#include "config.h"

#include "bformatdec.h"

#include <algorithm>
#include <array>
#include <cmath>
#include <utility>

#include "almalloc.h"
#include "alnumbers.h"
#include "filters/splitter.h"
#include "front_stablizer.h"
#include "mixer.h"
#include "opthelpers.h"


BFormatDec::BFormatDec(const size_t inchans, const al::span<const ChannelDec> coeffs,
    const al::span<const ChannelDec> coeffslf, const float xover_f0norm,
    std::unique_ptr<FrontStablizer> stablizer)
    : mStablizer{std::move(stablizer)}, mDualBand{!coeffslf.empty()}, mChannelDec{inchans}
{
    if(!mDualBand)
    {
        for(size_t j{0};j < mChannelDec.size();++j)
        {
            float *outcoeffs{mChannelDec[j].mGains.Single};
            for(const ChannelDec &incoeffs : coeffs)
                *(outcoeffs++) = incoeffs[j];
        }
    }
    else
    {
        mChannelDec[0].mXOver.init(xover_f0norm);
        for(size_t j{1};j < mChannelDec.size();++j)
            mChannelDec[j].mXOver = mChannelDec[0].mXOver;

        for(size_t j{0};j < mChannelDec.size();++j)
        {
            float *outcoeffs{mChannelDec[j].mGains.Dual[sHFBand]};
            for(const ChannelDec &incoeffs : coeffs)
                *(outcoeffs++) = incoeffs[j];

            outcoeffs = mChannelDec[j].mGains.Dual[sLFBand];
            for(const ChannelDec &incoeffs : coeffslf)
                *(outcoeffs++) = incoeffs[j];
        }
    }
}


void BFormatDec::process(const al::span<FloatBufferLine> OutBuffer,
    const FloatBufferLine *InSamples, const size_t SamplesToDo)
{
    ASSUME(SamplesToDo > 0);

    if(mDualBand)
    {
        const al::span<float> hfSamples{mSamples[sHFBand].data(), SamplesToDo};
        const al::span<float> lfSamples{mSamples[sLFBand].data(), SamplesToDo};
        for(auto &chandec : mChannelDec)
        {
            chandec.mXOver.process({InSamples->data(), SamplesToDo}, hfSamples.data(),
                lfSamples.data());
            MixSamples(hfSamples, OutBuffer, chandec.mGains.Dual[sHFBand],
                chandec.mGains.Dual[sHFBand], 0, 0);
            MixSamples(lfSamples, OutBuffer, chandec.mGains.Dual[sLFBand],
                chandec.mGains.Dual[sLFBand], 0, 0);
            ++InSamples;
        }
    }
    else
    {
        for(auto &chandec : mChannelDec)
        {
            MixSamples({InSamples->data(), SamplesToDo}, OutBuffer, chandec.mGains.Single,
                chandec.mGains.Single, 0, 0);
            ++InSamples;
        }
    }
}

void BFormatDec::processStablize(const al::span<FloatBufferLine> OutBuffer,
    const FloatBufferLine *InSamples, const size_t lidx, const size_t ridx, const size_t cidx,
    const size_t SamplesToDo)
{
    ASSUME(SamplesToDo > 0);

    /* Move the existing direct L/R signal out so it doesn't get processed by
     * the stablizer. Add a delay to it so it stays aligned with the stablizer
     * delay.
     */
    float *RESTRICT mid{al::assume_aligned<16>(mStablizer->MidDirect.data())};
    float *RESTRICT side{al::assume_aligned<16>(mStablizer->Side.data())};
    for(size_t i{0};i < SamplesToDo;++i)
    {
        mid[FrontStablizer::DelayLength+i] = OutBuffer[lidx][i] + OutBuffer[ridx][i];
        side[FrontStablizer::DelayLength+i] = OutBuffer[lidx][i] - OutBuffer[ridx][i];
    }
    std::fill_n(OutBuffer[lidx].begin(), SamplesToDo, 0.0f);
    std::fill_n(OutBuffer[ridx].begin(), SamplesToDo, 0.0f);

    /* Decode the B-Format input to OutBuffer. */
    process(OutBuffer, InSamples, SamplesToDo);

    /* Apply a delay to all channels, except the front-left and front-right, so
     * they maintain correct timing.
     */
    const size_t NumChannels{OutBuffer.size()};
    for(size_t i{0u};i < NumChannels;i++)
    {
        if(i == lidx || i == ridx)
            continue;

        auto &DelayBuf = mStablizer->DelayBuf[i];
        auto buffer_end = OutBuffer[i].begin() + SamplesToDo;
        if(SamplesToDo >= FrontStablizer::DelayLength) [[allikely]]
        {
            auto delay_end = std::rotate(OutBuffer[i].begin(),
                buffer_end - FrontStablizer::DelayLength, buffer_end);
            std::swap_ranges(OutBuffer[i].begin(), delay_end, DelayBuf.begin());
        }
        else
        {
            auto delay_start = std::swap_ranges(OutBuffer[i].begin(), buffer_end,
                DelayBuf.begin());
            std::rotate(DelayBuf.begin(), delay_start, DelayBuf.end());
        }
    }

    /* Include the side signal for what was just decoded. */
    for(size_t i{0};i < SamplesToDo;++i)
        side[FrontStablizer::DelayLength+i] += OutBuffer[lidx][i] - OutBuffer[ridx][i];

    /* Combine the delayed mid signal with the decoded mid signal. */
    float *tmpbuf{mStablizer->TempBuf.data()};
    auto tmpiter = std::copy(mStablizer->MidDelay.cbegin(), mStablizer->MidDelay.cend(), tmpbuf);
    for(size_t i{0};i < SamplesToDo;++i,++tmpiter)
        *tmpiter = OutBuffer[lidx][i] + OutBuffer[ridx][i];
    /* Save the newest samples for next time. */
    std::copy_n(tmpbuf+SamplesToDo, mStablizer->MidDelay.size(), mStablizer->MidDelay.begin());

    /* Apply an all-pass on the signal in reverse. The future samples are
     * included with the all-pass to reduce the error in the output samples
     * (the smaller the delay, the more error is introduced).
     */
    mStablizer->MidFilter.applyAllpassRev({tmpbuf, SamplesToDo+FrontStablizer::DelayLength});

    /* Now apply the band-splitter, combining its phase shift with the reversed
     * phase shift, restoring the original phase on the split signal.
     */
    mStablizer->MidFilter.process({tmpbuf, SamplesToDo}, mStablizer->MidHF.data(),
        mStablizer->MidLF.data());

    /* This pans the separate low- and high-frequency signals between being on
     * the center channel and the left+right channels. The low-frequency signal
     * is panned 1/3rd toward center and the high-frequency signal is panned
     * 1/4th toward center. These values can be tweaked.
     */
    const float cos_lf{std::cos(1.0f/3.0f * (al::numbers::pi_v<float>*0.5f))};
    const float cos_hf{std::cos(1.0f/4.0f * (al::numbers::pi_v<float>*0.5f))};
    const float sin_lf{std::sin(1.0f/3.0f * (al::numbers::pi_v<float>*0.5f))};
    const float sin_hf{std::sin(1.0f/4.0f * (al::numbers::pi_v<float>*0.5f))};
    for(size_t i{0};i < SamplesToDo;i++)
    {
        const float m{mStablizer->MidLF[i]*cos_lf + mStablizer->MidHF[i]*cos_hf + mid[i]};
        const float c{mStablizer->MidLF[i]*sin_lf + mStablizer->MidHF[i]*sin_hf};
        const float s{side[i]};

        /* The generated center channel signal adds to the existing signal,
         * while the modified left and right channels replace.
         */
        OutBuffer[lidx][i] = (m + s) * 0.5f;
        OutBuffer[ridx][i] = (m - s) * 0.5f;
        OutBuffer[cidx][i] += c * 0.5f;
    }
    /* Move the delayed mid/side samples to the front for next time. */
    auto mid_end = mStablizer->MidDirect.cbegin() + SamplesToDo;
    std::copy(mid_end, mid_end+FrontStablizer::DelayLength, mStablizer->MidDirect.begin());
    auto side_end = mStablizer->Side.cbegin() + SamplesToDo;
    std::copy(side_end, side_end+FrontStablizer::DelayLength, mStablizer->Side.begin());
}


std::unique_ptr<BFormatDec> BFormatDec::Create(const size_t inchans,
    const al::span<const ChannelDec> coeffs, const al::span<const ChannelDec> coeffslf,
    const float xover_f0norm, std::unique_ptr<FrontStablizer> stablizer)
{
    return std::make_unique<BFormatDec>(inchans, coeffs, coeffslf, xover_f0norm,
        std::move(stablizer));
}