diff options
Diffstat (limited to 'core/mixer/mixer_neon.cpp')
-rw-r--r-- | core/mixer/mixer_neon.cpp | 303 |
1 files changed, 303 insertions, 0 deletions
diff --git a/core/mixer/mixer_neon.cpp b/core/mixer/mixer_neon.cpp new file mode 100644 index 00000000..af8f6b0c --- /dev/null +++ b/core/mixer/mixer_neon.cpp @@ -0,0 +1,303 @@ +#include "config.h" + +#include <arm_neon.h> + +#include <cmath> +#include <limits> + +#include "alnumeric.h" +#include "core/bsinc_defs.h" +#include "defs.h" +#include "hrtfbase.h" + +struct NEONTag; +struct LerpTag; +struct BSincTag; +struct FastBSincTag; + + +namespace { + +inline float32x4_t set_f4(float l0, float l1, float l2, float l3) +{ + float32x4_t ret{}; + ret = vsetq_lane_f32(l0, ret, 0); + ret = vsetq_lane_f32(l1, ret, 1); + ret = vsetq_lane_f32(l2, ret, 2); + ret = vsetq_lane_f32(l3, ret, 3); + return ret; +} + +constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits}; +constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff}; + +inline void ApplyCoeffs(float2 *RESTRICT Values, const uint_fast32_t IrSize, + const HrirArray &Coeffs, const float left, const float right) +{ + float32x4_t leftright4; + { + float32x2_t leftright2 = vdup_n_f32(0.0); + leftright2 = vset_lane_f32(left, leftright2, 0); + leftright2 = vset_lane_f32(right, leftright2, 1); + leftright4 = vcombine_f32(leftright2, leftright2); + } + + ASSUME(IrSize >= MIN_IR_LENGTH); + for(size_t c{0};c < IrSize;c += 2) + { + float32x4_t vals = vld1q_f32(&Values[c][0]); + float32x4_t coefs = vld1q_f32(&Coeffs[c][0]); + + vals = vmlaq_f32(vals, coefs, leftright4); + + vst1q_f32(&Values[c][0], vals); + } +} + +} // namespace + +template<> +const float *Resample_<LerpTag,NEONTag>(const InterpState*, const float *RESTRICT src, uint frac, + uint increment, const al::span<float> dst) +{ + const int32x4_t increment4 = vdupq_n_s32(static_cast<int>(increment*4)); + const float32x4_t fracOne4 = vdupq_n_f32(1.0f/MixerFracOne); + const int32x4_t fracMask4 = vdupq_n_s32(MixerFracMask); + alignas(16) uint pos_[4], frac_[4]; + int32x4_t pos4, frac4; + + InitPosArrays(frac, increment, frac_, pos_, 4); + frac4 = vld1q_s32(reinterpret_cast<int*>(frac_)); + pos4 = vld1q_s32(reinterpret_cast<int*>(pos_)); + + auto dst_iter = dst.begin(); + for(size_t todo{dst.size()>>2};todo;--todo) + { + const int pos0{vgetq_lane_s32(pos4, 0)}; + const int pos1{vgetq_lane_s32(pos4, 1)}; + const int pos2{vgetq_lane_s32(pos4, 2)}; + const int pos3{vgetq_lane_s32(pos4, 3)}; + const float32x4_t val1{set_f4(src[pos0], src[pos1], src[pos2], src[pos3])}; + const float32x4_t val2{set_f4(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])}; + + /* val1 + (val2-val1)*mu */ + const float32x4_t r0{vsubq_f32(val2, val1)}; + const float32x4_t mu{vmulq_f32(vcvtq_f32_s32(frac4), fracOne4)}; + const float32x4_t out{vmlaq_f32(val1, mu, r0)}; + + vst1q_f32(dst_iter, out); + dst_iter += 4; + + frac4 = vaddq_s32(frac4, increment4); + pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, MixerFracBits)); + frac4 = vandq_s32(frac4, fracMask4); + } + + if(size_t todo{dst.size()&3}) + { + src += static_cast<uint>(vgetq_lane_s32(pos4, 0)); + frac = static_cast<uint>(vgetq_lane_s32(frac4, 0)); + + do { + *(dst_iter++) = lerp(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne)); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } while(--todo); + } + return dst.data(); +} + +template<> +const float *Resample_<BSincTag,NEONTag>(const InterpState *state, const float *RESTRICT src, + uint frac, uint increment, const al::span<float> dst) +{ + const float *const filter{state->bsinc.filter}; + const float32x4_t sf4{vdupq_n_f32(state->bsinc.sf)}; + const size_t m{state->bsinc.m}; + + src -= state->bsinc.l; + for(float &out_sample : dst) + { + // Calculate the phase index and factor. + const uint pi{frac >> FracPhaseBitDiff}; + const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; + + // Apply the scale and phase interpolated filter. + float32x4_t r4{vdupq_n_f32(0.0f)}; + { + const float32x4_t pf4{vdupq_n_f32(pf)}; + const float *fil{filter + m*pi*4}; + const float *phd{fil + m}; + const float *scd{phd + m}; + const float *spd{scd + m}; + size_t td{m >> 2}; + size_t j{0u}; + + do { + /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ + const float32x4_t f4 = vmlaq_f32( + vmlaq_f32(vld1q_f32(&fil[j]), sf4, vld1q_f32(&scd[j])), + pf4, vmlaq_f32(vld1q_f32(&phd[j]), sf4, vld1q_f32(&spd[j]))); + /* r += f*src */ + r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j])); + j += 4; + } while(--td); + } + r4 = vaddq_f32(r4, vrev64q_f32(r4)); + out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } + return dst.data(); +} + +template<> +const float *Resample_<FastBSincTag,NEONTag>(const InterpState *state, + const float *RESTRICT src, uint frac, uint increment, const al::span<float> dst) +{ + const float *const filter{state->bsinc.filter}; + const size_t m{state->bsinc.m}; + + src -= state->bsinc.l; + for(float &out_sample : dst) + { + // Calculate the phase index and factor. + const uint pi{frac >> FracPhaseBitDiff}; + const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; + + // Apply the phase interpolated filter. + float32x4_t r4{vdupq_n_f32(0.0f)}; + { + const float32x4_t pf4{vdupq_n_f32(pf)}; + const float *fil{filter + m*pi*4}; + const float *phd{fil + m}; + size_t td{m >> 2}; + size_t j{0u}; + + do { + /* f = fil + pf*phd */ + const float32x4_t f4 = vmlaq_f32(vld1q_f32(&fil[j]), pf4, vld1q_f32(&phd[j])); + /* r += f*src */ + r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j])); + j += 4; + } while(--td); + } + r4 = vaddq_f32(r4, vrev64q_f32(r4)); + out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } + return dst.data(); +} + + +template<> +void MixHrtf_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const MixHrtfFilter *hrtfparams, const size_t BufferSize) +{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } + +template<> +void MixHrtfBlend_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) +{ + MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams, + BufferSize); +} + +template<> +void MixDirectHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, + float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) +{ + MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState, + IrSize, BufferSize); +} + + +template<> +void Mix_<NEONTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer, + float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) +{ + const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f}; + const auto min_len = minz(Counter, InSamples.size()); + const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len; + + for(FloatBufferLine &output : OutBuffer) + { + float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; + float gain{*CurrentGains}; + const float step{(*TargetGains-gain) * delta}; + + size_t pos{0}; + if(!(std::abs(step) > std::numeric_limits<float>::epsilon())) + gain = *TargetGains; + else + { + float step_count{0.0f}; + /* Mix with applying gain steps in aligned multiples of 4. */ + if(size_t todo{(min_len-pos) >> 2}) + { + const float32x4_t four4{vdupq_n_f32(4.0f)}; + const float32x4_t step4{vdupq_n_f32(step)}; + const float32x4_t gain4{vdupq_n_f32(gain)}; + float32x4_t step_count4{vdupq_n_f32(0.0f)}; + step_count4 = vsetq_lane_f32(1.0f, step_count4, 1); + step_count4 = vsetq_lane_f32(2.0f, step_count4, 2); + step_count4 = vsetq_lane_f32(3.0f, step_count4, 3); + + do { + const float32x4_t val4 = vld1q_f32(&InSamples[pos]); + float32x4_t dry4 = vld1q_f32(&dst[pos]); + dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4)); + step_count4 = vaddq_f32(step_count4, four4); + vst1q_f32(&dst[pos], dry4); + pos += 4; + } while(--todo); + /* NOTE: step_count4 now represents the next four counts after + * the last four mixed samples, so the lowest element + * represents the next step count to apply. + */ + step_count = vgetq_lane_f32(step_count4, 0); + } + /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ + for(size_t leftover{min_len&3};leftover;++pos,--leftover) + { + dst[pos] += InSamples[pos] * (gain + step*step_count); + step_count += 1.0f; + } + if(pos == Counter) + gain = *TargetGains; + else + gain += step*step_count; + + /* Mix until pos is aligned with 4 or the mix is done. */ + for(size_t leftover{aligned_len&3};leftover;++pos,--leftover) + dst[pos] += InSamples[pos] * gain; + } + *CurrentGains = gain; + ++CurrentGains; + ++TargetGains; + + if(!(std::abs(gain) > GainSilenceThreshold)) + continue; + if(size_t todo{(InSamples.size()-pos) >> 2}) + { + const float32x4_t gain4 = vdupq_n_f32(gain); + do { + const float32x4_t val4 = vld1q_f32(&InSamples[pos]); + float32x4_t dry4 = vld1q_f32(&dst[pos]); + dry4 = vmlaq_f32(dry4, val4, gain4); + vst1q_f32(&dst[pos], dry4); + pos += 4; + } while(--todo); + } + for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover) + dst[pos] += InSamples[pos] * gain; + } +} |