diff options
Diffstat (limited to 'src/jogl/classes/com/jogamp/graph/geom/plane/Path2F.java')
-rw-r--r-- | src/jogl/classes/com/jogamp/graph/geom/plane/Path2F.java | 603 |
1 files changed, 603 insertions, 0 deletions
diff --git a/src/jogl/classes/com/jogamp/graph/geom/plane/Path2F.java b/src/jogl/classes/com/jogamp/graph/geom/plane/Path2F.java new file mode 100644 index 000000000..588232d9a --- /dev/null +++ b/src/jogl/classes/com/jogamp/graph/geom/plane/Path2F.java @@ -0,0 +1,603 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +/** + * @author Denis M. Kishenko + * @author Sven Gothel + */ +package com.jogamp.graph.geom.plane; + +import java.io.PrintStream; +import java.util.NoSuchElementException; + +import com.jogamp.opengl.math.geom.AABBox; + +/** + * Path2F represents and provides construction method for a 2D shape using float[2] points. + */ +public final class Path2F implements Cloneable { + static final String invalidWindingRuleValue = "Invalid winding rule value"; + static final String iteratorOutOfBounds = "Iterator out of bounds"; + + /** A Path2D segment type */ + public static enum SegmentType { + MOVETO(1), + LINETO(1), + QUADTO(2), + CUBICTO(3), + CLOSE(0); + + /** Number of points associated with this segment type */ + public final int point_count; + + /** Return the integer segment type value as a byte */ + public byte integer() { + return (byte) this.ordinal(); + } + + /** Return the SegmentType associated with the integer segment type */ + public static SegmentType valueOf(final int type) { + switch( type ) { + case 0: return MOVETO; + case 1: return LINETO; + case 2: return QUADTO; + case 3: return CUBICTO; + case 4: return CLOSE; + default: + throw new IllegalArgumentException("Unhandled Segment Type: "+type); + } + } + + /** Return the number of points associated with the integer segment type */ + public static int getPointCount(final int type) { + switch( type ) { + case 0: return MOVETO.point_count; + case 1: return LINETO.point_count; + case 2: return QUADTO.point_count; + case 3: return CUBICTO.point_count; + case 4: return CLOSE.point_count; + default: + throw new IllegalArgumentException("Unhandled Segment Type: "+type); + } + } + + SegmentType(final int v) { + this.point_count = v; + } + } + + /** + * The buffers size + */ + private static final int BUFFER_SIZE = 10; + + /** + * The buffers capacity + */ + private static final int BUFFER_CAPACITY = 10; + + /** + * The point's types buffer + */ + private byte[] m_types; + + /** + * The points buffer + */ + private float[] m_points; + + /** + * The point's type buffer size + */ + private int m_typeSize; + + /** + * The points buffer size + */ + private int m_pointSize; + + /** + * The winding path rule + */ + private WindingRule m_rule; + + /* + * GeneralPath path iterator + */ + public static final class Iterator { + + /** + * The source GeneralPath object + */ + private final Path2F p; + + /** + * The path iterator transformation + */ + private final AffineTransform t; + + /** + * The current cursor position in types buffer + */ + private int typeIndex; + + /** + * The current cursor position in points buffer + */ + private int pointIndex; + + /** + * Constructs a new GeneralPath.Iterator for given general path + * @param path - the source GeneralPath object + */ + Iterator(final Path2F path) { + this(path, null); + } + + /** + * Constructs a new GeneralPath.Iterator for given general path and transformation + * @param path - the source GeneralPath object + * @param at - the AffineTransform object to apply rectangle path + */ + public Iterator(final Path2F path, final AffineTransform at) { + this.p = path; + this.t = at; + reset(); + } + + private void reset() { + typeIndex = 0; + pointIndex = 0; + } + + /** Return the {@link WindingRule} set */ + public WindingRule getWindingRule() { + return p.getWindingRule(); + } + + /** + * Compute the general winding of the vertices + * @return CCW or CW {@link Winding} + */ + public Winding getWinding() { + return area() >= 0 ? Winding.CCW : Winding.CW ; + } + + /** Returns reference of the point array covering the whole iteration of Path2D, use {@link #index()} to access the current point. */ + public float[] points() { return p.m_points; } + + /** Return the {@link #points()} index for the current segment. */ + public int index() { return pointIndex; } + + /** Return current segment type */ + public SegmentType getType() { return SegmentType.valueOf( p.m_types[typeIndex] ); } + + /** + * Return the current segment type and copies the current segment's points to given storage + * @param coords storage for current segment's points + * @return current segment type + * @see #points() + * @see #type_index() + * @see #getType() + * @deprecated try to use {@link #index()}, {@link #points()} and {@link #next()} to avoid copying + */ + @Deprecated + public SegmentType currentSegment(final float[] coords) { + if (!hasNext()) { + throw new NoSuchElementException(iteratorOutOfBounds); + } + final SegmentType type = getType(); + final int count = type.point_count; + System.arraycopy(p.m_points, pointIndex, coords, 0, count*2); + if (t != null) { + t.transform(coords, 0, coords, 0, count); + } + return type; + } + + /** Returns true if the iteration has more elements. */ + public boolean hasNext() { + return typeIndex < p.m_typeSize; + } + + /** Returns the current segment type in the iteration, then moving to the next path segment. */ + public SegmentType next() { + final SegmentType t = getType(); + pointIndex += 2 * t.point_count; + ++typeIndex; + return t; + } + + /** + * Computes the area of the path to check if ccw + * @return positive area if ccw else negative area value + */ + private float area() { + float area = 0.0f; + final float[] points = points(); + final float[] pCoord = new float[2]; + while ( hasNext() ) { + final int idx = index(); + final SegmentType type = next(); + switch ( type ) { + case MOVETO: + pCoord[0] = points[idx+0]; + pCoord[1] = points[idx+1]; + break; + case LINETO: + area += pCoord[0] * points[idx+1] - points[idx+0] * pCoord[1]; + pCoord[0] = points[idx+0]; + pCoord[1] = points[idx+1]; + break; + case QUADTO: + area += pCoord[0] * points[idx+1] - points[idx+0] * pCoord[1]; + area += points[idx+0] * points[idx+3] - points[idx+2] * points[idx+1]; + pCoord[0] = points[idx+2]; + pCoord[1] = points[idx+3]; + break; + case CUBICTO: + area += pCoord[0] * points[idx+1] - points[idx+0] * pCoord[1]; + area += points[idx+0] * points[idx+3] - points[idx+2] * points[idx+1]; + area += points[idx+2] * points[idx+5] - points[idx+4] * points[idx+3]; + pCoord[0] = points[idx+4]; + pCoord[1] = points[idx+5]; + break; + case CLOSE: + break; + } + } + reset(); + return area; + } + } + + public Path2F() { + this(WindingRule.NON_ZERO, BUFFER_SIZE, BUFFER_SIZE); + } + + public Path2F(final WindingRule rule) { + this(rule, BUFFER_SIZE, BUFFER_SIZE); + } + + public Path2F(final WindingRule rule, final int initialCapacity) { + this(rule, initialCapacity, initialCapacity); + } + + public Path2F(final WindingRule rule, final int initialTypeCapacity, final int initialPointCapacity) { + setWindingRule(rule); + m_types = new byte[initialTypeCapacity]; + m_points = new float[initialPointCapacity * 2]; + } + + public Path2F(final Path2F path) { + this(WindingRule.NON_ZERO, BUFFER_SIZE); + final Iterator p = path.iterator(null); + setWindingRule(p.getWindingRule()); + append(p, false); + } + + /** Set the {@link WindingRule} set */ + public void setWindingRule(final WindingRule rule) { + this.m_rule = rule; + } + + /** Return the {@link WindingRule} set */ + public WindingRule getWindingRule() { + return m_rule; + } + + /** + * Checks points and types buffer size to add pointCount points. If necessary realloc buffers to enlarge size. + * @param pointCount - the point count to be added in buffer + */ + private void checkBuf(final int pointCount, final boolean checkMove) { + if (checkMove && m_typeSize == 0) { + throw new IllegalPathStateException("First segment should be SEG_MOVETO type"); + } + if (m_typeSize == m_types.length) { + final byte tmp[] = new byte[m_typeSize + BUFFER_CAPACITY]; + System.arraycopy(m_types, 0, tmp, 0, m_typeSize); + m_types = tmp; + } + if (m_pointSize + pointCount > m_points.length) { + final float tmp[] = new float[m_pointSize + Math.max(BUFFER_CAPACITY * 2, pointCount)]; + System.arraycopy(m_points, 0, tmp, 0, m_pointSize); + m_points = tmp; + } + } + + /** + * Start a new position for the next line segment at given point x/y (P1). + * @param x point (P1) + * @param y point (P1) + */ + public void moveTo(final float x, final float y) { + if ( m_typeSize > 0 && m_types[m_typeSize - 1] == SegmentType.MOVETO.integer() ) { + m_points[m_pointSize - 2] = x; + m_points[m_pointSize - 1] = y; + } else { + checkBuf(2, false); + m_types[m_typeSize++] = SegmentType.MOVETO.integer(); + m_points[m_pointSize++] = x; + m_points[m_pointSize++] = y; + } + } + + /** + * Add a line segment, intersecting the last point and the given point x/y (P1). + * @param x final point (P1) + * @param y final point (P1) + */ + public void lineTo(final float x, final float y) { + checkBuf(2, true); + m_types[m_typeSize++] = SegmentType.LINETO.integer(); + m_points[m_pointSize++] = x; + m_points[m_pointSize++] = y; + } + + /** + * Add a quadratic curve segment, intersecting the last point and the second given point x2/y2 (P2). + * @param x1 quadratic parametric control point (P1) + * @param y1 quadratic parametric control point (P1) + * @param x2 final interpolated control point (P2) + * @param y2 final interpolated control point (P2) + */ + public void quadTo(final float x1, final float y1, final float x2, final float y2) { + checkBuf(4, true); + m_types[m_typeSize++] = SegmentType.QUADTO.integer(); + m_points[m_pointSize++] = x1; + m_points[m_pointSize++] = y1; + m_points[m_pointSize++] = x2; + m_points[m_pointSize++] = y2; + } + + /** + * Add a cubic Bézier curve segment, intersecting the last point and the second given point x3/y3 (P3). + * @param x1 Bézier control point (P1) + * @param y1 Bézier control point (P1) + * @param x2 Bézier control point (P2) + * @param y2 Bézier control point (P2) + * @param x3 final interpolated control point (P3) + * @param y3 final interpolated control point (P3) + */ + public void cubicTo(final float x1, final float y1, final float x2, final float y2, final float x3, final float y3) { + checkBuf(6, true); + m_types[m_typeSize++] = SegmentType.CUBICTO.integer(); + m_points[m_pointSize++] = x1; + m_points[m_pointSize++] = y1; + m_points[m_pointSize++] = x2; + m_points[m_pointSize++] = y2; + m_points[m_pointSize++] = x3; + m_points[m_pointSize++] = y3; + } + + /** + * Closes the current sub-path segment by drawing a straight line back to the coordinates of the last moveTo. If the path is already closed then this method has no effect. + */ + public void closePath() { + if (!isClosed()) { + checkBuf(0, true); + m_types[m_typeSize++] = SegmentType.CLOSE.integer(); + } + } + + final public int size() { + return m_typeSize; + } + + /** + * Returns true if the last sub-path is closed, otherwise false. + */ + final public boolean isClosed() { + return m_typeSize > 0 && m_types[m_typeSize - 1] == SegmentType.CLOSE.integer() ; + } + + /** + * Compute the general winding of the vertices + * @param vertices array of Vertices + * @return CCW or CW {@link Winding} + */ + public Winding getWinding() { + return iterator(null).getWinding(); + } + + @Override + public String toString() { + return "[size "+size()+", closed "+isClosed()+", winding[rule "+getWindingRule()+", "+getWinding()+"]]"; + } + + /** + * Append the given path geometry to this instance + * @param path the {@link Path2F} to append to this instance + * @param connect pass true to turn an initial moveTo segment into a lineTo segment to connect the new geometry to the existing path, otherwise pass false. + */ + public void append(final Path2F path, final boolean connect) { + append(path.iterator(null), connect); + } + + /** + * Append the given path geometry to this instance + * @param path the {@link Path2F.Iterator} to append to this instance + * @param connect pass true to turn an initial moveTo segment into a lineTo segment to connect the new geometry to the existing path, otherwise pass false. + */ + public void append(final Iterator path, boolean connect) { + final float[] points = path.points(); + while ( path.hasNext() ) { + final int idx = path.index(); + final SegmentType type = path.next(); + switch ( type ) { + case MOVETO: + if ( !connect || 0 == m_typeSize ) { + moveTo(points[idx+0], points[idx+1]); + break; + } + if ( m_types[m_typeSize - 1] != SegmentType.CLOSE.integer() && + m_points[m_pointSize - 2] == points[idx+0] && + m_points[m_pointSize - 1] == points[idx+1] + ) + { + break; + } + // fallthrough: MOVETO -> LINETO + case LINETO: + lineTo(points[idx+0], points[idx+1]); + break; + case QUADTO: + quadTo(points[idx+0], points[idx+1], points[idx+2], points[idx+3]); + break; + case CUBICTO: + cubicTo(points[idx+0], points[idx+1], points[idx+2], points[idx+3], points[idx+4], points[idx+5]); + break; + case CLOSE: + closePath(); + break; + } + connect = false; + } + } + + public void printSegments(final PrintStream out) { + final Iterator path = iterator(); + final float[] points = path.points(); + int i = 0; + while ( path.hasNext() ) { + final int idx = path.index(); + final SegmentType type = path.next(); + switch ( type ) { + case MOVETO: + out.printf("%2d: moveTo(%.4f/%.4f)%n", i, points[idx+0], points[idx+1]); + break; + case LINETO: + out.printf("%2d: lineTo(%.4f/%.4f)%n", i, points[idx+0], points[idx+1]); + break; + case QUADTO: + out.printf("%2d: quadTo(%.4f/%.4f, %.4f/%.4f)%n", i, points[idx+0], points[idx+1], points[idx+2], points[idx+3]); + break; + case CUBICTO: + out.printf("%2d: cubicTo(%.4f/%.4f, %.4f/%.4f, %.4f/%.4f)%n", i, points[idx+0], points[idx+1], points[idx+2], points[idx+3], points[idx+4], points[idx+5]); + break; + case CLOSE: + out.printf("%2d: closePath()%n", i); + break; + } + ++i; + } + } + + public void reset() { + m_typeSize = 0; + m_pointSize = 0; + } + + public void transform(final AffineTransform t) { + t.transform(m_points, 0, m_points, 0, m_pointSize / 2); + } + + public Path2F createTransformedShape(final AffineTransform t) { + final Path2F p = (Path2F)clone(); + if (t != null) { + p.transform(t); + } + return p; + } + + public final synchronized AABBox getBounds2D() { + float rx1, ry1, rx2, ry2; + if (m_pointSize == 0) { + rx1 = ry1 = rx2 = ry2 = 0.0f; + } else { + int i = m_pointSize - 1; + ry1 = ry2 = m_points[i--]; + rx1 = rx2 = m_points[i--]; + while (i > 0) { + final float y = m_points[i--]; + final float x = m_points[i--]; + if (x < rx1) { + rx1 = x; + } else + if (x > rx2) { + rx2 = x; + } + if (y < ry1) { + ry1 = y; + } else + if (y > ry2) { + ry2 = y; + } + } + } + return new AABBox(rx1, ry1, 0f, rx2, ry2, 0f); + } + + /** + * Checks cross count according to path rule to define is it point inside shape or not. + * @param cross - the point cross count + * @return true if point is inside path, or false otherwise + */ + boolean isInside(final int cross) { + if (m_rule == WindingRule.NON_ZERO) { + return Crossing2F.isInsideNonZero(cross); + } + return Crossing2F.isInsideEvenOdd(cross); + } + + public boolean contains(final float px, final float py) { + return isInside(Crossing2F.crossShape(this, px, py)); + } + + public boolean contains(final float rx, final float ry, final float rw, final float rh) { + final int cross = Crossing2F.intersectShape(this, rx, ry, rw, rh); + return cross != Crossing2F.CROSSING && isInside(cross); + } + + public boolean intersects(final float rx, final float ry, final float rw, final float rh) { + final int cross = Crossing2F.intersectShape(this, rx, ry, rw, rh); + return cross == Crossing2F.CROSSING || isInside(cross); + } + + public boolean contains(final AABBox r) { + return contains(r.getMinX(), r.getMinY(), r.getWidth(), r.getHeight()); + } + + public boolean intersects(final AABBox r) { + return intersects(r.getMinX(), r.getMinY(), r.getWidth(), r.getHeight()); + } + + public Iterator iterator() { + return new Iterator(this); + } + + public Iterator iterator(final AffineTransform t) { + return new Iterator(this, t); + } + + /* public Path2F.Iterator getPathIterator(AffineTransform t, float flatness) { + return new FlatteningPathIterator(getPathIterator(t), flatness); + } */ + + @Override + public Object clone() { + try { + final Path2F p = (Path2F) super.clone(); + p.m_types = m_types.clone(); + p.m_points = m_points.clone(); + return p; + } catch (final CloneNotSupportedException e) { + throw new InternalError(); + } + } +} + |