#ifndef ALC_HRTF_H #define ALC_HRTF_H #include <array> #include <cstddef> #include <memory> #include <string> #include "AL/al.h" #include "almalloc.h" #include "alspan.h" #include "ambidefs.h" #include "atomic.h" #include "intrusive_ptr.h" #include "vector.h" #define HRTF_HISTORY_BITS (6) #define HRTF_HISTORY_LENGTH (1<<HRTF_HISTORY_BITS) #define HRTF_HISTORY_MASK (HRTF_HISTORY_LENGTH-1) #define HRIR_BITS (7) #define HRIR_LENGTH (1<<HRIR_BITS) #define HRIR_MASK (HRIR_LENGTH-1) #define MIN_IR_LENGTH (8) using float2 = std::array<float,2>; using HrirArray = std::array<float2,HRIR_LENGTH>; using ubyte2 = std::array<ALubyte,2>; struct HrtfStore { RefCount mRef; ALuint sampleRate; ALuint irSize; struct Field { ALfloat distance; ALubyte evCount; }; /* NOTE: Fields are stored *backwards*. field[0] is the farthest field, and * field[fdCount-1] is the nearest. */ ALuint fdCount; const Field *field; struct Elevation { ALushort azCount; ALushort irOffset; }; Elevation *elev; const HrirArray *coeffs; const ubyte2 *delays; void add_ref(); void release(); DEF_PLACE_NEWDEL() }; using HrtfStorePtr = al::intrusive_ptr<HrtfStore>; struct HrtfFilter { alignas(16) HrirArray Coeffs; std::array<ALuint,2> Delay; float Gain; }; struct DirectHrtfState { /* HRTF filter state for dry buffer content */ ALuint IrSize{0}; al::FlexArray<HrirArray,16> Coeffs; DirectHrtfState(size_t numchans) : Coeffs{numchans} { } static std::unique_ptr<DirectHrtfState> Create(size_t num_chans); DEF_FAM_NEWDEL(DirectHrtfState, Coeffs) }; struct EvRadians { float value; }; struct AzRadians { float value; }; struct AngularPoint { EvRadians Elev; AzRadians Azim; }; al::vector<std::string> EnumerateHrtf(const char *devname); HrtfStorePtr GetLoadedHrtf(const std::string &name, const char *devname, const ALuint devrate); void GetHrtfCoeffs(const HrtfStore *Hrtf, float elevation, float azimuth, float distance, float spread, HrirArray &coeffs, const al::span<ALuint,2> delays); /** * Produces HRTF filter coefficients for decoding B-Format, given a set of * virtual speaker positions, a matching decoding matrix, and per-order high- * frequency gains for the decoder. The calculated impulse responses are * ordered and scaled according to the matrix input. */ void BuildBFormatHrtf(const HrtfStore *Hrtf, DirectHrtfState *state, const al::span<const AngularPoint> AmbiPoints, const float (*AmbiMatrix)[MAX_AMBI_CHANNELS], const al::span<const float,MAX_AMBI_ORDER+1> AmbiOrderHFGain); #endif /* ALC_HRTF_H */