) -{ - switch(param) - { - case AL_EAXREVERB_DECAY_HFLIMIT: - if(!(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hflimit out of range"); - props->Reverb.DecayHFLimit = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x", - param); - } -} -void EAXReverb_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) -{ EAXReverb_setParami(props, context, param, vals[0]); } -void EAXReverb_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_EAXREVERB_DENSITY: - if(!(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb density out of range"); - props->Reverb.Density = val; - break; - - case AL_EAXREVERB_DIFFUSION: - if(!(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb diffusion out of range"); - props->Reverb.Diffusion = val; - break; - - case AL_EAXREVERB_GAIN: - if(!(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gain out of range"); - props->Reverb.Gain = val; - break; - - case AL_EAXREVERB_GAINHF: - if(!(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainhf out of range"); - props->Reverb.GainHF = val; - break; - - case AL_EAXREVERB_GAINLF: - if(!(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainlf out of range"); - props->Reverb.GainLF = val; - break; - - case AL_EAXREVERB_DECAY_TIME: - if(!(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay time out of range"); - props->Reverb.DecayTime = val; - break; - - case AL_EAXREVERB_DECAY_HFRATIO: - if(!(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hfratio out of range"); - props->Reverb.DecayHFRatio = val; - break; - - case AL_EAXREVERB_DECAY_LFRATIO: - if(!(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay lfratio out of range"); - props->Reverb.DecayLFRatio = val; - break; - - case AL_EAXREVERB_REFLECTIONS_GAIN: - if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections gain out of range"); - props->Reverb.ReflectionsGain = val; - break; - - case AL_EAXREVERB_REFLECTIONS_DELAY: - if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections delay out of range"); - props->Reverb.ReflectionsDelay = val; - break; - - case AL_EAXREVERB_LATE_REVERB_GAIN: - if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb gain out of range"); - props->Reverb.LateReverbGain = val; - break; - - case AL_EAXREVERB_LATE_REVERB_DELAY: - if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb delay out of range"); - props->Reverb.LateReverbDelay = val; - break; - - case AL_EAXREVERB_AIR_ABSORPTION_GAINHF: - if(!(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb air absorption gainhf out of range"); - props->Reverb.AirAbsorptionGainHF = val; - break; - - case AL_EAXREVERB_ECHO_TIME: - if(!(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo time out of range"); - props->Reverb.EchoTime = val; - break; - - case AL_EAXREVERB_ECHO_DEPTH: - if(!(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo depth out of range"); - props->Reverb.EchoDepth = val; - break; - - case AL_EAXREVERB_MODULATION_TIME: - if(!(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation time out of range"); - props->Reverb.ModulationTime = val; - break; - - case AL_EAXREVERB_MODULATION_DEPTH: - if(!(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation depth out of range"); - props->Reverb.ModulationDepth = val; - break; - - case AL_EAXREVERB_HFREFERENCE: - if(!(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb hfreference out of range"); - props->Reverb.HFReference = val; - break; - - case AL_EAXREVERB_LFREFERENCE: - if(!(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb lfreference out of range"); - props->Reverb.LFReference = val; - break; - - case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR: - if(!(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb room rolloff factor out of range"); - props->Reverb.RoomRolloffFactor = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x", - param); - } -} -void EAXReverb_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ - switch(param) - { - case AL_EAXREVERB_REFLECTIONS_PAN: - if(!(std::isfinite(vals[0]) && std::isfinite(vals[1]) && std::isfinite(vals[2]))) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections pan out of range"); - props->Reverb.ReflectionsPan[0] = vals[0]; - props->Reverb.ReflectionsPan[1] = vals[1]; - props->Reverb.ReflectionsPan[2] = vals[2]; - break; - case AL_EAXREVERB_LATE_REVERB_PAN: - if(!(std::isfinite(vals[0]) && std::isfinite(vals[1]) && std::isfinite(vals[2]))) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb pan out of range"); - props->Reverb.LateReverbPan[0] = vals[0]; - props->Reverb.LateReverbPan[1] = vals[1]; - props->Reverb.LateReverbPan[2] = vals[2]; - break; - - default: - EAXReverb_setParamf(props, context, param, vals[0]); - break; - } -} - -void EAXReverb_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) -{ - switch(param) - { - case AL_EAXREVERB_DECAY_HFLIMIT: - *val = props->Reverb.DecayHFLimit; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x", - param); - } -} -void EAXReverb_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) -{ EAXReverb_getParami(props, context, param, vals); } -void EAXReverb_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_EAXREVERB_DENSITY: - *val = props->Reverb.Density; - break; - - case AL_EAXREVERB_DIFFUSION: - *val = props->Reverb.Diffusion; - break; - - case AL_EAXREVERB_GAIN: - *val = props->Reverb.Gain; - break; - - case AL_EAXREVERB_GAINHF: - *val = props->Reverb.GainHF; - break; - - case AL_EAXREVERB_GAINLF: - *val = props->Reverb.GainLF; - break; - - case AL_EAXREVERB_DECAY_TIME: - *val = props->Reverb.DecayTime; - break; - - case AL_EAXREVERB_DECAY_HFRATIO: - *val = props->Reverb.DecayHFRatio; - break; - - case AL_EAXREVERB_DECAY_LFRATIO: - *val = props->Reverb.DecayLFRatio; - break; - - case AL_EAXREVERB_REFLECTIONS_GAIN: - *val = props->Reverb.ReflectionsGain; - break; - - case AL_EAXREVERB_REFLECTIONS_DELAY: - *val = props->Reverb.ReflectionsDelay; - break; - - case AL_EAXREVERB_LATE_REVERB_GAIN: - *val = props->Reverb.LateReverbGain; - break; - - case AL_EAXREVERB_LATE_REVERB_DELAY: - *val = props->Reverb.LateReverbDelay; - break; - - case AL_EAXREVERB_AIR_ABSORPTION_GAINHF: - *val = props->Reverb.AirAbsorptionGainHF; - break; - - case AL_EAXREVERB_ECHO_TIME: - *val = props->Reverb.EchoTime; - break; - - case AL_EAXREVERB_ECHO_DEPTH: - *val = props->Reverb.EchoDepth; - break; - - case AL_EAXREVERB_MODULATION_TIME: - *val = props->Reverb.ModulationTime; - break; - - case AL_EAXREVERB_MODULATION_DEPTH: - *val = props->Reverb.ModulationDepth; - break; - - case AL_EAXREVERB_HFREFERENCE: - *val = props->Reverb.HFReference; - break; - - case AL_EAXREVERB_LFREFERENCE: - *val = props->Reverb.LFReference; - break; - - case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR: - *val = props->Reverb.RoomRolloffFactor; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x", - param); - } -} -void EAXReverb_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ - switch(param) - { - case AL_EAXREVERB_REFLECTIONS_PAN: - vals[0] = props->Reverb.ReflectionsPan[0]; - vals[1] = props->Reverb.ReflectionsPan[1]; - vals[2] = props->Reverb.ReflectionsPan[2]; - break; - case AL_EAXREVERB_LATE_REVERB_PAN: - vals[0] = props->Reverb.LateReverbPan[0]; - vals[1] = props->Reverb.LateReverbPan[1]; - vals[2] = props->Reverb.LateReverbPan[2]; - break; - - default: - EAXReverb_getParamf(props, context, param, vals); - break; - } -} - -DEFINE_ALEFFECT_VTABLE(EAXReverb); - - -struct ReverbStateFactory final : public EffectStateFactory { - EffectState *create() override { return new ReverbState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &EAXReverb_vtable; } -}; - -EffectProps ReverbStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Reverb.Density = AL_EAXREVERB_DEFAULT_DENSITY; - props.Reverb.Diffusion = AL_EAXREVERB_DEFAULT_DIFFUSION; - props.Reverb.Gain = AL_EAXREVERB_DEFAULT_GAIN; - props.Reverb.GainHF = AL_EAXREVERB_DEFAULT_GAINHF; - props.Reverb.GainLF = AL_EAXREVERB_DEFAULT_GAINLF; - props.Reverb.DecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME; - props.Reverb.DecayHFRatio = AL_EAXREVERB_DEFAULT_DECAY_HFRATIO; - props.Reverb.DecayLFRatio = AL_EAXREVERB_DEFAULT_DECAY_LFRATIO; - props.Reverb.ReflectionsGain = AL_EAXREVERB_DEFAULT_REFLECTIONS_GAIN; - props.Reverb.ReflectionsDelay = AL_EAXREVERB_DEFAULT_REFLECTIONS_DELAY; - props.Reverb.ReflectionsPan[0] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ; - props.Reverb.ReflectionsPan[1] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ; - props.Reverb.ReflectionsPan[2] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ; - props.Reverb.LateReverbGain = AL_EAXREVERB_DEFAULT_LATE_REVERB_GAIN; - props.Reverb.LateReverbDelay = AL_EAXREVERB_DEFAULT_LATE_REVERB_DELAY; - props.Reverb.LateReverbPan[0] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ; - props.Reverb.LateReverbPan[1] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ; - props.Reverb.LateReverbPan[2] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ; - props.Reverb.EchoTime = AL_EAXREVERB_DEFAULT_ECHO_TIME; - props.Reverb.EchoDepth = AL_EAXREVERB_DEFAULT_ECHO_DEPTH; - props.Reverb.ModulationTime = AL_EAXREVERB_DEFAULT_MODULATION_TIME; - props.Reverb.ModulationDepth = AL_EAXREVERB_DEFAULT_MODULATION_DEPTH; - props.Reverb.AirAbsorptionGainHF = AL_EAXREVERB_DEFAULT_AIR_ABSORPTION_GAINHF; - props.Reverb.HFReference = AL_EAXREVERB_DEFAULT_HFREFERENCE; - props.Reverb.LFReference = AL_EAXREVERB_DEFAULT_LFREFERENCE; - props.Reverb.RoomRolloffFactor = AL_EAXREVERB_DEFAULT_ROOM_ROLLOFF_FACTOR; - props.Reverb.DecayHFLimit = AL_EAXREVERB_DEFAULT_DECAY_HFLIMIT; - return props; -} - - -void StdReverb_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) -{ - switch(param) - { - case AL_REVERB_DECAY_HFLIMIT: - if(!(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hflimit out of range"); - props->Reverb.DecayHFLimit = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param); - } -} -void StdReverb_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) -{ StdReverb_setParami(props, context, param, vals[0]); } -void StdReverb_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_REVERB_DENSITY: - if(!(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb density out of range"); - props->Reverb.Density = val; - break; - - case AL_REVERB_DIFFUSION: - if(!(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb diffusion out of range"); - props->Reverb.Diffusion = val; - break; - - case AL_REVERB_GAIN: - if(!(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gain out of range"); - props->Reverb.Gain = val; - break; - - case AL_REVERB_GAINHF: - if(!(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gainhf out of range"); - props->Reverb.GainHF = val; - break; - - case AL_REVERB_DECAY_TIME: - if(!(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay time out of range"); - props->Reverb.DecayTime = val; - break; - - case AL_REVERB_DECAY_HFRATIO: - if(!(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hfratio out of range"); - props->Reverb.DecayHFRatio = val; - break; - - case AL_REVERB_REFLECTIONS_GAIN: - if(!(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections gain out of range"); - props->Reverb.ReflectionsGain = val; - break; - - case AL_REVERB_REFLECTIONS_DELAY: - if(!(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections delay out of range"); - props->Reverb.ReflectionsDelay = val; - break; - - case AL_REVERB_LATE_REVERB_GAIN: - if(!(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb gain out of range"); - props->Reverb.LateReverbGain = val; - break; - - case AL_REVERB_LATE_REVERB_DELAY: - if(!(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb delay out of range"); - props->Reverb.LateReverbDelay = val; - break; - - case AL_REVERB_AIR_ABSORPTION_GAINHF: - if(!(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb air absorption gainhf out of range"); - props->Reverb.AirAbsorptionGainHF = val; - break; - - case AL_REVERB_ROOM_ROLLOFF_FACTOR: - if(!(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb room rolloff factor out of range"); - props->Reverb.RoomRolloffFactor = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param); - } -} -void StdReverb_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ StdReverb_setParamf(props, context, param, vals[0]); } - -void StdReverb_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) -{ - switch(param) - { - case AL_REVERB_DECAY_HFLIMIT: - *val = props->Reverb.DecayHFLimit; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param); - } -} -void StdReverb_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) -{ StdReverb_getParami(props, context, param, vals); } -void StdReverb_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_REVERB_DENSITY: - *val = props->Reverb.Density; - break; - - case AL_REVERB_DIFFUSION: - *val = props->Reverb.Diffusion; - break; - - case AL_REVERB_GAIN: - *val = props->Reverb.Gain; - break; - - case AL_REVERB_GAINHF: - *val = props->Reverb.GainHF; - break; - - case AL_REVERB_DECAY_TIME: - *val = props->Reverb.DecayTime; - break; - - case AL_REVERB_DECAY_HFRATIO: - *val = props->Reverb.DecayHFRatio; - break; - - case AL_REVERB_REFLECTIONS_GAIN: - *val = props->Reverb.ReflectionsGain; - break; - - case AL_REVERB_REFLECTIONS_DELAY: - *val = props->Reverb.ReflectionsDelay; - break; - - case AL_REVERB_LATE_REVERB_GAIN: - *val = props->Reverb.LateReverbGain; - break; - - case AL_REVERB_LATE_REVERB_DELAY: - *val = props->Reverb.LateReverbDelay; - break; - - case AL_REVERB_AIR_ABSORPTION_GAINHF: - *val = props->Reverb.AirAbsorptionGainHF; - break; - - case AL_REVERB_ROOM_ROLLOFF_FACTOR: - *val = props->Reverb.RoomRolloffFactor; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param); - } -} -void StdReverb_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ StdReverb_getParamf(props, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(StdReverb); - - -struct StdReverbStateFactory final : public EffectStateFactory { - EffectState *create() override { return new ReverbState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &StdReverb_vtable; } -}; - -EffectProps StdReverbStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Reverb.Density = AL_REVERB_DEFAULT_DENSITY; - props.Reverb.Diffusion = AL_REVERB_DEFAULT_DIFFUSION; - props.Reverb.Gain = AL_REVERB_DEFAULT_GAIN; - props.Reverb.GainHF = AL_REVERB_DEFAULT_GAINHF; - props.Reverb.GainLF = 1.0f; - props.Reverb.DecayTime = AL_REVERB_DEFAULT_DECAY_TIME; - props.Reverb.DecayHFRatio = AL_REVERB_DEFAULT_DECAY_HFRATIO; - props.Reverb.DecayLFRatio = 1.0f; - props.Reverb.ReflectionsGain = AL_REVERB_DEFAULT_REFLECTIONS_GAIN; - props.Reverb.ReflectionsDelay = AL_REVERB_DEFAULT_REFLECTIONS_DELAY; - props.Reverb.ReflectionsPan[0] = 0.0f; - props.Reverb.ReflectionsPan[1] = 0.0f; - props.Reverb.ReflectionsPan[2] = 0.0f; - props.Reverb.LateReverbGain = AL_REVERB_DEFAULT_LATE_REVERB_GAIN; - props.Reverb.LateReverbDelay = AL_REVERB_DEFAULT_LATE_REVERB_DELAY; - props.Reverb.LateReverbPan[0] = 0.0f; - props.Reverb.LateReverbPan[1] = 0.0f; - props.Reverb.LateReverbPan[2] = 0.0f; - props.Reverb.EchoTime = 0.25f; - props.Reverb.EchoDepth = 0.0f; - props.Reverb.ModulationTime = 0.25f; - props.Reverb.ModulationDepth = 0.0f; - props.Reverb.AirAbsorptionGainHF = AL_REVERB_DEFAULT_AIR_ABSORPTION_GAINHF; - props.Reverb.HFReference = 5000.0f; - props.Reverb.LFReference = 250.0f; - props.Reverb.RoomRolloffFactor = AL_REVERB_DEFAULT_ROOM_ROLLOFF_FACTOR; - props.Reverb.DecayHFLimit = AL_REVERB_DEFAULT_DECAY_HFLIMIT; - return props; -} - -} // namespace - -EffectStateFactory *ReverbStateFactory_getFactory() -{ - static ReverbStateFactory ReverbFactory{}; - return &ReverbFactory; -} - -EffectStateFactory *StdReverbStateFactory_getFactory() -{ - static StdReverbStateFactory ReverbFactory{}; - return &ReverbFactory; -} |