aboutsummaryrefslogtreecommitdiffstats
path: root/core/mixer/mixer_neon.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'core/mixer/mixer_neon.cpp')
-rw-r--r--core/mixer/mixer_neon.cpp303
1 files changed, 303 insertions, 0 deletions
diff --git a/core/mixer/mixer_neon.cpp b/core/mixer/mixer_neon.cpp
new file mode 100644
index 00000000..af8f6b0c
--- /dev/null
+++ b/core/mixer/mixer_neon.cpp
@@ -0,0 +1,303 @@
+#include "config.h"
+
+#include <arm_neon.h>
+
+#include <cmath>
+#include <limits>
+
+#include "alnumeric.h"
+#include "core/bsinc_defs.h"
+#include "defs.h"
+#include "hrtfbase.h"
+
+struct NEONTag;
+struct LerpTag;
+struct BSincTag;
+struct FastBSincTag;
+
+
+namespace {
+
+inline float32x4_t set_f4(float l0, float l1, float l2, float l3)
+{
+ float32x4_t ret{};
+ ret = vsetq_lane_f32(l0, ret, 0);
+ ret = vsetq_lane_f32(l1, ret, 1);
+ ret = vsetq_lane_f32(l2, ret, 2);
+ ret = vsetq_lane_f32(l3, ret, 3);
+ return ret;
+}
+
+constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits};
+constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff};
+
+inline void ApplyCoeffs(float2 *RESTRICT Values, const uint_fast32_t IrSize,
+ const HrirArray &Coeffs, const float left, const float right)
+{
+ float32x4_t leftright4;
+ {
+ float32x2_t leftright2 = vdup_n_f32(0.0);
+ leftright2 = vset_lane_f32(left, leftright2, 0);
+ leftright2 = vset_lane_f32(right, leftright2, 1);
+ leftright4 = vcombine_f32(leftright2, leftright2);
+ }
+
+ ASSUME(IrSize >= MIN_IR_LENGTH);
+ for(size_t c{0};c < IrSize;c += 2)
+ {
+ float32x4_t vals = vld1q_f32(&Values[c][0]);
+ float32x4_t coefs = vld1q_f32(&Coeffs[c][0]);
+
+ vals = vmlaq_f32(vals, coefs, leftright4);
+
+ vst1q_f32(&Values[c][0], vals);
+ }
+}
+
+} // namespace
+
+template<>
+const float *Resample_<LerpTag,NEONTag>(const InterpState*, const float *RESTRICT src, uint frac,
+ uint increment, const al::span<float> dst)
+{
+ const int32x4_t increment4 = vdupq_n_s32(static_cast<int>(increment*4));
+ const float32x4_t fracOne4 = vdupq_n_f32(1.0f/MixerFracOne);
+ const int32x4_t fracMask4 = vdupq_n_s32(MixerFracMask);
+ alignas(16) uint pos_[4], frac_[4];
+ int32x4_t pos4, frac4;
+
+ InitPosArrays(frac, increment, frac_, pos_, 4);
+ frac4 = vld1q_s32(reinterpret_cast<int*>(frac_));
+ pos4 = vld1q_s32(reinterpret_cast<int*>(pos_));
+
+ auto dst_iter = dst.begin();
+ for(size_t todo{dst.size()>>2};todo;--todo)
+ {
+ const int pos0{vgetq_lane_s32(pos4, 0)};
+ const int pos1{vgetq_lane_s32(pos4, 1)};
+ const int pos2{vgetq_lane_s32(pos4, 2)};
+ const int pos3{vgetq_lane_s32(pos4, 3)};
+ const float32x4_t val1{set_f4(src[pos0], src[pos1], src[pos2], src[pos3])};
+ const float32x4_t val2{set_f4(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])};
+
+ /* val1 + (val2-val1)*mu */
+ const float32x4_t r0{vsubq_f32(val2, val1)};
+ const float32x4_t mu{vmulq_f32(vcvtq_f32_s32(frac4), fracOne4)};
+ const float32x4_t out{vmlaq_f32(val1, mu, r0)};
+
+ vst1q_f32(dst_iter, out);
+ dst_iter += 4;
+
+ frac4 = vaddq_s32(frac4, increment4);
+ pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, MixerFracBits));
+ frac4 = vandq_s32(frac4, fracMask4);
+ }
+
+ if(size_t todo{dst.size()&3})
+ {
+ src += static_cast<uint>(vgetq_lane_s32(pos4, 0));
+ frac = static_cast<uint>(vgetq_lane_s32(frac4, 0));
+
+ do {
+ *(dst_iter++) = lerp(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne));
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ } while(--todo);
+ }
+ return dst.data();
+}
+
+template<>
+const float *Resample_<BSincTag,NEONTag>(const InterpState *state, const float *RESTRICT src,
+ uint frac, uint increment, const al::span<float> dst)
+{
+ const float *const filter{state->bsinc.filter};
+ const float32x4_t sf4{vdupq_n_f32(state->bsinc.sf)};
+ const size_t m{state->bsinc.m};
+
+ src -= state->bsinc.l;
+ for(float &out_sample : dst)
+ {
+ // Calculate the phase index and factor.
+ const uint pi{frac >> FracPhaseBitDiff};
+ const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
+
+ // Apply the scale and phase interpolated filter.
+ float32x4_t r4{vdupq_n_f32(0.0f)};
+ {
+ const float32x4_t pf4{vdupq_n_f32(pf)};
+ const float *fil{filter + m*pi*4};
+ const float *phd{fil + m};
+ const float *scd{phd + m};
+ const float *spd{scd + m};
+ size_t td{m >> 2};
+ size_t j{0u};
+
+ do {
+ /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
+ const float32x4_t f4 = vmlaq_f32(
+ vmlaq_f32(vld1q_f32(&fil[j]), sf4, vld1q_f32(&scd[j])),
+ pf4, vmlaq_f32(vld1q_f32(&phd[j]), sf4, vld1q_f32(&spd[j])));
+ /* r += f*src */
+ r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
+ j += 4;
+ } while(--td);
+ }
+ r4 = vaddq_f32(r4, vrev64q_f32(r4));
+ out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+ return dst.data();
+}
+
+template<>
+const float *Resample_<FastBSincTag,NEONTag>(const InterpState *state,
+ const float *RESTRICT src, uint frac, uint increment, const al::span<float> dst)
+{
+ const float *const filter{state->bsinc.filter};
+ const size_t m{state->bsinc.m};
+
+ src -= state->bsinc.l;
+ for(float &out_sample : dst)
+ {
+ // Calculate the phase index and factor.
+ const uint pi{frac >> FracPhaseBitDiff};
+ const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
+
+ // Apply the phase interpolated filter.
+ float32x4_t r4{vdupq_n_f32(0.0f)};
+ {
+ const float32x4_t pf4{vdupq_n_f32(pf)};
+ const float *fil{filter + m*pi*4};
+ const float *phd{fil + m};
+ size_t td{m >> 2};
+ size_t j{0u};
+
+ do {
+ /* f = fil + pf*phd */
+ const float32x4_t f4 = vmlaq_f32(vld1q_f32(&fil[j]), pf4, vld1q_f32(&phd[j]));
+ /* r += f*src */
+ r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
+ j += 4;
+ } while(--td);
+ }
+ r4 = vaddq_f32(r4, vrev64q_f32(r4));
+ out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+ return dst.data();
+}
+
+
+template<>
+void MixHrtf_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const MixHrtfFilter *hrtfparams, const size_t BufferSize)
+{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
+
+template<>
+void MixHrtfBlend_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
+{
+ MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
+ BufferSize);
+}
+
+template<>
+void MixDirectHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
+ const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
+ float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
+{
+ MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
+ IrSize, BufferSize);
+}
+
+
+template<>
+void Mix_<NEONTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
+ float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
+{
+ const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
+ const auto min_len = minz(Counter, InSamples.size());
+ const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
+
+ for(FloatBufferLine &output : OutBuffer)
+ {
+ float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
+ float gain{*CurrentGains};
+ const float step{(*TargetGains-gain) * delta};
+
+ size_t pos{0};
+ if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
+ gain = *TargetGains;
+ else
+ {
+ float step_count{0.0f};
+ /* Mix with applying gain steps in aligned multiples of 4. */
+ if(size_t todo{(min_len-pos) >> 2})
+ {
+ const float32x4_t four4{vdupq_n_f32(4.0f)};
+ const float32x4_t step4{vdupq_n_f32(step)};
+ const float32x4_t gain4{vdupq_n_f32(gain)};
+ float32x4_t step_count4{vdupq_n_f32(0.0f)};
+ step_count4 = vsetq_lane_f32(1.0f, step_count4, 1);
+ step_count4 = vsetq_lane_f32(2.0f, step_count4, 2);
+ step_count4 = vsetq_lane_f32(3.0f, step_count4, 3);
+
+ do {
+ const float32x4_t val4 = vld1q_f32(&InSamples[pos]);
+ float32x4_t dry4 = vld1q_f32(&dst[pos]);
+ dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4));
+ step_count4 = vaddq_f32(step_count4, four4);
+ vst1q_f32(&dst[pos], dry4);
+ pos += 4;
+ } while(--todo);
+ /* NOTE: step_count4 now represents the next four counts after
+ * the last four mixed samples, so the lowest element
+ * represents the next step count to apply.
+ */
+ step_count = vgetq_lane_f32(step_count4, 0);
+ }
+ /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
+ for(size_t leftover{min_len&3};leftover;++pos,--leftover)
+ {
+ dst[pos] += InSamples[pos] * (gain + step*step_count);
+ step_count += 1.0f;
+ }
+ if(pos == Counter)
+ gain = *TargetGains;
+ else
+ gain += step*step_count;
+
+ /* Mix until pos is aligned with 4 or the mix is done. */
+ for(size_t leftover{aligned_len&3};leftover;++pos,--leftover)
+ dst[pos] += InSamples[pos] * gain;
+ }
+ *CurrentGains = gain;
+ ++CurrentGains;
+ ++TargetGains;
+
+ if(!(std::abs(gain) > GainSilenceThreshold))
+ continue;
+ if(size_t todo{(InSamples.size()-pos) >> 2})
+ {
+ const float32x4_t gain4 = vdupq_n_f32(gain);
+ do {
+ const float32x4_t val4 = vld1q_f32(&InSamples[pos]);
+ float32x4_t dry4 = vld1q_f32(&dst[pos]);
+ dry4 = vmlaq_f32(dry4, val4, gain4);
+ vst1q_f32(&dst[pos], dry4);
+ pos += 4;
+ } while(--todo);
+ }
+ for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover)
+ dst[pos] += InSamples[pos] * gain;
+ }
+}