aboutsummaryrefslogtreecommitdiffstats
path: root/src/classes/com/sun/opengl/impl/tessellator/Sweep.java
diff options
context:
space:
mode:
authorKenneth Russel <[email protected]>2005-10-24 19:21:03 +0000
committerKenneth Russel <[email protected]>2005-10-24 19:21:03 +0000
commitd6f9dbc493df725d3d574403549de142c5e1222a (patch)
tree8eb152b0627f8d1897a27c5204d6ce2efb4963e4 /src/classes/com/sun/opengl/impl/tessellator/Sweep.java
parent42843c3290d64c41c9c8a18b93f5ad3c00d35ddc (diff)
Merged JSR-231 branch on to the main JOGL trunk. The main trunk now
contains the evolving JSR-231 Reference Implementation and the JSR-231 branch is permanently closed. git-svn-id: file:///usr/local/projects/SUN/JOGL/git-svn/svn-server-sync/jogl/trunk@401 232f8b59-042b-4e1e-8c03-345bb8c30851
Diffstat (limited to 'src/classes/com/sun/opengl/impl/tessellator/Sweep.java')
-rw-r--r--src/classes/com/sun/opengl/impl/tessellator/Sweep.java1343
1 files changed, 1343 insertions, 0 deletions
diff --git a/src/classes/com/sun/opengl/impl/tessellator/Sweep.java b/src/classes/com/sun/opengl/impl/tessellator/Sweep.java
new file mode 100644
index 000000000..901207d31
--- /dev/null
+++ b/src/classes/com/sun/opengl/impl/tessellator/Sweep.java
@@ -0,0 +1,1343 @@
+/*
+* Portions Copyright (C) 2003 Sun Microsystems, Inc.
+* All rights reserved.
+*/
+
+/*
+** License Applicability. Except to the extent portions of this file are
+** made subject to an alternative license as permitted in the SGI Free
+** Software License B, Version 1.1 (the "License"), the contents of this
+** file are subject only to the provisions of the License. You may not use
+** this file except in compliance with the License. You may obtain a copy
+** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
+** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
+**
+** http://oss.sgi.com/projects/FreeB
+**
+** Note that, as provided in the License, the Software is distributed on an
+** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
+** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
+** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
+** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
+**
+** Original Code. The Original Code is: OpenGL Sample Implementation,
+** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
+** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
+** Copyright in any portions created by third parties is as indicated
+** elsewhere herein. All Rights Reserved.
+**
+** Additional Notice Provisions: The application programming interfaces
+** established by SGI in conjunction with the Original Code are The
+** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
+** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
+** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
+** Window System(R) (Version 1.3), released October 19, 1998. This software
+** was created using the OpenGL(R) version 1.2.1 Sample Implementation
+** published by SGI, but has not been independently verified as being
+** compliant with the OpenGL(R) version 1.2.1 Specification.
+**
+** Author: Eric Veach, July 1994
+** Java Port: Pepijn Van Eeckhoudt, July 2003
+** Java Port: Nathan Parker Burg, August 2003
+*/
+package com.sun.opengl.impl.tessellator;
+
+import javax.media.opengl.*;
+import javax.media.opengl.glu.*;
+
+class Sweep {
+ private Sweep() {
+ }
+
+// #ifdef FOR_TRITE_TEST_PROGRAM
+// extern void DebugEvent( GLUtessellator *tess );
+// #else
+ private static void DebugEvent(GLUtessellatorImpl tess) {
+
+ }
+// #endif
+
+/*
+ * Invariants for the Edge Dictionary.
+ * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
+ * at any valid location of the sweep event
+ * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
+ * share a common endpoint
+ * - for each e, e.Dst has been processed, but not e.Org
+ * - each edge e satisfies VertLeq(e.Dst,event) && VertLeq(event,e.Org)
+ * where "event" is the current sweep line event.
+ * - no edge e has zero length
+ *
+ * Invariants for the Mesh (the processed portion).
+ * - the portion of the mesh left of the sweep line is a planar graph,
+ * ie. there is *some* way to embed it in the plane
+ * - no processed edge has zero length
+ * - no two processed vertices have identical coordinates
+ * - each "inside" region is monotone, ie. can be broken into two chains
+ * of monotonically increasing vertices according to VertLeq(v1,v2)
+ * - a non-invariant: these chains may intersect (very slightly)
+ *
+ * Invariants for the Sweep.
+ * - if none of the edges incident to the event vertex have an activeRegion
+ * (ie. none of these edges are in the edge dictionary), then the vertex
+ * has only right-going edges.
+ * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
+ * by ConnectRightVertex), then it is the only right-going edge from
+ * its associated vertex. (This says that these edges exist only
+ * when it is necessary.)
+ */
+
+/* When we merge two edges into one, we need to compute the combined
+ * winding of the new edge.
+ */
+ private static void AddWinding(GLUhalfEdge eDst, GLUhalfEdge eSrc) {
+ eDst.winding += eSrc.winding;
+ eDst.Sym.winding += eSrc.Sym.winding;
+ }
+
+
+ private static ActiveRegion RegionBelow(ActiveRegion r) {
+ return ((ActiveRegion) Dict.dictKey(Dict.dictPred(r.nodeUp)));
+ }
+
+ private static ActiveRegion RegionAbove(ActiveRegion r) {
+ return ((ActiveRegion) Dict.dictKey(Dict.dictSucc(r.nodeUp)));
+ }
+
+ static boolean EdgeLeq(GLUtessellatorImpl tess, ActiveRegion reg1, ActiveRegion reg2)
+/*
+ * Both edges must be directed from right to left (this is the canonical
+ * direction for the upper edge of each region).
+ *
+ * The strategy is to evaluate a "t" value for each edge at the
+ * current sweep line position, given by tess.event. The calculations
+ * are designed to be very stable, but of course they are not perfect.
+ *
+ * Special case: if both edge destinations are at the sweep event,
+ * we sort the edges by slope (they would otherwise compare equally).
+ */ {
+ GLUvertex event = tess.event;
+ GLUhalfEdge e1, e2;
+ double t1, t2;
+
+ e1 = reg1.eUp;
+ e2 = reg2.eUp;
+
+ if (e1.Sym.Org == event) {
+ if (e2.Sym.Org == event) {
+ /* Two edges right of the sweep line which meet at the sweep event.
+ * Sort them by slope.
+ */
+ if (Geom.VertLeq(e1.Org, e2.Org)) {
+ return Geom.EdgeSign(e2.Sym.Org, e1.Org, e2.Org) <= 0;
+ }
+ return Geom.EdgeSign(e1.Sym.Org, e2.Org, e1.Org) >= 0;
+ }
+ return Geom.EdgeSign(e2.Sym.Org, event, e2.Org) <= 0;
+ }
+ if (e2.Sym.Org == event) {
+ return Geom.EdgeSign(e1.Sym.Org, event, e1.Org) >= 0;
+ }
+
+ /* General case - compute signed distance *from* e1, e2 to event */
+ t1 = Geom.EdgeEval(e1.Sym.Org, event, e1.Org);
+ t2 = Geom.EdgeEval(e2.Sym.Org, event, e2.Org);
+ return (t1 >= t2);
+ }
+
+
+ static void DeleteRegion(GLUtessellatorImpl tess, ActiveRegion reg) {
+ if (reg.fixUpperEdge) {
+ /* It was created with zero winding number, so it better be
+ * deleted with zero winding number (ie. it better not get merged
+ * with a real edge).
+ */
+ assert (reg.eUp.winding == 0);
+ }
+ reg.eUp.activeRegion = null;
+ Dict.dictDelete(tess.dict, reg.nodeUp); /* __gl_dictListDelete */
+ }
+
+
+ static boolean FixUpperEdge(ActiveRegion reg, GLUhalfEdge newEdge)
+/*
+ * Replace an upper edge which needs fixing (see ConnectRightVertex).
+ */ {
+ assert (reg.fixUpperEdge);
+ if (!Mesh.__gl_meshDelete(reg.eUp)) return false;
+ reg.fixUpperEdge = false;
+ reg.eUp = newEdge;
+ newEdge.activeRegion = reg;
+
+ return true;
+ }
+
+ static ActiveRegion TopLeftRegion(ActiveRegion reg) {
+ GLUvertex org = reg.eUp.Org;
+ GLUhalfEdge e;
+
+ /* Find the region above the uppermost edge with the same origin */
+ do {
+ reg = RegionAbove(reg);
+ } while (reg.eUp.Org == org);
+
+ /* If the edge above was a temporary edge introduced by ConnectRightVertex,
+ * now is the time to fix it.
+ */
+ if (reg.fixUpperEdge) {
+ e = Mesh.__gl_meshConnect(RegionBelow(reg).eUp.Sym, reg.eUp.Lnext);
+ if (e == null) return null;
+ if (!FixUpperEdge(reg, e)) return null;
+ reg = RegionAbove(reg);
+ }
+ return reg;
+ }
+
+ static ActiveRegion TopRightRegion(ActiveRegion reg) {
+ GLUvertex dst = reg.eUp.Sym.Org;
+
+ /* Find the region above the uppermost edge with the same destination */
+ do {
+ reg = RegionAbove(reg);
+ } while (reg.eUp.Sym.Org == dst);
+ return reg;
+ }
+
+ static ActiveRegion AddRegionBelow(GLUtessellatorImpl tess,
+ ActiveRegion regAbove,
+ GLUhalfEdge eNewUp)
+/*
+ * Add a new active region to the sweep line, *somewhere* below "regAbove"
+ * (according to where the new edge belongs in the sweep-line dictionary).
+ * The upper edge of the new region will be "eNewUp".
+ * Winding number and "inside" flag are not updated.
+ */ {
+ ActiveRegion regNew = new ActiveRegion();
+ if (regNew == null) throw new RuntimeException();
+
+ regNew.eUp = eNewUp;
+ /* __gl_dictListInsertBefore */
+ regNew.nodeUp = Dict.dictInsertBefore(tess.dict, regAbove.nodeUp, regNew);
+ if (regNew.nodeUp == null) throw new RuntimeException();
+ regNew.fixUpperEdge = false;
+ regNew.sentinel = false;
+ regNew.dirty = false;
+
+ eNewUp.activeRegion = regNew;
+ return regNew;
+ }
+
+ static boolean IsWindingInside(GLUtessellatorImpl tess, int n) {
+ switch (tess.windingRule) {
+ case GLU.GLU_TESS_WINDING_ODD:
+ return (n & 1) != 0;
+ case GLU.GLU_TESS_WINDING_NONZERO:
+ return (n != 0);
+ case GLU.GLU_TESS_WINDING_POSITIVE:
+ return (n > 0);
+ case GLU.GLU_TESS_WINDING_NEGATIVE:
+ return (n < 0);
+ case GLU.GLU_TESS_WINDING_ABS_GEQ_TWO:
+ return (n >= 2) || (n <= -2);
+ }
+ /*LINTED*/
+// assert (false);
+ throw new InternalError();
+ /*NOTREACHED*/
+ }
+
+
+ static void ComputeWinding(GLUtessellatorImpl tess, ActiveRegion reg) {
+ reg.windingNumber = RegionAbove(reg).windingNumber + reg.eUp.winding;
+ reg.inside = IsWindingInside(tess, reg.windingNumber);
+ }
+
+
+ static void FinishRegion(GLUtessellatorImpl tess, ActiveRegion reg)
+/*
+ * Delete a region from the sweep line. This happens when the upper
+ * and lower chains of a region meet (at a vertex on the sweep line).
+ * The "inside" flag is copied to the appropriate mesh face (we could
+ * not do this before -- since the structure of the mesh is always
+ * changing, this face may not have even existed until now).
+ */ {
+ GLUhalfEdge e = reg.eUp;
+ GLUface f = e.Lface;
+
+ f.inside = reg.inside;
+ f.anEdge = e; /* optimization for __gl_meshTessellateMonoRegion() */
+ DeleteRegion(tess, reg);
+ }
+
+
+ static GLUhalfEdge FinishLeftRegions(GLUtessellatorImpl tess,
+ ActiveRegion regFirst, ActiveRegion regLast)
+/*
+ * We are given a vertex with one or more left-going edges. All affected
+ * edges should be in the edge dictionary. Starting at regFirst.eUp,
+ * we walk down deleting all regions where both edges have the same
+ * origin vOrg. At the same time we copy the "inside" flag from the
+ * active region to the face, since at this point each face will belong
+ * to at most one region (this was not necessarily true until this point
+ * in the sweep). The walk stops at the region above regLast; if regLast
+ * is null we walk as far as possible. At the same time we relink the
+ * mesh if necessary, so that the ordering of edges around vOrg is the
+ * same as in the dictionary.
+ */ {
+ ActiveRegion reg, regPrev;
+ GLUhalfEdge e, ePrev;
+
+ regPrev = regFirst;
+ ePrev = regFirst.eUp;
+ while (regPrev != regLast) {
+ regPrev.fixUpperEdge = false; /* placement was OK */
+ reg = RegionBelow(regPrev);
+ e = reg.eUp;
+ if (e.Org != ePrev.Org) {
+ if (!reg.fixUpperEdge) {
+ /* Remove the last left-going edge. Even though there are no further
+ * edges in the dictionary with this origin, there may be further
+ * such edges in the mesh (if we are adding left edges to a vertex
+ * that has already been processed). Thus it is important to call
+ * FinishRegion rather than just DeleteRegion.
+ */
+ FinishRegion(tess, regPrev);
+ break;
+ }
+ /* If the edge below was a temporary edge introduced by
+ * ConnectRightVertex, now is the time to fix it.
+ */
+ e = Mesh.__gl_meshConnect(ePrev.Onext.Sym, e.Sym);
+ if (e == null) throw new RuntimeException();
+ if (!FixUpperEdge(reg, e)) throw new RuntimeException();
+ }
+
+ /* Relink edges so that ePrev.Onext == e */
+ if (ePrev.Onext != e) {
+ if (!Mesh.__gl_meshSplice(e.Sym.Lnext, e)) throw new RuntimeException();
+ if (!Mesh.__gl_meshSplice(ePrev, e)) throw new RuntimeException();
+ }
+ FinishRegion(tess, regPrev); /* may change reg.eUp */
+ ePrev = reg.eUp;
+ regPrev = reg;
+ }
+ return ePrev;
+ }
+
+
+ static void AddRightEdges(GLUtessellatorImpl tess, ActiveRegion regUp,
+ GLUhalfEdge eFirst, GLUhalfEdge eLast, GLUhalfEdge eTopLeft,
+ boolean cleanUp)
+/*
+ * Purpose: insert right-going edges into the edge dictionary, and update
+ * winding numbers and mesh connectivity appropriately. All right-going
+ * edges share a common origin vOrg. Edges are inserted CCW starting at
+ * eFirst; the last edge inserted is eLast.Sym.Lnext. If vOrg has any
+ * left-going edges already processed, then eTopLeft must be the edge
+ * such that an imaginary upward vertical segment from vOrg would be
+ * contained between eTopLeft.Sym.Lnext and eTopLeft; otherwise eTopLeft
+ * should be null.
+ */ {
+ ActiveRegion reg, regPrev;
+ GLUhalfEdge e, ePrev;
+ boolean firstTime = true;
+
+ /* Insert the new right-going edges in the dictionary */
+ e = eFirst;
+ do {
+ assert (Geom.VertLeq(e.Org, e.Sym.Org));
+ AddRegionBelow(tess, regUp, e.Sym);
+ e = e.Onext;
+ } while (e != eLast);
+
+ /* Walk *all* right-going edges from e.Org, in the dictionary order,
+ * updating the winding numbers of each region, and re-linking the mesh
+ * edges to match the dictionary ordering (if necessary).
+ */
+ if (eTopLeft == null) {
+ eTopLeft = RegionBelow(regUp).eUp.Sym.Onext;
+ }
+ regPrev = regUp;
+ ePrev = eTopLeft;
+ for (; ;) {
+ reg = RegionBelow(regPrev);
+ e = reg.eUp.Sym;
+ if (e.Org != ePrev.Org) break;
+
+ if (e.Onext != ePrev) {
+ /* Unlink e from its current position, and relink below ePrev */
+ if (!Mesh.__gl_meshSplice(e.Sym.Lnext, e)) throw new RuntimeException();
+ if (!Mesh.__gl_meshSplice(ePrev.Sym.Lnext, e)) throw new RuntimeException();
+ }
+ /* Compute the winding number and "inside" flag for the new regions */
+ reg.windingNumber = regPrev.windingNumber - e.winding;
+ reg.inside = IsWindingInside(tess, reg.windingNumber);
+
+ /* Check for two outgoing edges with same slope -- process these
+ * before any intersection tests (see example in __gl_computeInterior).
+ */
+ regPrev.dirty = true;
+ if (!firstTime && CheckForRightSplice(tess, regPrev)) {
+ AddWinding(e, ePrev);
+ DeleteRegion(tess, regPrev);
+ if (!Mesh.__gl_meshDelete(ePrev)) throw new RuntimeException();
+ }
+ firstTime = false;
+ regPrev = reg;
+ ePrev = e;
+ }
+ regPrev.dirty = true;
+ assert (regPrev.windingNumber - e.winding == reg.windingNumber);
+
+ if (cleanUp) {
+ /* Check for intersections between newly adjacent edges. */
+ WalkDirtyRegions(tess, regPrev);
+ }
+ }
+
+
+ static void CallCombine(GLUtessellatorImpl tess, GLUvertex isect,
+ Object[] data, float[] weights, boolean needed) {
+ double[] coords = new double[3];
+
+ /* Copy coord data in case the callback changes it. */
+ coords[0] = isect.coords[0];
+ coords[1] = isect.coords[1];
+ coords[2] = isect.coords[2];
+
+ Object[] outData = new Object[1];
+ tess.callCombineOrCombineData(coords, data, weights, outData);
+ isect.data = outData[0];
+ if (isect.data == null) {
+ if (!needed) {
+ isect.data = data[0];
+ } else if (!tess.fatalError) {
+ /* The only way fatal error is when two edges are found to intersect,
+ * but the user has not provided the callback necessary to handle
+ * generated intersection points.
+ */
+ tess.callErrorOrErrorData(GLU.GLU_TESS_NEED_COMBINE_CALLBACK);
+ tess.fatalError = true;
+ }
+ }
+ }
+
+ static void SpliceMergeVertices(GLUtessellatorImpl tess, GLUhalfEdge e1,
+ GLUhalfEdge e2)
+/*
+ * Two vertices with idential coordinates are combined into one.
+ * e1.Org is kept, while e2.Org is discarded.
+ */ {
+ Object[] data = new Object[4];
+ float[] weights = new float[]{0.5f, 0.5f, 0.0f, 0.0f};
+
+ data[0] = e1.Org.data;
+ data[1] = e2.Org.data;
+ CallCombine(tess, e1.Org, data, weights, false);
+ if (!Mesh.__gl_meshSplice(e1, e2)) throw new RuntimeException();
+ }
+
+ static void VertexWeights(GLUvertex isect, GLUvertex org, GLUvertex dst,
+ float[] weights)
+/*
+ * Find some weights which describe how the intersection vertex is
+ * a linear combination of "org" and "dest". Each of the two edges
+ * which generated "isect" is allocated 50% of the weight; each edge
+ * splits the weight between its org and dst according to the
+ * relative distance to "isect".
+ */ {
+ double t1 = Geom.VertL1dist(org, isect);
+ double t2 = Geom.VertL1dist(dst, isect);
+
+ weights[0] = (float) (0.5 * t2 / (t1 + t2));
+ weights[1] = (float) (0.5 * t1 / (t1 + t2));
+ isect.coords[0] += weights[0] * org.coords[0] + weights[1] * dst.coords[0];
+ isect.coords[1] += weights[0] * org.coords[1] + weights[1] * dst.coords[1];
+ isect.coords[2] += weights[0] * org.coords[2] + weights[1] * dst.coords[2];
+ }
+
+
+ static void GetIntersectData(GLUtessellatorImpl tess, GLUvertex isect,
+ GLUvertex orgUp, GLUvertex dstUp,
+ GLUvertex orgLo, GLUvertex dstLo)
+/*
+ * We've computed a new intersection point, now we need a "data" pointer
+ * from the user so that we can refer to this new vertex in the
+ * rendering callbacks.
+ */ {
+ Object[] data = new Object[4];
+ float[] weights = new float[4];
+ float[] weights1 = new float[2];
+ float[] weights2 = new float[2];
+
+ data[0] = orgUp.data;
+ data[1] = dstUp.data;
+ data[2] = orgLo.data;
+ data[3] = dstLo.data;
+
+ isect.coords[0] = isect.coords[1] = isect.coords[2] = 0;
+ VertexWeights(isect, orgUp, dstUp, weights1);
+ VertexWeights(isect, orgLo, dstLo, weights2);
+ System.arraycopy(weights1, 0, weights, 0, 2);
+ System.arraycopy(weights2, 0, weights, 2, 2);
+
+ CallCombine(tess, isect, data, weights, true);
+ }
+
+ static boolean CheckForRightSplice(GLUtessellatorImpl tess, ActiveRegion regUp)
+/*
+ * Check the upper and lower edge of "regUp", to make sure that the
+ * eUp.Org is above eLo, or eLo.Org is below eUp (depending on which
+ * origin is leftmost).
+ *
+ * The main purpose is to splice right-going edges with the same
+ * dest vertex and nearly identical slopes (ie. we can't distinguish
+ * the slopes numerically). However the splicing can also help us
+ * to recover from numerical errors. For example, suppose at one
+ * point we checked eUp and eLo, and decided that eUp.Org is barely
+ * above eLo. Then later, we split eLo into two edges (eg. from
+ * a splice operation like this one). This can change the result of
+ * our test so that now eUp.Org is incident to eLo, or barely below it.
+ * We must correct this condition to maintain the dictionary invariants.
+ *
+ * One possibility is to check these edges for intersection again
+ * (ie. CheckForIntersect). This is what we do if possible. However
+ * CheckForIntersect requires that tess.event lies between eUp and eLo,
+ * so that it has something to fall back on when the intersection
+ * calculation gives us an unusable answer. So, for those cases where
+ * we can't check for intersection, this routine fixes the problem
+ * by just splicing the offending vertex into the other edge.
+ * This is a guaranteed solution, no matter how degenerate things get.
+ * Basically this is a combinatorial solution to a numerical problem.
+ */ {
+ ActiveRegion regLo = RegionBelow(regUp);
+ GLUhalfEdge eUp = regUp.eUp;
+ GLUhalfEdge eLo = regLo.eUp;
+
+ if (Geom.VertLeq(eUp.Org, eLo.Org)) {
+ if (Geom.EdgeSign(eLo.Sym.Org, eUp.Org, eLo.Org) > 0) return false;
+
+ /* eUp.Org appears to be below eLo */
+ if (!Geom.VertEq(eUp.Org, eLo.Org)) {
+ /* Splice eUp.Org into eLo */
+ if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException();
+ if (!Mesh.__gl_meshSplice(eUp, eLo.Sym.Lnext)) throw new RuntimeException();
+ regUp.dirty = regLo.dirty = true;
+
+ } else if (eUp.Org != eLo.Org) {
+ /* merge the two vertices, discarding eUp.Org */
+ tess.pq.pqDelete(eUp.Org.pqHandle); /* __gl_pqSortDelete */
+ SpliceMergeVertices(tess, eLo.Sym.Lnext, eUp);
+ }
+ } else {
+ if (Geom.EdgeSign(eUp.Sym.Org, eLo.Org, eUp.Org) < 0) return false;
+
+ /* eLo.Org appears to be above eUp, so splice eLo.Org into eUp */
+ RegionAbove(regUp).dirty = regUp.dirty = true;
+ if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException();
+ if (!Mesh.__gl_meshSplice(eLo.Sym.Lnext, eUp)) throw new RuntimeException();
+ }
+ return true;
+ }
+
+ static boolean CheckForLeftSplice(GLUtessellatorImpl tess, ActiveRegion regUp)
+/*
+ * Check the upper and lower edge of "regUp", to make sure that the
+ * eUp.Sym.Org is above eLo, or eLo.Sym.Org is below eUp (depending on which
+ * destination is rightmost).
+ *
+ * Theoretically, this should always be true. However, splitting an edge
+ * into two pieces can change the results of previous tests. For example,
+ * suppose at one point we checked eUp and eLo, and decided that eUp.Sym.Org
+ * is barely above eLo. Then later, we split eLo into two edges (eg. from
+ * a splice operation like this one). This can change the result of
+ * the test so that now eUp.Sym.Org is incident to eLo, or barely below it.
+ * We must correct this condition to maintain the dictionary invariants
+ * (otherwise new edges might get inserted in the wrong place in the
+ * dictionary, and bad stuff will happen).
+ *
+ * We fix the problem by just splicing the offending vertex into the
+ * other edge.
+ */ {
+ ActiveRegion regLo = RegionBelow(regUp);
+ GLUhalfEdge eUp = regUp.eUp;
+ GLUhalfEdge eLo = regLo.eUp;
+ GLUhalfEdge e;
+
+ assert (!Geom.VertEq(eUp.Sym.Org, eLo.Sym.Org));
+
+ if (Geom.VertLeq(eUp.Sym.Org, eLo.Sym.Org)) {
+ if (Geom.EdgeSign(eUp.Sym.Org, eLo.Sym.Org, eUp.Org) < 0) return false;
+
+ /* eLo.Sym.Org is above eUp, so splice eLo.Sym.Org into eUp */
+ RegionAbove(regUp).dirty = regUp.dirty = true;
+ e = Mesh.__gl_meshSplitEdge(eUp);
+ if (e == null) throw new RuntimeException();
+ if (!Mesh.__gl_meshSplice(eLo.Sym, e)) throw new RuntimeException();
+ e.Lface.inside = regUp.inside;
+ } else {
+ if (Geom.EdgeSign(eLo.Sym.Org, eUp.Sym.Org, eLo.Org) > 0) return false;
+
+ /* eUp.Sym.Org is below eLo, so splice eUp.Sym.Org into eLo */
+ regUp.dirty = regLo.dirty = true;
+ e = Mesh.__gl_meshSplitEdge(eLo);
+ if (e == null) throw new RuntimeException();
+ if (!Mesh.__gl_meshSplice(eUp.Lnext, eLo.Sym)) throw new RuntimeException();
+ e.Sym.Lface.inside = regUp.inside;
+ }
+ return true;
+ }
+
+
+ static boolean CheckForIntersect(GLUtessellatorImpl tess, ActiveRegion regUp)
+/*
+ * Check the upper and lower edges of the given region to see if
+ * they intersect. If so, create the intersection and add it
+ * to the data structures.
+ *
+ * Returns true if adding the new intersection resulted in a recursive
+ * call to AddRightEdges(); in this case all "dirty" regions have been
+ * checked for intersections, and possibly regUp has been deleted.
+ */ {
+ ActiveRegion regLo = RegionBelow(regUp);
+ GLUhalfEdge eUp = regUp.eUp;
+ GLUhalfEdge eLo = regLo.eUp;
+ GLUvertex orgUp = eUp.Org;
+ GLUvertex orgLo = eLo.Org;
+ GLUvertex dstUp = eUp.Sym.Org;
+ GLUvertex dstLo = eLo.Sym.Org;
+ double tMinUp, tMaxLo;
+ GLUvertex isect = new GLUvertex();
+ GLUvertex orgMin;
+ GLUhalfEdge e;
+
+ assert (!Geom.VertEq(dstLo, dstUp));
+ assert (Geom.EdgeSign(dstUp, tess.event, orgUp) <= 0);
+ assert (Geom.EdgeSign(dstLo, tess.event, orgLo) >= 0);
+ assert (orgUp != tess.event && orgLo != tess.event);
+ assert (!regUp.fixUpperEdge && !regLo.fixUpperEdge);
+
+ if (orgUp == orgLo) return false; /* right endpoints are the same */
+
+ tMinUp = Math.min(orgUp.t, dstUp.t);
+ tMaxLo = Math.max(orgLo.t, dstLo.t);
+ if (tMinUp > tMaxLo) return false; /* t ranges do not overlap */
+
+ if (Geom.VertLeq(orgUp, orgLo)) {
+ if (Geom.EdgeSign(dstLo, orgUp, orgLo) > 0) return false;
+ } else {
+ if (Geom.EdgeSign(dstUp, orgLo, orgUp) < 0) return false;
+ }
+
+ /* At this point the edges intersect, at least marginally */
+ DebugEvent(tess);
+
+ Geom.EdgeIntersect(dstUp, orgUp, dstLo, orgLo, isect);
+ /* The following properties are guaranteed: */
+ assert (Math.min(orgUp.t, dstUp.t) <= isect.t);
+ assert (isect.t <= Math.max(orgLo.t, dstLo.t));
+ assert (Math.min(dstLo.s, dstUp.s) <= isect.s);
+ assert (isect.s <= Math.max(orgLo.s, orgUp.s));
+
+ if (Geom.VertLeq(isect, tess.event)) {
+ /* The intersection point lies slightly to the left of the sweep line,
+ * so move it until it''s slightly to the right of the sweep line.
+ * (If we had perfect numerical precision, this would never happen
+ * in the first place). The easiest and safest thing to do is
+ * replace the intersection by tess.event.
+ */
+ isect.s = tess.event.s;
+ isect.t = tess.event.t;
+ }
+ /* Similarly, if the computed intersection lies to the right of the
+ * rightmost origin (which should rarely happen), it can cause
+ * unbelievable inefficiency on sufficiently degenerate inputs.
+ * (If you have the test program, try running test54.d with the
+ * "X zoom" option turned on).
+ */
+ orgMin = Geom.VertLeq(orgUp, orgLo) ? orgUp : orgLo;
+ if (Geom.VertLeq(orgMin, isect)) {
+ isect.s = orgMin.s;
+ isect.t = orgMin.t;
+ }
+
+ if (Geom.VertEq(isect, orgUp) || Geom.VertEq(isect, orgLo)) {
+ /* Easy case -- intersection at one of the right endpoints */
+ CheckForRightSplice(tess, regUp);
+ return false;
+ }
+
+ if ((!Geom.VertEq(dstUp, tess.event)
+ && Geom.EdgeSign(dstUp, tess.event, isect) >= 0)
+ || (!Geom.VertEq(dstLo, tess.event)
+ && Geom.EdgeSign(dstLo, tess.event, isect) <= 0)) {
+ /* Very unusual -- the new upper or lower edge would pass on the
+ * wrong side of the sweep event, or through it. This can happen
+ * due to very small numerical errors in the intersection calculation.
+ */
+ if (dstLo == tess.event) {
+ /* Splice dstLo into eUp, and process the new region(s) */
+ if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException();
+ if (!Mesh.__gl_meshSplice(eLo.Sym, eUp)) throw new RuntimeException();
+ regUp = TopLeftRegion(regUp);
+ if (regUp == null) throw new RuntimeException();
+ eUp = RegionBelow(regUp).eUp;
+ FinishLeftRegions(tess, RegionBelow(regUp), regLo);
+ AddRightEdges(tess, regUp, eUp.Sym.Lnext, eUp, eUp, true);
+ return true;
+ }
+ if (dstUp == tess.event) {
+ /* Splice dstUp into eLo, and process the new region(s) */
+ if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException();
+ if (!Mesh.__gl_meshSplice(eUp.Lnext, eLo.Sym.Lnext)) throw new RuntimeException();
+ regLo = regUp;
+ regUp = TopRightRegion(regUp);
+ e = RegionBelow(regUp).eUp.Sym.Onext;
+ regLo.eUp = eLo.Sym.Lnext;
+ eLo = FinishLeftRegions(tess, regLo, null);
+ AddRightEdges(tess, regUp, eLo.Onext, eUp.Sym.Onext, e, true);
+ return true;
+ }
+ /* Special case: called from ConnectRightVertex. If either
+ * edge passes on the wrong side of tess.event, split it
+ * (and wait for ConnectRightVertex to splice it appropriately).
+ */
+ if (Geom.EdgeSign(dstUp, tess.event, isect) >= 0) {
+ RegionAbove(regUp).dirty = regUp.dirty = true;
+ if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException();
+ eUp.Org.s = tess.event.s;
+ eUp.Org.t = tess.event.t;
+ }
+ if (Geom.EdgeSign(dstLo, tess.event, isect) <= 0) {
+ regUp.dirty = regLo.dirty = true;
+ if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException();
+ eLo.Org.s = tess.event.s;
+ eLo.Org.t = tess.event.t;
+ }
+ /* leave the rest for ConnectRightVertex */
+ return false;
+ }
+
+ /* General case -- split both edges, splice into new vertex.
+ * When we do the splice operation, the order of the arguments is
+ * arbitrary as far as correctness goes. However, when the operation
+ * creates a new face, the work done is proportional to the size of
+ * the new face. We expect the faces in the processed part of
+ * the mesh (ie. eUp.Lface) to be smaller than the faces in the
+ * unprocessed original contours (which will be eLo.Sym.Lnext.Lface).
+ */
+ if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException();
+ if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException();
+ if (!Mesh.__gl_meshSplice(eLo.Sym.Lnext, eUp)) throw new RuntimeException();
+ eUp.Org.s = isect.s;
+ eUp.Org.t = isect.t;
+ eUp.Org.pqHandle = tess.pq.pqInsert(eUp.Org); /* __gl_pqSortInsert */
+ if (eUp.Org.pqHandle == Long.MAX_VALUE) {
+ tess.pq.pqDeletePriorityQ(); /* __gl_pqSortDeletePriorityQ */
+ tess.pq = null;
+ throw new RuntimeException();
+ }
+ GetIntersectData(tess, eUp.Org, orgUp, dstUp, orgLo, dstLo);
+ RegionAbove(regUp).dirty = regUp.dirty = regLo.dirty = true;
+ return false;
+ }
+
+ static void WalkDirtyRegions(GLUtessellatorImpl tess, ActiveRegion regUp)
+/*
+ * When the upper or lower edge of any region changes, the region is
+ * marked "dirty". This routine walks through all the dirty regions
+ * and makes sure that the dictionary invariants are satisfied
+ * (see the comments at the beginning of this file). Of course
+ * new dirty regions can be created as we make changes to restore
+ * the invariants.
+ */ {
+ ActiveRegion regLo = RegionBelow(regUp);
+ GLUhalfEdge eUp, eLo;
+
+ for (; ;) {
+ /* Find the lowest dirty region (we walk from the bottom up). */
+ while (regLo.dirty) {
+ regUp = regLo;
+ regLo = RegionBelow(regLo);
+ }
+ if (!regUp.dirty) {
+ regLo = regUp;
+ regUp = RegionAbove(regUp);
+ if (regUp == null || !regUp.dirty) {
+ /* We've walked all the dirty regions */
+ return;
+ }
+ }
+ regUp.dirty = false;
+ eUp = regUp.eUp;
+ eLo = regLo.eUp;
+
+ if (eUp.Sym.Org != eLo.Sym.Org) {
+ /* Check that the edge ordering is obeyed at the Dst vertices. */
+ if (CheckForLeftSplice(tess, regUp)) {
+
+ /* If the upper or lower edge was marked fixUpperEdge, then
+ * we no longer need it (since these edges are needed only for
+ * vertices which otherwise have no right-going edges).
+ */
+ if (regLo.fixUpperEdge) {
+ DeleteRegion(tess, regLo);
+ if (!Mesh.__gl_meshDelete(eLo)) throw new RuntimeException();
+ regLo = RegionBelow(regUp);
+ eLo = regLo.eUp;
+ } else if (regUp.fixUpperEdge) {
+ DeleteRegion(tess, regUp);
+ if (!Mesh.__gl_meshDelete(eUp)) throw new RuntimeException();
+ regUp = RegionAbove(regLo);
+ eUp = regUp.eUp;
+ }
+ }
+ }
+ if (eUp.Org != eLo.Org) {
+ if (eUp.Sym.Org != eLo.Sym.Org
+ && !regUp.fixUpperEdge && !regLo.fixUpperEdge
+ && (eUp.Sym.Org == tess.event || eLo.Sym.Org == tess.event)) {
+ /* When all else fails in CheckForIntersect(), it uses tess.event
+ * as the intersection location. To make this possible, it requires
+ * that tess.event lie between the upper and lower edges, and also
+ * that neither of these is marked fixUpperEdge (since in the worst
+ * case it might splice one of these edges into tess.event, and
+ * violate the invariant that fixable edges are the only right-going
+ * edge from their associated vertex).
+ */
+ if (CheckForIntersect(tess, regUp)) {
+ /* WalkDirtyRegions() was called recursively; we're done */
+ return;
+ }
+ } else {
+ /* Even though we can't use CheckForIntersect(), the Org vertices
+ * may violate the dictionary edge ordering. Check and correct this.
+ */
+ CheckForRightSplice(tess, regUp);
+ }
+ }
+ if (eUp.Org == eLo.Org && eUp.Sym.Org == eLo.Sym.Org) {
+ /* A degenerate loop consisting of only two edges -- delete it. */
+ AddWinding(eLo, eUp);
+ DeleteRegion(tess, regUp);
+ if (!Mesh.__gl_meshDelete(eUp)) throw new RuntimeException();
+ regUp = RegionAbove(regLo);
+ }
+ }
+ }
+
+
+ static void ConnectRightVertex(GLUtessellatorImpl tess, ActiveRegion regUp,
+ GLUhalfEdge eBottomLeft)
+/*
+ * Purpose: connect a "right" vertex vEvent (one where all edges go left)
+ * to the unprocessed portion of the mesh. Since there are no right-going
+ * edges, two regions (one above vEvent and one below) are being merged
+ * into one. "regUp" is the upper of these two regions.
+ *
+ * There are two reasons for doing this (adding a right-going edge):
+ * - if the two regions being merged are "inside", we must add an edge
+ * to keep them separated (the combined region would not be monotone).
+ * - in any case, we must leave some record of vEvent in the dictionary,
+ * so that we can merge vEvent with features that we have not seen yet.
+ * For example, maybe there is a vertical edge which passes just to
+ * the right of vEvent; we would like to splice vEvent into this edge.
+ *
+ * However, we don't want to connect vEvent to just any vertex. We don''t
+ * want the new edge to cross any other edges; otherwise we will create
+ * intersection vertices even when the input data had no self-intersections.
+ * (This is a bad thing; if the user's input data has no intersections,
+ * we don't want to generate any false intersections ourselves.)
+ *
+ * Our eventual goal is to connect vEvent to the leftmost unprocessed
+ * vertex of the combined region (the union of regUp and regLo).
+ * But because of unseen vertices with all right-going edges, and also
+ * new vertices which may be created by edge intersections, we don''t
+ * know where that leftmost unprocessed vertex is. In the meantime, we
+ * connect vEvent to the closest vertex of either chain, and mark the region
+ * as "fixUpperEdge". This flag says to delete and reconnect this edge
+ * to the next processed vertex on the boundary of the combined region.
+ * Quite possibly the vertex we connected to will turn out to be the
+ * closest one, in which case we won''t need to make any changes.
+ */ {
+ GLUhalfEdge eNew;
+ GLUhalfEdge eTopLeft = eBottomLeft.Onext;
+ ActiveRegion regLo = RegionBelow(regUp);
+ GLUhalfEdge eUp = regUp.eUp;
+ GLUhalfEdge eLo = regLo.eUp;
+ boolean degenerate = false;
+
+ if (eUp.Sym.Org != eLo.Sym.Org) {
+ CheckForIntersect(tess, regUp);
+ }
+
+ /* Possible new degeneracies: upper or lower edge of regUp may pass
+ * through vEvent, or may coincide with new intersection vertex
+ */
+ if (Geom.VertEq(eUp.Org, tess.event)) {
+ if (!Mesh.__gl_meshSplice(eTopLeft.Sym.Lnext, eUp)) throw new RuntimeException();
+ regUp = TopLeftRegion(regUp);
+ if (regUp == null) throw new RuntimeException();
+ eTopLeft = RegionBelow(regUp).eUp;
+ FinishLeftRegions(tess, RegionBelow(regUp), regLo);
+ degenerate = true;
+ }
+ if (Geom.VertEq(eLo.Org, tess.event)) {
+ if (!Mesh.__gl_meshSplice(eBottomLeft, eLo.Sym.Lnext)) throw new RuntimeException();
+ eBottomLeft = FinishLeftRegions(tess, regLo, null);
+ degenerate = true;
+ }
+ if (degenerate) {
+ AddRightEdges(tess, regUp, eBottomLeft.Onext, eTopLeft, eTopLeft, true);
+ return;
+ }
+
+ /* Non-degenerate situation -- need to add a temporary, fixable edge.
+ * Connect to the closer of eLo.Org, eUp.Org.
+ */
+ if (Geom.VertLeq(eLo.Org, eUp.Org)) {
+ eNew = eLo.Sym.Lnext;
+ } else {
+ eNew = eUp;
+ }
+ eNew = Mesh.__gl_meshConnect(eBottomLeft.Onext.Sym, eNew);
+ if (eNew == null) throw new RuntimeException();
+
+ /* Prevent cleanup, otherwise eNew might disappear before we've even
+ * had a chance to mark it as a temporary edge.
+ */
+ AddRightEdges(tess, regUp, eNew, eNew.Onext, eNew.Onext, false);
+ eNew.Sym.activeRegion.fixUpperEdge = true;
+ WalkDirtyRegions(tess, regUp);
+ }
+
+/* Because vertices at exactly the same location are merged together
+ * before we process the sweep event, some degenerate cases can't occur.
+ * However if someone eventually makes the modifications required to
+ * merge features which are close together, the cases below marked
+ * TOLERANCE_NONZERO will be useful. They were debugged before the
+ * code to merge identical vertices in the main loop was added.
+ */
+ private static final boolean TOLERANCE_NONZERO = false;
+
+ static void ConnectLeftDegenerate(GLUtessellatorImpl tess,
+ ActiveRegion regUp, GLUvertex vEvent)
+/*
+ * The event vertex lies exacty on an already-processed edge or vertex.
+ * Adding the new vertex involves splicing it into the already-processed
+ * part of the mesh.
+ */ {
+ GLUhalfEdge e, eTopLeft, eTopRight, eLast;
+ ActiveRegion reg;
+
+ e = regUp.eUp;
+ if (Geom.VertEq(e.Org, vEvent)) {
+ /* e.Org is an unprocessed vertex - just combine them, and wait
+ * for e.Org to be pulled from the queue
+ */
+ assert (TOLERANCE_NONZERO);
+ SpliceMergeVertices(tess, e, vEvent.anEdge);
+ return;
+ }
+
+ if (!Geom.VertEq(e.Sym.Org, vEvent)) {
+ /* General case -- splice vEvent into edge e which passes through it */
+ if (Mesh.__gl_meshSplitEdge(e.Sym) == null) throw new RuntimeException();
+ if (regUp.fixUpperEdge) {
+ /* This edge was fixable -- delete unused portion of original edge */
+ if (!Mesh.__gl_meshDelete(e.Onext)) throw new RuntimeException();
+ regUp.fixUpperEdge = false;
+ }
+ if (!Mesh.__gl_meshSplice(vEvent.anEdge, e)) throw new RuntimeException();
+ SweepEvent(tess, vEvent); /* recurse */
+ return;
+ }
+
+ /* vEvent coincides with e.Sym.Org, which has already been processed.
+ * Splice in the additional right-going edges.
+ */
+ assert (TOLERANCE_NONZERO);
+ regUp = TopRightRegion(regUp);
+ reg = RegionBelow(regUp);
+ eTopRight = reg.eUp.Sym;
+ eTopLeft = eLast = eTopRight.Onext;
+ if (reg.fixUpperEdge) {
+ /* Here e.Sym.Org has only a single fixable edge going right.
+ * We can delete it since now we have some real right-going edges.
+ */
+ assert (eTopLeft != eTopRight); /* there are some left edges too */
+ DeleteRegion(tess, reg);
+ if (!Mesh.__gl_meshDelete(eTopRight)) throw new RuntimeException();
+ eTopRight = eTopLeft.Sym.Lnext;
+ }
+ if (!Mesh.__gl_meshSplice(vEvent.anEdge, eTopRight)) throw new RuntimeException();
+ if (!Geom.EdgeGoesLeft(eTopLeft)) {
+ /* e.Sym.Org had no left-going edges -- indicate this to AddRightEdges() */
+ eTopLeft = null;
+ }
+ AddRightEdges(tess, regUp, eTopRight.Onext, eLast, eTopLeft, true);
+ }
+
+
+ static void ConnectLeftVertex(GLUtessellatorImpl tess, GLUvertex vEvent)
+/*
+ * Purpose: connect a "left" vertex (one where both edges go right)
+ * to the processed portion of the mesh. Let R be the active region
+ * containing vEvent, and let U and L be the upper and lower edge
+ * chains of R. There are two possibilities:
+ *
+ * - the normal case: split R into two regions, by connecting vEvent to
+ * the rightmost vertex of U or L lying to the left of the sweep line
+ *
+ * - the degenerate case: if vEvent is close enough to U or L, we
+ * merge vEvent into that edge chain. The subcases are:
+ * - merging with the rightmost vertex of U or L
+ * - merging with the active edge of U or L
+ * - merging with an already-processed portion of U or L
+ */ {
+ ActiveRegion regUp, regLo, reg;
+ GLUhalfEdge eUp, eLo, eNew;
+ ActiveRegion tmp = new ActiveRegion();
+
+ /* assert ( vEvent.anEdge.Onext.Onext == vEvent.anEdge ); */
+
+ /* Get a pointer to the active region containing vEvent */
+ tmp.eUp = vEvent.anEdge.Sym;
+ /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */
+ regUp = (ActiveRegion) Dict.dictKey(Dict.dictSearch(tess.dict, tmp));
+ regLo = RegionBelow(regUp);
+ eUp = regUp.eUp;
+ eLo = regLo.eUp;
+
+ /* Try merging with U or L first */
+ if (Geom.EdgeSign(eUp.Sym.Org, vEvent, eUp.Org) == 0) {
+ ConnectLeftDegenerate(tess, regUp, vEvent);
+ return;
+ }
+
+ /* Connect vEvent to rightmost processed vertex of either chain.
+ * e.Sym.Org is the vertex that we will connect to vEvent.
+ */
+ reg = Geom.VertLeq(eLo.Sym.Org, eUp.Sym.Org) ? regUp : regLo;
+
+ if (regUp.inside || reg.fixUpperEdge) {
+ if (reg == regUp) {
+ eNew = Mesh.__gl_meshConnect(vEvent.anEdge.Sym, eUp.Lnext);
+ if (eNew == null) throw new RuntimeException();
+ } else {
+ GLUhalfEdge tempHalfEdge = Mesh.__gl_meshConnect(eLo.Sym.Onext.Sym, vEvent.anEdge);
+ if (tempHalfEdge == null) throw new RuntimeException();
+
+ eNew = tempHalfEdge.Sym;
+ }
+ if (reg.fixUpperEdge) {
+ if (!FixUpperEdge(reg, eNew)) throw new RuntimeException();
+ } else {
+ ComputeWinding(tess, AddRegionBelow(tess, regUp, eNew));
+ }
+ SweepEvent(tess, vEvent);
+ } else {
+ /* The new vertex is in a region which does not belong to the polygon.
+ * We don''t need to connect this vertex to the rest of the mesh.
+ */
+ AddRightEdges(tess, regUp, vEvent.anEdge, vEvent.anEdge, null, true);
+ }
+ }
+
+
+ static void SweepEvent(GLUtessellatorImpl tess, GLUvertex vEvent)
+/*
+ * Does everything necessary when the sweep line crosses a vertex.
+ * Updates the mesh and the edge dictionary.
+ */ {
+ ActiveRegion regUp, reg;
+ GLUhalfEdge e, eTopLeft, eBottomLeft;
+
+ tess.event = vEvent; /* for access in EdgeLeq() */
+ DebugEvent(tess);
+
+ /* Check if this vertex is the right endpoint of an edge that is
+ * already in the dictionary. In this case we don't need to waste
+ * time searching for the location to insert new edges.
+ */
+ e = vEvent.anEdge;
+ while (e.activeRegion == null) {
+ e = e.Onext;
+ if (e == vEvent.anEdge) {
+ /* All edges go right -- not incident to any processed edges */
+ ConnectLeftVertex(tess, vEvent);
+ return;
+ }
+ }
+
+ /* Processing consists of two phases: first we "finish" all the
+ * active regions where both the upper and lower edges terminate
+ * at vEvent (ie. vEvent is closing off these regions).
+ * We mark these faces "inside" or "outside" the polygon according
+ * to their winding number, and delete the edges from the dictionary.
+ * This takes care of all the left-going edges from vEvent.
+ */
+ regUp = TopLeftRegion(e.activeRegion);
+ if (regUp == null) throw new RuntimeException();
+ reg = RegionBelow(regUp);
+ eTopLeft = reg.eUp;
+ eBottomLeft = FinishLeftRegions(tess, reg, null);
+
+ /* Next we process all the right-going edges from vEvent. This
+ * involves adding the edges to the dictionary, and creating the
+ * associated "active regions" which record information about the
+ * regions between adjacent dictionary edges.
+ */
+ if (eBottomLeft.Onext == eTopLeft) {
+ /* No right-going edges -- add a temporary "fixable" edge */
+ ConnectRightVertex(tess, regUp, eBottomLeft);
+ } else {
+ AddRightEdges(tess, regUp, eBottomLeft.Onext, eTopLeft, eTopLeft, true);
+ }
+ }
+
+
+/* Make the sentinel coordinates big enough that they will never be
+ * merged with real input features. (Even with the largest possible
+ * input contour and the maximum tolerance of 1.0, no merging will be
+ * done with coordinates larger than 3 * GLU_TESS_MAX_COORD).
+ */
+ private static final double SENTINEL_COORD = (4.0 * GLU.GLU_TESS_MAX_COORD);
+
+ static void AddSentinel(GLUtessellatorImpl tess, double t)
+/*
+ * We add two sentinel edges above and below all other edges,
+ * to avoid special cases at the top and bottom.
+ */ {
+ GLUhalfEdge e;
+ ActiveRegion reg = new ActiveRegion();
+ if (reg == null) throw new RuntimeException();
+
+ e = Mesh.__gl_meshMakeEdge(tess.mesh);
+ if (e == null) throw new RuntimeException();
+
+ e.Org.s = SENTINEL_COORD;
+ e.Org.t = t;
+ e.Sym.Org.s = -SENTINEL_COORD;
+ e.Sym.Org.t = t;
+ tess.event = e.Sym.Org; /* initialize it */
+
+ reg.eUp = e;
+ reg.windingNumber = 0;
+ reg.inside = false;
+ reg.fixUpperEdge = false;
+ reg.sentinel = true;
+ reg.dirty = false;
+ reg.nodeUp = Dict.dictInsert(tess.dict, reg); /* __gl_dictListInsertBefore */
+ if (reg.nodeUp == null) throw new RuntimeException();
+ }
+
+
+ static void InitEdgeDict(final GLUtessellatorImpl tess)
+/*
+ * We maintain an ordering of edge intersections with the sweep line.
+ * This order is maintained in a dynamic dictionary.
+ */ {
+ /* __gl_dictListNewDict */
+ tess.dict = Dict.dictNewDict(tess, new Dict.DictLeq() {
+ public boolean leq(Object frame, Object key1, Object key2) {
+ return EdgeLeq(tess, (ActiveRegion) key1, (ActiveRegion) key2);
+ }
+ });
+ if (tess.dict == null) throw new RuntimeException();
+
+ AddSentinel(tess, -SENTINEL_COORD);
+ AddSentinel(tess, SENTINEL_COORD);
+ }
+
+
+ static void DoneEdgeDict(GLUtessellatorImpl tess) {
+ ActiveRegion reg;
+ int fixedEdges = 0;
+
+ /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
+ while ((reg = (ActiveRegion) Dict.dictKey(Dict.dictMin(tess.dict))) != null) {
+ /*
+ * At the end of all processing, the dictionary should contain
+ * only the two sentinel edges, plus at most one "fixable" edge
+ * created by ConnectRightVertex().
+ */
+ if (!reg.sentinel) {
+ assert (reg.fixUpperEdge);
+ assert (++fixedEdges == 1);
+ }
+ assert (reg.windingNumber == 0);
+ DeleteRegion(tess, reg);
+/* __gl_meshDelete( reg.eUp );*/
+ }
+ Dict.dictDeleteDict(tess.dict); /* __gl_dictListDeleteDict */
+ }
+
+
+ static void RemoveDegenerateEdges(GLUtessellatorImpl tess)
+/*
+ * Remove zero-length edges, and contours with fewer than 3 vertices.
+ */ {
+ GLUhalfEdge e, eNext, eLnext;
+ GLUhalfEdge eHead = tess.mesh.eHead;
+
+ /*LINTED*/
+ for (e = eHead.next; e != eHead; e = eNext) {
+ eNext = e.next;
+ eLnext = e.Lnext;
+
+ if (Geom.VertEq(e.Org, e.Sym.Org) && e.Lnext.Lnext != e) {
+ /* Zero-length edge, contour has at least 3 edges */
+
+ SpliceMergeVertices(tess, eLnext, e); /* deletes e.Org */
+ if (!Mesh.__gl_meshDelete(e)) throw new RuntimeException(); /* e is a self-loop */
+ e = eLnext;
+ eLnext = e.Lnext;
+ }
+ if (eLnext.Lnext == e) {
+ /* Degenerate contour (one or two edges) */
+
+ if (eLnext != e) {
+ if (eLnext == eNext || eLnext == eNext.Sym) {
+ eNext = eNext.next;
+ }
+ if (!Mesh.__gl_meshDelete(eLnext)) throw new RuntimeException();
+ }
+ if (e == eNext || e == eNext.Sym) {
+ eNext = eNext.next;
+ }
+ if (!Mesh.__gl_meshDelete(e)) throw new RuntimeException();
+ }
+ }
+ }
+
+ static boolean InitPriorityQ(GLUtessellatorImpl tess)
+/*
+ * Insert all vertices into the priority queue which determines the
+ * order in which vertices cross the sweep line.
+ */ {
+ PriorityQ pq;
+ GLUvertex v, vHead;
+
+ /* __gl_pqSortNewPriorityQ */
+ pq = tess.pq = PriorityQ.pqNewPriorityQ(new PriorityQ.Leq() {
+ public boolean leq(Object key1, Object key2) {
+ return Geom.VertLeq(((GLUvertex) key1), (GLUvertex) key2);
+ }
+ });
+ if (pq == null) return false;
+
+ vHead = tess.mesh.vHead;
+ for (v = vHead.next; v != vHead; v = v.next) {
+ v.pqHandle = pq.pqInsert(v); /* __gl_pqSortInsert */
+ if (v.pqHandle == Long.MAX_VALUE) break;
+ }
+ if (v != vHead || !pq.pqInit()) { /* __gl_pqSortInit */
+ tess.pq.pqDeletePriorityQ(); /* __gl_pqSortDeletePriorityQ */
+ tess.pq = null;
+ return false;
+ }
+
+ return true;
+ }
+
+
+ static void DonePriorityQ(GLUtessellatorImpl tess) {
+ tess.pq.pqDeletePriorityQ(); /* __gl_pqSortDeletePriorityQ */
+ }
+
+
+ static boolean RemoveDegenerateFaces(GLUmesh mesh)
+/*
+ * Delete any degenerate faces with only two edges. WalkDirtyRegions()
+ * will catch almost all of these, but it won't catch degenerate faces
+ * produced by splice operations on already-processed edges.
+ * The two places this can happen are in FinishLeftRegions(), when
+ * we splice in a "temporary" edge produced by ConnectRightVertex(),
+ * and in CheckForLeftSplice(), where we splice already-processed
+ * edges to ensure that our dictionary invariants are not violated
+ * by numerical errors.
+ *
+ * In both these cases it is *very* dangerous to delete the offending
+ * edge at the time, since one of the routines further up the stack
+ * will sometimes be keeping a pointer to that edge.
+ */ {
+ GLUface f, fNext;
+ GLUhalfEdge e;
+
+ /*LINTED*/
+ for (f = mesh.fHead.next; f != mesh.fHead; f = fNext) {
+ fNext = f.next;
+ e = f.anEdge;
+ assert (e.Lnext != e);
+
+ if (e.Lnext.Lnext == e) {
+ /* A face with only two edges */
+ AddWinding(e.Onext, e);
+ if (!Mesh.__gl_meshDelete(e)) return false;
+ }
+ }
+ return true;
+ }
+
+ public static boolean __gl_computeInterior(GLUtessellatorImpl tess)
+/*
+ * __gl_computeInterior( tess ) computes the planar arrangement specified
+ * by the given contours, and further subdivides this arrangement
+ * into regions. Each region is marked "inside" if it belongs
+ * to the polygon, according to the rule given by tess.windingRule.
+ * Each interior region is guaranteed be monotone.
+ */ {
+ GLUvertex v, vNext;
+
+ tess.fatalError = false;
+
+ /* Each vertex defines an event for our sweep line. Start by inserting
+ * all the vertices in a priority queue. Events are processed in
+ * lexicographic order, ie.
+ *
+ * e1 < e2 iff e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
+ */
+ RemoveDegenerateEdges(tess);
+ if (!InitPriorityQ(tess)) return false; /* if error */
+ InitEdgeDict(tess);
+
+ /* __gl_pqSortExtractMin */
+ while ((v = (GLUvertex) tess.pq.pqExtractMin()) != null) {
+ for (; ;) {
+ vNext = (GLUvertex) tess.pq.pqMinimum(); /* __gl_pqSortMinimum */
+ if (vNext == null || !Geom.VertEq(vNext, v)) break;
+
+ /* Merge together all vertices at exactly the same location.
+ * This is more efficient than processing them one at a time,
+ * simplifies the code (see ConnectLeftDegenerate), and is also
+ * important for correct handling of certain degenerate cases.
+ * For example, suppose there are two identical edges A and B
+ * that belong to different contours (so without this code they would
+ * be processed by separate sweep events). Suppose another edge C
+ * crosses A and B from above. When A is processed, we split it
+ * at its intersection point with C. However this also splits C,
+ * so when we insert B we may compute a slightly different
+ * intersection point. This might leave two edges with a small
+ * gap between them. This kind of error is especially obvious
+ * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY).
+ */
+ vNext = (GLUvertex) tess.pq.pqExtractMin(); /* __gl_pqSortExtractMin*/
+ SpliceMergeVertices(tess, v.anEdge, vNext.anEdge);
+ }
+ SweepEvent(tess, v);
+ }
+
+ /* Set tess.event for debugging purposes */
+ /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
+ tess.event = ((ActiveRegion) Dict.dictKey(Dict.dictMin(tess.dict))).eUp.Org;
+ DebugEvent(tess);
+ DoneEdgeDict(tess);
+ DonePriorityQ(tess);
+
+ if (!RemoveDegenerateFaces(tess.mesh)) return false;
+ Mesh.__gl_meshCheckMesh(tess.mesh);
+
+ return true;
+ }
+}