aboutsummaryrefslogtreecommitdiffstats
path: root/utils/uhjdecoder.cpp
diff options
context:
space:
mode:
authorSven Gothel <[email protected]>2023-05-03 16:17:49 +0200
committerSven Gothel <[email protected]>2023-05-03 16:17:49 +0200
commitec167fd05661a5b02dd406c87081f84a0f8dd77d (patch)
tree9c4669e471c9969bda59265381b18d2d416db060 /utils/uhjdecoder.cpp
parent0d14d30808cfe7b9e3413353e3eef8a0f201399a (diff)
parentd3875f333fb6abe2f39d82caca329414871ae53b (diff)
Merge branch 'v1.23.1'
Resolved Conflicts: CMakeLists.txt
Diffstat (limited to 'utils/uhjdecoder.cpp')
-rw-r--r--utils/uhjdecoder.cpp538
1 files changed, 538 insertions, 0 deletions
diff --git a/utils/uhjdecoder.cpp b/utils/uhjdecoder.cpp
new file mode 100644
index 00000000..6d992e30
--- /dev/null
+++ b/utils/uhjdecoder.cpp
@@ -0,0 +1,538 @@
+/*
+ * 2-channel UHJ Decoder
+ *
+ * Copyright (c) Chris Robinson <[email protected]>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "config.h"
+
+#include <array>
+#include <complex>
+#include <cstring>
+#include <memory>
+#include <stddef.h>
+#include <string>
+#include <utility>
+#include <vector>
+
+#include "albit.h"
+#include "albyte.h"
+#include "alcomplex.h"
+#include "almalloc.h"
+#include "alnumbers.h"
+#include "alspan.h"
+#include "vector.h"
+#include "opthelpers.h"
+#include "phase_shifter.h"
+
+#include "sndfile.h"
+
+#include "win_main_utf8.h"
+
+
+struct FileDeleter {
+ void operator()(FILE *file) { fclose(file); }
+};
+using FilePtr = std::unique_ptr<FILE,FileDeleter>;
+
+struct SndFileDeleter {
+ void operator()(SNDFILE *sndfile) { sf_close(sndfile); }
+};
+using SndFilePtr = std::unique_ptr<SNDFILE,SndFileDeleter>;
+
+
+using ubyte = unsigned char;
+using ushort = unsigned short;
+using uint = unsigned int;
+using complex_d = std::complex<double>;
+
+using byte4 = std::array<al::byte,4>;
+
+
+constexpr ubyte SUBTYPE_BFORMAT_FLOAT[]{
+ 0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1,
+ 0xca, 0x00, 0x00, 0x00
+};
+
+void fwrite16le(ushort val, FILE *f)
+{
+ ubyte data[2]{ static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff) };
+ fwrite(data, 1, 2, f);
+}
+
+void fwrite32le(uint val, FILE *f)
+{
+ ubyte data[4]{ static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff),
+ static_cast<ubyte>((val>>16)&0xff), static_cast<ubyte>((val>>24)&0xff) };
+ fwrite(data, 1, 4, f);
+}
+
+template<al::endian = al::endian::native>
+byte4 f32AsLEBytes(const float &value) = delete;
+
+template<>
+byte4 f32AsLEBytes<al::endian::little>(const float &value)
+{
+ byte4 ret{};
+ std::memcpy(ret.data(), &value, 4);
+ return ret;
+}
+template<>
+byte4 f32AsLEBytes<al::endian::big>(const float &value)
+{
+ byte4 ret{};
+ std::memcpy(ret.data(), &value, 4);
+ std::swap(ret[0], ret[3]);
+ std::swap(ret[1], ret[2]);
+ return ret;
+}
+
+
+constexpr uint BufferLineSize{1024};
+
+using FloatBufferLine = std::array<float,BufferLineSize>;
+using FloatBufferSpan = al::span<float,BufferLineSize>;
+
+
+struct UhjDecoder {
+ constexpr static size_t sFilterDelay{1024};
+
+ alignas(16) std::array<float,BufferLineSize+sFilterDelay> mS{};
+ alignas(16) std::array<float,BufferLineSize+sFilterDelay> mD{};
+ alignas(16) std::array<float,BufferLineSize+sFilterDelay> mT{};
+ alignas(16) std::array<float,BufferLineSize+sFilterDelay> mQ{};
+
+ /* History for the FIR filter. */
+ alignas(16) std::array<float,sFilterDelay-1> mDTHistory{};
+ alignas(16) std::array<float,sFilterDelay-1> mSHistory{};
+
+ alignas(16) std::array<float,BufferLineSize + sFilterDelay*2> mTemp{};
+
+ void decode(const float *RESTRICT InSamples, const size_t InChannels,
+ const al::span<FloatBufferLine> OutSamples, const size_t SamplesToDo);
+ void decode2(const float *RESTRICT InSamples, const al::span<FloatBufferLine> OutSamples,
+ const size_t SamplesToDo);
+
+ DEF_NEWDEL(UhjDecoder)
+};
+
+const PhaseShifterT<UhjDecoder::sFilterDelay*2> PShift{};
+
+
+/* Decoding UHJ is done as:
+ *
+ * S = Left + Right
+ * D = Left - Right
+ *
+ * W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T)
+ * X = 0.418496*S - j(0.828331*D + 0.767820*T)
+ * Y = 0.795968*D - 0.676392*T + j(0.186633*S)
+ * Z = 1.023332*Q
+ *
+ * where j is a +90 degree phase shift. 3-channel UHJ excludes Q, while 2-
+ * channel excludes Q and T. The B-Format signal reconstructed from 2-channel
+ * UHJ should not be run through a normal B-Format decoder, as it needs
+ * different shelf filters.
+ *
+ * NOTE: Some sources specify
+ *
+ * S = (Left + Right)/2
+ * D = (Left - Right)/2
+ *
+ * However, this is incorrect. It's halving Left and Right even though they
+ * were already halved during encoding, causing S and D to be half what they
+ * initially were at the encoding stage. This division is not present in
+ * Gerzon's original paper for deriving Sigma (S) or Delta (D) from the L and R
+ * signals. As proof, taking Y for example:
+ *
+ * Y = 0.795968*D - 0.676392*T + j(0.186633*S)
+ *
+ * * Plug in the encoding parameters, using ? as a placeholder for whether S
+ * and D should receive an extra 0.5 factor
+ * Y = 0.795968*(j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y)*? -
+ * 0.676392*(j(-0.1432*W + 0.6512*X) - 0.7071068*Y) +
+ * 0.186633*j(0.9396926*W + 0.1855740*X)*?
+ *
+ * * Move common factors in
+ * Y = (j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y) -
+ * (j(-0.1432*0.676392*W + 0.6512*0.676392*X) - 0.7071068*0.676392*Y) +
+ * j(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
+ *
+ * * Clean up extraneous groupings
+ * Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y -
+ * j(-0.1432*0.676392*W + 0.6512*0.676392*X) + 0.7071068*0.676392*Y +
+ * j*(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
+ *
+ * * Move phase shifts together and combine them
+ * Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X - -0.1432*0.676392*W -
+ * 0.6512*0.676392*X + 0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X) +
+ * 0.6554516*0.795968*?*Y + 0.7071068*0.676392*Y
+ *
+ * * Reorder terms
+ * Y = j(-0.3420201*0.795968*?*W + 0.1432*0.676392*W + 0.9396926*0.186633*?*W +
+ * 0.5098604*0.795968*?*X + -0.6512*0.676392*X + 0.1855740*0.186633*?*X) +
+ * 0.7071068*0.676392*Y + 0.6554516*0.795968*?*Y
+ *
+ * * Move common factors out
+ * Y = j((-0.3420201*0.795968*? + 0.1432*0.676392 + 0.9396926*0.186633*?)*W +
+ * ( 0.5098604*0.795968*? + -0.6512*0.676392 + 0.1855740*0.186633*?)*X) +
+ * (0.7071068*0.676392 + 0.6554516*0.795968*?)*Y
+ *
+ * * Result w/ 0.5 factor:
+ * -0.3420201*0.795968*0.5 + 0.1432*0.676392 + 0.9396926*0.186633*0.5 = 0.04843*W
+ * 0.5098604*0.795968*0.5 + -0.6512*0.676392 + 0.1855740*0.186633*0.5 = -0.22023*X
+ * 0.7071068*0.676392 + 0.6554516*0.795968*0.5 = 0.73914*Y
+ * -> Y = j(0.04843*W + -0.22023*X) + 0.73914*Y
+ *
+ * * Result w/o 0.5 factor:
+ * -0.3420201*0.795968 + 0.1432*0.676392 + 0.9396926*0.186633 = 0.00000*W
+ * 0.5098604*0.795968 + -0.6512*0.676392 + 0.1855740*0.186633 = 0.00000*X
+ * 0.7071068*0.676392 + 0.6554516*0.795968 = 1.00000*Y
+ * -> Y = j(0.00000*W + 0.00000*X) + 1.00000*Y
+ *
+ * Not halving produces a result matching the original input.
+ */
+void UhjDecoder::decode(const float *RESTRICT InSamples, const size_t InChannels,
+ const al::span<FloatBufferLine> OutSamples, const size_t SamplesToDo)
+{
+ ASSUME(SamplesToDo > 0);
+
+ float *woutput{OutSamples[0].data()};
+ float *xoutput{OutSamples[1].data()};
+ float *youtput{OutSamples[2].data()};
+
+ /* Add a delay to the input channels, to align it with the all-passed
+ * signal.
+ */
+
+ /* S = Left + Right */
+ for(size_t i{0};i < SamplesToDo;++i)
+ mS[sFilterDelay+i] = InSamples[i*InChannels + 0] + InSamples[i*InChannels + 1];
+
+ /* D = Left - Right */
+ for(size_t i{0};i < SamplesToDo;++i)
+ mD[sFilterDelay+i] = InSamples[i*InChannels + 0] - InSamples[i*InChannels + 1];
+
+ if(InChannels > 2)
+ {
+ /* T */
+ for(size_t i{0};i < SamplesToDo;++i)
+ mT[sFilterDelay+i] = InSamples[i*InChannels + 2];
+ }
+ if(InChannels > 3)
+ {
+ /* Q */
+ for(size_t i{0};i < SamplesToDo;++i)
+ mQ[sFilterDelay+i] = InSamples[i*InChannels + 3];
+ }
+
+ /* Precompute j(0.828331*D + 0.767820*T) and store in xoutput. */
+ auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
+ std::transform(mD.cbegin(), mD.cbegin()+SamplesToDo+sFilterDelay, mT.cbegin(), tmpiter,
+ [](const float d, const float t) noexcept { return 0.828331f*d + 0.767820f*t; });
+ std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
+ PShift.process({xoutput, SamplesToDo}, mTemp.data());
+
+ for(size_t i{0};i < SamplesToDo;++i)
+ {
+ /* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T) */
+ woutput[i] = 0.981532f*mS[i] + 0.197484f*xoutput[i];
+ /* X = 0.418496*S - j(0.828331*D + 0.767820*T) */
+ xoutput[i] = 0.418496f*mS[i] - xoutput[i];
+ }
+
+ /* Precompute j*S and store in youtput. */
+ tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
+ std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
+ std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
+ PShift.process({youtput, SamplesToDo}, mTemp.data());
+
+ for(size_t i{0};i < SamplesToDo;++i)
+ {
+ /* Y = 0.795968*D - 0.676392*T + j(0.186633*S) */
+ youtput[i] = 0.795968f*mD[i] - 0.676392f*mT[i] + 0.186633f*youtput[i];
+ }
+
+ if(OutSamples.size() > 3)
+ {
+ float *zoutput{OutSamples[3].data()};
+ /* Z = 1.023332*Q */
+ for(size_t i{0};i < SamplesToDo;++i)
+ zoutput[i] = 1.023332f*mQ[i];
+ }
+
+ std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
+ std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
+ std::copy(mT.begin()+SamplesToDo, mT.begin()+SamplesToDo+sFilterDelay, mT.begin());
+ std::copy(mQ.begin()+SamplesToDo, mQ.begin()+SamplesToDo+sFilterDelay, mQ.begin());
+}
+
+/* This is an alternative equation for decoding 2-channel UHJ. Not sure what
+ * the intended benefit is over the above equation as this slightly reduces the
+ * amount of the original left response and has more of the phase-shifted
+ * forward response on the left response.
+ *
+ * This decoding is done as:
+ *
+ * S = Left + Right
+ * D = Left - Right
+ *
+ * W = 0.981530*S + j*0.163585*D
+ * X = 0.418504*S - j*0.828347*D
+ * Y = 0.762956*D + j*0.384230*S
+ *
+ * where j is a +90 degree phase shift.
+ *
+ * NOTE: As above, S and D should not be halved. The only consequence of
+ * halving here is merely a -6dB reduction in output, but it's still incorrect.
+ */
+void UhjDecoder::decode2(const float *RESTRICT InSamples,
+ const al::span<FloatBufferLine> OutSamples, const size_t SamplesToDo)
+{
+ ASSUME(SamplesToDo > 0);
+
+ float *woutput{OutSamples[0].data()};
+ float *xoutput{OutSamples[1].data()};
+ float *youtput{OutSamples[2].data()};
+
+ /* S = Left + Right */
+ for(size_t i{0};i < SamplesToDo;++i)
+ mS[sFilterDelay+i] = InSamples[i*2 + 0] + InSamples[i*2 + 1];
+
+ /* D = Left - Right */
+ for(size_t i{0};i < SamplesToDo;++i)
+ mD[sFilterDelay+i] = InSamples[i*2 + 0] - InSamples[i*2 + 1];
+
+ /* Precompute j*D and store in xoutput. */
+ auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
+ std::copy_n(mD.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
+ std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
+ PShift.process({xoutput, SamplesToDo}, mTemp.data());
+
+ for(size_t i{0};i < SamplesToDo;++i)
+ {
+ /* W = 0.981530*S + j*0.163585*D */
+ woutput[i] = 0.981530f*mS[i] + 0.163585f*xoutput[i];
+ /* X = 0.418504*S - j*0.828347*D */
+ xoutput[i] = 0.418504f*mS[i] - 0.828347f*xoutput[i];
+ }
+
+ /* Precompute j*S and store in youtput. */
+ tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
+ std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
+ std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
+ PShift.process({youtput, SamplesToDo}, mTemp.data());
+
+ for(size_t i{0};i < SamplesToDo;++i)
+ {
+ /* Y = 0.762956*D + j*0.384230*S */
+ youtput[i] = 0.762956f*mD[i] + 0.384230f*youtput[i];
+ }
+
+ std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
+ std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
+}
+
+
+int main(int argc, char **argv)
+{
+ if(argc < 2 || std::strcmp(argv[1], "-h") == 0 || std::strcmp(argv[1], "--help") == 0)
+ {
+ printf("Usage: %s <[options] filename.wav...>\n\n"
+ " Options:\n"
+ " --general Use the general equations for 2-channel UHJ (default).\n"
+ " --alternative Use the alternative equations for 2-channel UHJ.\n"
+ "\n"
+ "Note: When decoding 2-channel UHJ to an .amb file, the result should not use\n"
+ "the normal B-Format shelf filters! Only 3- and 4-channel UHJ can accurately\n"
+ "reconstruct the original B-Format signal.",
+ argv[0]);
+ return 1;
+ }
+
+ size_t num_files{0}, num_decoded{0};
+ bool use_general{true};
+ for(int fidx{1};fidx < argc;++fidx)
+ {
+ if(std::strcmp(argv[fidx], "--general") == 0)
+ {
+ use_general = true;
+ continue;
+ }
+ if(std::strcmp(argv[fidx], "--alternative") == 0)
+ {
+ use_general = false;
+ continue;
+ }
+ ++num_files;
+ SF_INFO ininfo{};
+ SndFilePtr infile{sf_open(argv[fidx], SFM_READ, &ininfo)};
+ if(!infile)
+ {
+ fprintf(stderr, "Failed to open %s\n", argv[fidx]);
+ continue;
+ }
+ if(sf_command(infile.get(), SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
+ {
+ fprintf(stderr, "%s is already B-Format\n", argv[fidx]);
+ continue;
+ }
+ uint outchans{};
+ if(ininfo.channels == 2)
+ outchans = 3;
+ else if(ininfo.channels == 3 || ininfo.channels == 4)
+ outchans = static_cast<uint>(ininfo.channels);
+ else
+ {
+ fprintf(stderr, "%s is not a 2-, 3-, or 4-channel file\n", argv[fidx]);
+ continue;
+ }
+ printf("Converting %s from %d-channel UHJ%s...\n", argv[fidx], ininfo.channels,
+ (ininfo.channels == 2) ? use_general ? " (general)" : " (alternative)" : "");
+
+ std::string outname{argv[fidx]};
+ auto lastslash = outname.find_last_of('/');
+ if(lastslash != std::string::npos)
+ outname.erase(0, lastslash+1);
+ auto lastdot = outname.find_last_of('.');
+ if(lastdot != std::string::npos)
+ outname.resize(lastdot+1);
+ outname += "amb";
+
+ FilePtr outfile{fopen(outname.c_str(), "wb")};
+ if(!outfile)
+ {
+ fprintf(stderr, "Failed to create %s\n", outname.c_str());
+ continue;
+ }
+
+ fputs("RIFF", outfile.get());
+ fwrite32le(0xFFFFFFFF, outfile.get()); // 'RIFF' header len; filled in at close
+
+ fputs("WAVE", outfile.get());
+
+ fputs("fmt ", outfile.get());
+ fwrite32le(40, outfile.get()); // 'fmt ' header len; 40 bytes for EXTENSIBLE
+
+ // 16-bit val, format type id (extensible: 0xFFFE)
+ fwrite16le(0xFFFE, outfile.get());
+ // 16-bit val, channel count
+ fwrite16le(static_cast<ushort>(outchans), outfile.get());
+ // 32-bit val, frequency
+ fwrite32le(static_cast<uint>(ininfo.samplerate), outfile.get());
+ // 32-bit val, bytes per second
+ fwrite32le(static_cast<uint>(ininfo.samplerate)*sizeof(float)*outchans, outfile.get());
+ // 16-bit val, frame size
+ fwrite16le(static_cast<ushort>(sizeof(float)*outchans), outfile.get());
+ // 16-bit val, bits per sample
+ fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
+ // 16-bit val, extra byte count
+ fwrite16le(22, outfile.get());
+ // 16-bit val, valid bits per sample
+ fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
+ // 32-bit val, channel mask
+ fwrite32le(0, outfile.get());
+ // 16 byte GUID, sub-type format
+ fwrite(SUBTYPE_BFORMAT_FLOAT, 1, 16, outfile.get());
+
+ fputs("data", outfile.get());
+ fwrite32le(0xFFFFFFFF, outfile.get()); // 'data' header len; filled in at close
+ if(ferror(outfile.get()))
+ {
+ fprintf(stderr, "Error writing wave file header: %s (%d)\n", strerror(errno), errno);
+ continue;
+ }
+
+ auto DataStart = ftell(outfile.get());
+
+ auto decoder = std::make_unique<UhjDecoder>();
+ auto inmem = std::make_unique<float[]>(BufferLineSize*static_cast<uint>(ininfo.channels));
+ auto decmem = al::vector<std::array<float,BufferLineSize>, 16>(outchans);
+ auto outmem = std::make_unique<byte4[]>(BufferLineSize*outchans);
+
+ /* A number of initial samples need to be skipped to cut the lead-in
+ * from the all-pass filter delay. The same number of samples need to
+ * be fed through the decoder after reaching the end of the input file
+ * to ensure none of the original input is lost.
+ */
+ size_t LeadIn{UhjDecoder::sFilterDelay};
+ sf_count_t LeadOut{UhjDecoder::sFilterDelay};
+ while(LeadOut > 0)
+ {
+ sf_count_t sgot{sf_readf_float(infile.get(), inmem.get(), BufferLineSize)};
+ sgot = std::max<sf_count_t>(sgot, 0);
+ if(sgot < BufferLineSize)
+ {
+ const sf_count_t remaining{std::min(BufferLineSize - sgot, LeadOut)};
+ std::fill_n(inmem.get() + sgot*ininfo.channels, remaining*ininfo.channels, 0.0f);
+ sgot += remaining;
+ LeadOut -= remaining;
+ }
+
+ auto got = static_cast<size_t>(sgot);
+ if(ininfo.channels > 2 || use_general)
+ decoder->decode(inmem.get(), static_cast<uint>(ininfo.channels), decmem, got);
+ else
+ decoder->decode2(inmem.get(), decmem, got);
+ if(LeadIn >= got)
+ {
+ LeadIn -= got;
+ continue;
+ }
+
+ got -= LeadIn;
+ for(size_t i{0};i < got;++i)
+ {
+ /* Attenuate by -3dB for FuMa output levels. */
+ constexpr auto inv_sqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
+ for(size_t j{0};j < outchans;++j)
+ outmem[i*outchans + j] = f32AsLEBytes(decmem[j][LeadIn+i] * inv_sqrt2);
+ }
+ LeadIn = 0;
+
+ size_t wrote{fwrite(outmem.get(), sizeof(byte4)*outchans, got, outfile.get())};
+ if(wrote < got)
+ {
+ fprintf(stderr, "Error writing wave data: %s (%d)\n", strerror(errno), errno);
+ break;
+ }
+ }
+
+ auto DataEnd = ftell(outfile.get());
+ if(DataEnd > DataStart)
+ {
+ long dataLen{DataEnd - DataStart};
+ if(fseek(outfile.get(), 4, SEEK_SET) == 0)
+ fwrite32le(static_cast<uint>(DataEnd-8), outfile.get()); // 'WAVE' header len
+ if(fseek(outfile.get(), DataStart-4, SEEK_SET) == 0)
+ fwrite32le(static_cast<uint>(dataLen), outfile.get()); // 'data' header len
+ }
+ fflush(outfile.get());
+ ++num_decoded;
+ }
+ if(num_decoded == 0)
+ fprintf(stderr, "Failed to decode any input files\n");
+ else if(num_decoded < num_files)
+ fprintf(stderr, "Decoded %zu of %zu files\n", num_decoded, num_files);
+ else
+ printf("Decoded %zu file%s\n", num_decoded, (num_decoded==1)?"":"s");
+ return 0;
+}