aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects
diff options
context:
space:
mode:
Diffstat (limited to 'alc/effects')
-rw-r--r--alc/effects/chorus.cpp16
-rw-r--r--alc/effects/convolution.cpp388
-rw-r--r--alc/effects/dedicated.cpp8
-rw-r--r--alc/effects/distortion.cpp4
-rw-r--r--alc/effects/echo.cpp10
-rw-r--r--alc/effects/fshifter.cpp12
-rw-r--r--alc/effects/modulator.cpp150
-rw-r--r--alc/effects/pshifter.cpp53
-rw-r--r--alc/effects/reverb.cpp163
9 files changed, 501 insertions, 303 deletions
diff --git a/alc/effects/chorus.cpp b/alc/effects/chorus.cpp
index 10ccf9f6..9cbc922f 100644
--- a/alc/effects/chorus.cpp
+++ b/alc/effects/chorus.cpp
@@ -25,6 +25,7 @@
#include <climits>
#include <cstdlib>
#include <iterator>
+#include <vector>
#include "alc/effects/base.h"
#include "almalloc.h"
@@ -41,7 +42,6 @@
#include "core/resampler_limits.h"
#include "intrusive_ptr.h"
#include "opthelpers.h"
-#include "vector.h"
namespace {
@@ -49,7 +49,7 @@ namespace {
using uint = unsigned int;
struct ChorusState final : public EffectState {
- al::vector<float,16> mDelayBuffer;
+ std::vector<float> mDelayBuffer;
uint mOffset{0};
uint mLfoOffset{0};
@@ -125,16 +125,16 @@ void ChorusState::update(const ContextBase *Context, const EffectSlot *Slot,
/* Gains for left and right sides */
static constexpr auto inv_sqrt2 = static_cast<float>(1.0 / al::numbers::sqrt2);
- static constexpr auto lcoeffs_pw = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f});
- static constexpr auto rcoeffs_pw = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f});
- static constexpr auto lcoeffs_nrml = CalcDirectionCoeffs({-inv_sqrt2, 0.0f, inv_sqrt2});
- static constexpr auto rcoeffs_nrml = CalcDirectionCoeffs({ inv_sqrt2, 0.0f, inv_sqrt2});
+ static constexpr auto lcoeffs_pw = CalcDirectionCoeffs(std::array{-1.0f, 0.0f, 0.0f});
+ static constexpr auto rcoeffs_pw = CalcDirectionCoeffs(std::array{ 1.0f, 0.0f, 0.0f});
+ static constexpr auto lcoeffs_nrml = CalcDirectionCoeffs(std::array{-inv_sqrt2, 0.0f, inv_sqrt2});
+ static constexpr auto rcoeffs_nrml = CalcDirectionCoeffs(std::array{ inv_sqrt2, 0.0f, inv_sqrt2});
auto &lcoeffs = (device->mRenderMode != RenderMode::Pairwise) ? lcoeffs_nrml : lcoeffs_pw;
auto &rcoeffs = (device->mRenderMode != RenderMode::Pairwise) ? rcoeffs_nrml : rcoeffs_pw;
mOutTarget = target.Main->Buffer;
- ComputePanGains(target.Main, lcoeffs.data(), Slot->Gain, mGains[0].Target);
- ComputePanGains(target.Main, rcoeffs.data(), Slot->Gain, mGains[1].Target);
+ ComputePanGains(target.Main, lcoeffs, Slot->Gain, mGains[0].Target);
+ ComputePanGains(target.Main, rcoeffs, Slot->Gain, mGains[1].Target);
float rate{props->Chorus.Rate};
if(!(rate > 0.0f))
diff --git a/alc/effects/convolution.cpp b/alc/effects/convolution.cpp
index 7f36c415..517e6b08 100644
--- a/alc/effects/convolution.cpp
+++ b/alc/effects/convolution.cpp
@@ -17,7 +17,6 @@
#include <arm_neon.h>
#endif
-#include "albyte.h"
#include "alcomplex.h"
#include "almalloc.h"
#include "alnumbers.h"
@@ -35,44 +34,49 @@
#include "core/fmt_traits.h"
#include "core/mixer.h"
#include "intrusive_ptr.h"
+#include "pffft.h"
#include "polyphase_resampler.h"
#include "vector.h"
namespace {
-/* Convolution reverb is implemented using a segmented overlap-add method. The
- * impulse response is broken up into multiple segments of 128 samples, and
- * each segment has an FFT applied with a 256-sample buffer (the latter half
- * left silent) to get its frequency-domain response. The resulting response
- * has its positive/non-mirrored frequencies saved (129 bins) in each segment.
+/* Convolution is implemented using a segmented overlap-add method. The impulse
+ * response is split into multiple segments of 128 samples, and each segment
+ * has an FFT applied with a 256-sample buffer (the latter half left silent) to
+ * get its frequency-domain response. The resulting response has its positive/
+ * non-mirrored frequencies saved (129 bins) in each segment. Note that since
+ * the 0- and half-frequency bins are real for a real signal, their imaginary
+ * components are always 0 and can be dropped, allowing their real components
+ * to be combined so only 128 complex values are stored for the 129 bins.
*
- * Input samples are similarly broken up into 128-sample segments, with an FFT
- * applied to each new incoming segment to get its 129 bins. A history of FFT'd
- * input segments is maintained, equal to the length of the impulse response.
+ * Input samples are similarly broken up into 128-sample segments, with a 256-
+ * sample FFT applied to each new incoming segment to get its 129 bins. A
+ * history of FFT'd input segments is maintained, equal to the number of
+ * impulse response segments.
*
- * To apply the reverberation, each impulse response segment is convolved with
+ * To apply the convolution, each impulse response segment is convolved with
* its paired input segment (using complex multiplies, far cheaper than FIRs),
- * accumulating into a 256-bin FFT buffer. The input history is then shifted to
- * align with later impulse response segments for next time.
+ * accumulating into a 129-bin FFT buffer. The input history is then shifted to
+ * align with later impulse response segments for the next input segment.
*
* An inverse FFT is then applied to the accumulated FFT buffer to get a 256-
* sample time-domain response for output, which is split in two halves. The
* first half is the 128-sample output, and the second half is a 128-sample
* (really, 127) delayed extension, which gets added to the output next time.
- * Convolving two time-domain responses of lengths N and M results in a time-
- * domain signal of length N+M-1, and this holds true regardless of the
- * convolution being applied in the frequency domain, so these "overflow"
- * samples need to be accounted for.
+ * Convolving two time-domain responses of length N results in a time-domain
+ * signal of length N*2 - 1, and this holds true regardless of the convolution
+ * being applied in the frequency domain, so these "overflow" samples need to
+ * be accounted for.
*
- * To avoid a delay with gathering enough input samples to apply an FFT with,
- * the first segment is applied directly in the time-domain as the samples come
- * in. Once enough have been retrieved, the FFT is applied on the input and
- * it's paired with the remaining (FFT'd) filter segments for processing.
+ * To avoid a delay with gathering enough input samples for the FFT, the first
+ * segment is applied directly in the time-domain as the samples come in. Once
+ * enough have been retrieved, the FFT is applied on the input and it's paired
+ * with the remaining (FFT'd) filter segments for processing.
*/
-void LoadSamples(float *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
+void LoadSamples(float *RESTRICT dst, const std::byte *src, const size_t srcstep, FmtType srctype,
const size_t samples) noexcept
{
#define HANDLE_FMT(T) case T: al::LoadSampleArray<T>(dst, src, srcstep, samples); break
@@ -80,6 +84,7 @@ void LoadSamples(float *RESTRICT dst, const al::byte *src, const size_t srcstep,
{
HANDLE_FMT(FmtUByte);
HANDLE_FMT(FmtShort);
+ HANDLE_FMT(FmtInt);
HANDLE_FMT(FmtFloat);
HANDLE_FMT(FmtDouble);
HANDLE_FMT(FmtMulaw);
@@ -94,40 +99,43 @@ void LoadSamples(float *RESTRICT dst, const al::byte *src, const size_t srcstep,
}
-inline auto& GetAmbiScales(AmbiScaling scaletype) noexcept
+constexpr auto GetAmbiScales(AmbiScaling scaletype) noexcept
{
switch(scaletype)
{
- case AmbiScaling::FuMa: return AmbiScale::FromFuMa();
- case AmbiScaling::SN3D: return AmbiScale::FromSN3D();
- case AmbiScaling::UHJ: return AmbiScale::FromUHJ();
+ case AmbiScaling::FuMa: return al::span{AmbiScale::FromFuMa};
+ case AmbiScaling::SN3D: return al::span{AmbiScale::FromSN3D};
+ case AmbiScaling::UHJ: return al::span{AmbiScale::FromUHJ};
case AmbiScaling::N3D: break;
}
- return AmbiScale::FromN3D();
+ return al::span{AmbiScale::FromN3D};
}
-inline auto& GetAmbiLayout(AmbiLayout layouttype) noexcept
+constexpr auto GetAmbiLayout(AmbiLayout layouttype) noexcept
{
- if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa();
- return AmbiIndex::FromACN();
+ if(layouttype == AmbiLayout::FuMa) return al::span{AmbiIndex::FromFuMa};
+ return al::span{AmbiIndex::FromACN};
}
-inline auto& GetAmbi2DLayout(AmbiLayout layouttype) noexcept
+constexpr auto GetAmbi2DLayout(AmbiLayout layouttype) noexcept
{
- if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D();
- return AmbiIndex::FromACN2D();
+ if(layouttype == AmbiLayout::FuMa) return al::span{AmbiIndex::FromFuMa2D};
+ return al::span{AmbiIndex::FromACN2D};
}
-struct ChanMap {
+constexpr float sin30{0.5f};
+constexpr float cos30{0.866025403785f};
+constexpr float sin45{al::numbers::sqrt2_v<float>*0.5f};
+constexpr float cos45{al::numbers::sqrt2_v<float>*0.5f};
+constexpr float sin110{ 0.939692620786f};
+constexpr float cos110{-0.342020143326f};
+
+struct ChanPosMap {
Channel channel;
- float angle;
- float elevation;
+ std::array<float,3> pos;
};
-constexpr float Deg2Rad(float x) noexcept
-{ return static_cast<float>(al::numbers::pi / 180.0 * x); }
-
using complex_f = std::complex<float>;
@@ -181,6 +189,13 @@ void apply_fir(al::span<float> dst, const float *RESTRICT src, const float *REST
#endif
}
+
+struct PFFFTSetupDeleter {
+ void operator()(PFFFT_Setup *ptr) { pffft_destroy_setup(ptr); }
+};
+using PFFFTSetupPtr = std::unique_ptr<PFFFT_Setup,PFFFTSetupDeleter>;
+
+
struct ConvolutionState final : public EffectState {
FmtChannels mChannels{};
AmbiLayout mAmbiLayout{};
@@ -188,11 +203,13 @@ struct ConvolutionState final : public EffectState {
uint mAmbiOrder{};
size_t mFifoPos{0};
- std::array<float,ConvolveUpdateSamples*2> mInput{};
+ alignas(16) std::array<float,ConvolveUpdateSamples*2> mInput{};
al::vector<std::array<float,ConvolveUpdateSamples>,16> mFilter;
al::vector<std::array<float,ConvolveUpdateSamples*2>,16> mOutput;
- alignas(16) std::array<complex_f,ConvolveUpdateSize> mFftBuffer{};
+ PFFFTSetupPtr mFft{};
+ alignas(16) std::array<float,ConvolveUpdateSize> mFftBuffer{};
+ alignas(16) std::array<float,ConvolveUpdateSize> mFftWorkBuffer{};
size_t mCurrentSegment{0};
size_t mNumConvolveSegs{0};
@@ -204,9 +221,8 @@ struct ConvolutionState final : public EffectState {
float Current[MAX_OUTPUT_CHANNELS]{};
float Target[MAX_OUTPUT_CHANNELS]{};
};
- using ChannelDataArray = al::FlexArray<ChannelData>;
- std::unique_ptr<ChannelDataArray> mChans;
- std::unique_ptr<complex_f[]> mComplexData;
+ std::vector<ChannelData> mChans;
+ al::vector<float,16> mComplexData;
ConvolutionState() = default;
@@ -229,7 +245,7 @@ struct ConvolutionState final : public EffectState {
void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut,
const size_t samplesToDo)
{
- for(auto &chan : *mChans)
+ for(auto &chan : mChans)
MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current, chan.Target,
samplesToDo, 0);
}
@@ -237,7 +253,7 @@ void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut,
void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut,
const size_t samplesToDo)
{
- for(auto &chan : *mChans)
+ for(auto &chan : mChans)
{
const al::span<float> src{chan.mBuffer.data(), samplesToDo};
chan.mFilter.processScale(src, chan.mHfScale, chan.mLfScale);
@@ -251,19 +267,23 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
using UhjDecoderType = UhjDecoder<512>;
static constexpr auto DecoderPadding = UhjDecoderType::sInputPadding;
- constexpr uint MaxConvolveAmbiOrder{1u};
+ static constexpr uint MaxConvolveAmbiOrder{1u};
+
+ if(!mFft)
+ mFft = PFFFTSetupPtr{pffft_new_setup(ConvolveUpdateSize, PFFFT_REAL)};
mFifoPos = 0;
mInput.fill(0.0f);
decltype(mFilter){}.swap(mFilter);
decltype(mOutput){}.swap(mOutput);
- mFftBuffer.fill(complex_f{});
+ mFftBuffer.fill(0.0f);
+ mFftWorkBuffer.fill(0.0f);
mCurrentSegment = 0;
mNumConvolveSegs = 0;
- mChans = nullptr;
- mComplexData = nullptr;
+ decltype(mChans){}.swap(mChans);
+ decltype(mComplexData){}.swap(mComplexData);
/* An empty buffer doesn't need a convolution filter. */
if(!buffer || buffer->mSampleLen < 1) return;
@@ -273,12 +293,11 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
mAmbiScaling = IsUHJ(mChannels) ? AmbiScaling::UHJ : buffer->mAmbiScaling;
mAmbiOrder = minu(buffer->mAmbiOrder, MaxConvolveAmbiOrder);
- constexpr size_t m{ConvolveUpdateSize/2 + 1};
const auto bytesPerSample = BytesFromFmt(buffer->mType);
const auto realChannels = buffer->channelsFromFmt();
const auto numChannels = (mChannels == FmtUHJ2) ? 3u : ChannelsFromFmt(mChannels, mAmbiOrder);
- mChans = ChannelDataArray::Create(numChannels);
+ mChans.resize(numChannels);
/* The impulse response needs to have the same sample rate as the input and
* output. The bsinc24 resampler is decent, but there is high-frequency
@@ -293,7 +312,7 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
buffer->mSampleRate);
const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
- for(auto &e : *mChans)
+ for(auto &e : mChans)
e.mFilter = splitter;
mFilter.resize(numChannels, {});
@@ -307,9 +326,8 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples;
mNumConvolveSegs = maxz(mNumConvolveSegs, 2) - 1;
- const size_t complex_length{mNumConvolveSegs * m * (numChannels+1)};
- mComplexData = std::make_unique<complex_f[]>(complex_length);
- std::fill_n(mComplexData.get(), complex_length, complex_f{});
+ const size_t complex_length{mNumConvolveSegs * ConvolveUpdateSize * (numChannels+1)};
+ mComplexData.resize(complex_length, 0.0f);
/* Load the samples from the buffer. */
const size_t srclinelength{RoundUp(buffer->mSampleLen+DecoderPadding, 16)};
@@ -330,7 +348,10 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
auto ressamples = std::make_unique<double[]>(buffer->mSampleLen +
(resampler ? resampledCount : 0));
- complex_f *filteriter = mComplexData.get() + mNumConvolveSegs*m;
+ auto ffttmp = al::vector<float,16>(ConvolveUpdateSize);
+ auto fftbuffer = std::vector<std::complex<double>>(ConvolveUpdateSize);
+
+ float *filteriter = mComplexData.data() + mNumConvolveSegs*ConvolveUpdateSize;
for(size_t c{0};c < numChannels;++c)
{
/* Resample to match the device. */
@@ -351,71 +372,85 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorag
std::transform(ressamples.get(), ressamples.get()+first_size, mFilter[c].rbegin(),
[](const double d) noexcept -> float { return static_cast<float>(d); });
- auto fftbuffer = std::vector<std::complex<double>>(ConvolveUpdateSize);
size_t done{first_size};
for(size_t s{0};s < mNumConvolveSegs;++s)
{
const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)};
+ /* Apply a double-precision forward FFT for more precise frequency
+ * measurements.
+ */
auto iter = std::copy_n(&ressamples[done], todo, fftbuffer.begin());
done += todo;
std::fill(iter, fftbuffer.end(), std::complex<double>{});
+ forward_fft(al::span{fftbuffer});
- forward_fft(al::as_span(fftbuffer));
- filteriter = std::copy_n(fftbuffer.cbegin(), m, filteriter);
+ /* Convert to, and pack in, a float buffer for PFFFT. Note that the
+ * first bin stores the real component of the half-frequency bin in
+ * the imaginary component. Also scale the FFT by its length so the
+ * iFFT'd output will be normalized.
+ */
+ static constexpr float fftscale{1.0f / float{ConvolveUpdateSize}};
+ for(size_t i{0};i < ConvolveUpdateSamples;++i)
+ {
+ ffttmp[i*2 ] = static_cast<float>(fftbuffer[i].real()) * fftscale;
+ ffttmp[i*2 + 1] = static_cast<float>((i == 0) ?
+ fftbuffer[ConvolveUpdateSamples].real() : fftbuffer[i].imag()) * fftscale;
+ }
+ /* Reorder backward to make it suitable for pffft_zconvolve and the
+ * subsequent pffft_transform(..., PFFFT_BACKWARD).
+ */
+ pffft_zreorder(mFft.get(), ffttmp.data(), al::to_address(filteriter), PFFFT_BACKWARD);
+ filteriter += ConvolveUpdateSize;
}
}
}
void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot,
- const EffectProps* /*props*/, const EffectTarget target)
+ const EffectProps *props, const EffectTarget target)
{
- /* NOTE: Stereo and Rear are slightly different from normal mixing (as
- * defined in alu.cpp). These are 45 degrees from center, rather than the
- * 30 degrees used there.
- *
- * TODO: LFE is not mixed to output. This will require each buffer channel
+ /* TODO: LFE is not mixed to output. This will require each buffer channel
* to have its own output target since the main mixing buffer won't have an
* LFE channel (due to being B-Format).
*/
- static constexpr ChanMap MonoMap[1]{
- { FrontCenter, 0.0f, 0.0f }
+ static constexpr ChanPosMap MonoMap[1]{
+ { FrontCenter, std::array{0.0f, 0.0f, -1.0f} }
}, StereoMap[2]{
- { FrontLeft, Deg2Rad(-45.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) }
+ { FrontLeft, std::array{-sin30, 0.0f, -cos30} },
+ { FrontRight, std::array{ sin30, 0.0f, -cos30} },
}, RearMap[2]{
- { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
+ { BackLeft, std::array{-sin30, 0.0f, cos30} },
+ { BackRight, std::array{ sin30, 0.0f, cos30} },
}, QuadMap[4]{
- { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
- { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
+ { FrontLeft, std::array{-sin45, 0.0f, -cos45} },
+ { FrontRight, std::array{ sin45, 0.0f, -cos45} },
+ { BackLeft, std::array{-sin45, 0.0f, cos45} },
+ { BackRight, std::array{ sin45, 0.0f, cos45} },
}, X51Map[6]{
- { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
+ { FrontLeft, std::array{-sin30, 0.0f, -cos30} },
+ { FrontRight, std::array{ sin30, 0.0f, -cos30} },
+ { FrontCenter, std::array{ 0.0f, 0.0f, -1.0f} },
+ { LFE, {} },
+ { SideLeft, std::array{-sin110, 0.0f, -cos110} },
+ { SideRight, std::array{ sin110, 0.0f, -cos110} },
}, X61Map[7]{
- { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
- { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
+ { FrontLeft, std::array{-sin30, 0.0f, -cos30} },
+ { FrontRight, std::array{ sin30, 0.0f, -cos30} },
+ { FrontCenter, std::array{ 0.0f, 0.0f, -1.0f} },
+ { LFE, {} },
+ { BackCenter, std::array{ 0.0f, 0.0f, 1.0f} },
+ { SideLeft, std::array{-1.0f, 0.0f, 0.0f} },
+ { SideRight, std::array{ 1.0f, 0.0f, 0.0f} },
}, X71Map[8]{
- { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
- { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
+ { FrontLeft, std::array{-sin30, 0.0f, -cos30} },
+ { FrontRight, std::array{ sin30, 0.0f, -cos30} },
+ { FrontCenter, std::array{ 0.0f, 0.0f, -1.0f} },
+ { LFE, {} },
+ { BackLeft, std::array{-sin30, 0.0f, cos30} },
+ { BackRight, std::array{ sin30, 0.0f, cos30} },
+ { SideLeft, std::array{ -1.0f, 0.0f, 0.0f} },
+ { SideRight, std::array{ 1.0f, 0.0f, 0.0f} },
};
if(mNumConvolveSegs < 1) UNLIKELY
@@ -423,7 +458,7 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
mMix = &ConvolutionState::NormalMix;
- for(auto &chan : *mChans)
+ for(auto &chan : mChans)
std::fill(std::begin(chan.Target), std::end(chan.Target), 0.0f);
const float gain{slot->Gain};
if(IsAmbisonic(mChannels))
@@ -432,46 +467,66 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
if(mChannels == FmtUHJ2 && !device->mUhjEncoder)
{
mMix = &ConvolutionState::UpsampleMix;
- (*mChans)[0].mHfScale = 1.0f;
- (*mChans)[0].mLfScale = DecoderBase::sWLFScale;
- (*mChans)[1].mHfScale = 1.0f;
- (*mChans)[1].mLfScale = DecoderBase::sXYLFScale;
- (*mChans)[2].mHfScale = 1.0f;
- (*mChans)[2].mLfScale = DecoderBase::sXYLFScale;
+ mChans[0].mHfScale = 1.0f;
+ mChans[0].mLfScale = DecoderBase::sWLFScale;
+ mChans[1].mHfScale = 1.0f;
+ mChans[1].mLfScale = DecoderBase::sXYLFScale;
+ mChans[2].mHfScale = 1.0f;
+ mChans[2].mLfScale = DecoderBase::sXYLFScale;
}
else if(device->mAmbiOrder > mAmbiOrder)
{
mMix = &ConvolutionState::UpsampleMix;
const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder,
device->m2DMixing);
- (*mChans)[0].mHfScale = scales[0];
- (*mChans)[0].mLfScale = 1.0f;
- for(size_t i{1};i < mChans->size();++i)
+ mChans[0].mHfScale = scales[0];
+ mChans[0].mLfScale = 1.0f;
+ for(size_t i{1};i < mChans.size();++i)
{
- (*mChans)[i].mHfScale = scales[1];
- (*mChans)[i].mLfScale = 1.0f;
+ mChans[i].mHfScale = scales[1];
+ mChans[i].mLfScale = 1.0f;
}
}
mOutTarget = target.Main->Buffer;
- auto&& scales = GetAmbiScales(mAmbiScaling);
+ alu::Vector N{props->Convolution.OrientAt[0], props->Convolution.OrientAt[1],
+ props->Convolution.OrientAt[2], 0.0f};
+ N.normalize();
+ alu::Vector V{props->Convolution.OrientUp[0], props->Convolution.OrientUp[1],
+ props->Convolution.OrientUp[2], 0.0f};
+ V.normalize();
+ /* Build and normalize right-vector */
+ alu::Vector U{N.cross_product(V)};
+ U.normalize();
+
+ const float mixmatrix[4][4]{
+ {1.0f, 0.0f, 0.0f, 0.0f},
+ {0.0f, U[0], -U[1], U[2]},
+ {0.0f, -V[0], V[1], -V[2]},
+ {0.0f, -N[0], N[1], -N[2]},
+ };
+
+ const auto scales = GetAmbiScales(mAmbiScaling);
const uint8_t *index_map{Is2DAmbisonic(mChannels) ?
GetAmbi2DLayout(mAmbiLayout).data() :
GetAmbiLayout(mAmbiLayout).data()};
std::array<float,MaxAmbiChannels> coeffs{};
- for(size_t c{0u};c < mChans->size();++c)
+ for(size_t c{0u};c < mChans.size();++c)
{
const size_t acn{index_map[c]};
- coeffs[acn] = scales[acn];
- ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[c].Target);
- coeffs[acn] = 0.0f;
+ const float scale{scales[acn]};
+
+ for(size_t x{0};x < 4;++x)
+ coeffs[x] = mixmatrix[acn][x] * scale;
+
+ ComputePanGains(target.Main, coeffs, gain, mChans[c].Target);
}
}
else
{
DeviceBase *device{context->mDevice};
- al::span<const ChanMap> chanmap{};
+ al::span<const ChanPosMap> chanmap{};
switch(mChannels)
{
case FmtMono: chanmap = MonoMap; break;
@@ -493,28 +548,55 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
mOutTarget = target.Main->Buffer;
if(device->mRenderMode == RenderMode::Pairwise)
{
- auto ScaleAzimuthFront = [](float azimuth, float scale) -> float
+ /* Scales the azimuth of the given vector by 3 if it's in front.
+ * Effectively scales +/-30 degrees to +/-90 degrees, leaving > +90
+ * and < -90 alone.
+ */
+ auto ScaleAzimuthFront = [](std::array<float,3> pos) -> std::array<float,3>
{
- constexpr float half_pi{al::numbers::pi_v<float>*0.5f};
- const float abs_azi{std::fabs(azimuth)};
- if(!(abs_azi >= half_pi))
- return std::copysign(minf(abs_azi*scale, half_pi), azimuth);
- return azimuth;
+ if(pos[2] < 0.0f)
+ {
+ /* Normalize the length of the x,z components for a 2D
+ * vector of the azimuth angle. Negate Z since {0,0,-1} is
+ * angle 0.
+ */
+ const float len2d{std::sqrt(pos[0]*pos[0] + pos[2]*pos[2])};
+ float x{pos[0] / len2d};
+ float z{-pos[2] / len2d};
+
+ /* Z > cos(pi/6) = -30 < azimuth < 30 degrees. */
+ if(z > cos30)
+ {
+ /* Triple the angle represented by x,z. */
+ x = x*3.0f - x*x*x*4.0f;
+ z = z*z*z*4.0f - z*3.0f;
+
+ /* Scale the vector back to fit in 3D. */
+ pos[0] = x * len2d;
+ pos[2] = -z * len2d;
+ }
+ else
+ {
+ /* If azimuth >= 30 degrees, clamp to 90 degrees. */
+ pos[0] = std::copysign(len2d, pos[0]);
+ pos[2] = 0.0f;
+ }
+ }
+ return pos;
};
for(size_t i{0};i < chanmap.size();++i)
{
if(chanmap[i].channel == LFE) continue;
- const auto coeffs = CalcAngleCoeffs(ScaleAzimuthFront(chanmap[i].angle, 2.0f),
- chanmap[i].elevation, 0.0f);
- ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[i].Target);
+ const auto coeffs = CalcDirectionCoeffs(ScaleAzimuthFront(chanmap[i].pos), 0.0f);
+ ComputePanGains(target.Main, coeffs, gain, mChans[i].Target);
}
}
else for(size_t i{0};i < chanmap.size();++i)
{
if(chanmap[i].channel == LFE) continue;
- const auto coeffs = CalcAngleCoeffs(chanmap[i].angle, chanmap[i].elevation, 0.0f);
- ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[i].Target);
+ const auto coeffs = CalcDirectionCoeffs(chanmap[i].pos, 0.0f);
+ ComputePanGains(target.Main, coeffs, gain, mChans[i].Target);
}
}
}
@@ -525,9 +607,7 @@ void ConvolutionState::process(const size_t samplesToDo,
if(mNumConvolveSegs < 1) UNLIKELY
return;
- constexpr size_t m{ConvolveUpdateSize/2 + 1};
size_t curseg{mCurrentSegment};
- auto &chans = *mChans;
for(size_t base{0u};base < samplesToDo;)
{
@@ -539,9 +619,9 @@ void ConvolutionState::process(const size_t samplesToDo,
/* Apply the FIR for the newly retrieved input samples, and combine it
* with the inverse FFT'd output samples.
*/
- for(size_t c{0};c < chans.size();++c)
+ for(size_t c{0};c < mChans.size();++c)
{
- auto buf_iter = chans[c].mBuffer.begin() + base;
+ auto buf_iter = mChans[c].mBuffer.begin() + base;
apply_fir({buf_iter, todo}, mInput.data()+1 + mFifoPos, mFilter[c].data());
auto fifo_iter = mOutput[c].begin() + mFifoPos;
@@ -557,59 +637,49 @@ void ConvolutionState::process(const size_t samplesToDo,
/* Move the newest input to the front for the next iteration's history. */
std::copy(mInput.cbegin()+ConvolveUpdateSamples, mInput.cend(), mInput.begin());
+ std::fill(mInput.begin()+ConvolveUpdateSamples, mInput.end(), 0.0f);
- /* Calculate the frequency domain response and add the relevant
+ /* Calculate the frequency-domain response and add the relevant
* frequency bins to the FFT history.
*/
- auto fftiter = std::copy_n(mInput.cbegin(), ConvolveUpdateSamples, mFftBuffer.begin());
- std::fill(fftiter, mFftBuffer.end(), complex_f{});
- forward_fft(al::as_span(mFftBuffer));
+ pffft_transform(mFft.get(), mInput.data(), mComplexData.data() + curseg*ConvolveUpdateSize,
+ mFftWorkBuffer.data(), PFFFT_FORWARD);
- std::copy_n(mFftBuffer.cbegin(), m, &mComplexData[curseg*m]);
-
- const complex_f *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m};
- for(size_t c{0};c < chans.size();++c)
+ const float *filter{mComplexData.data() + mNumConvolveSegs*ConvolveUpdateSize};
+ for(size_t c{0};c < mChans.size();++c)
{
- std::fill_n(mFftBuffer.begin(), m, complex_f{});
-
/* Convolve each input segment with its IR filter counterpart
* (aligned in time).
*/
- const complex_f *RESTRICT input{&mComplexData[curseg*m]};
+ mFftBuffer.fill(0.0f);
+ const float *input{&mComplexData[curseg*ConvolveUpdateSize]};
for(size_t s{curseg};s < mNumConvolveSegs;++s)
{
- for(size_t i{0};i < m;++i,++input,++filter)
- mFftBuffer[i] += *input * *filter;
+ pffft_zconvolve_accumulate(mFft.get(), input, filter, mFftBuffer.data());
+ input += ConvolveUpdateSize;
+ filter += ConvolveUpdateSize;
}
- input = mComplexData.get();
+ input = mComplexData.data();
for(size_t s{0};s < curseg;++s)
{
- for(size_t i{0};i < m;++i,++input,++filter)
- mFftBuffer[i] += *input * *filter;
+ pffft_zconvolve_accumulate(mFft.get(), input, filter, mFftBuffer.data());
+ input += ConvolveUpdateSize;
+ filter += ConvolveUpdateSize;
}
- /* Reconstruct the mirrored/negative frequencies to do a proper
- * inverse FFT.
- */
- for(size_t i{m};i < ConvolveUpdateSize;++i)
- mFftBuffer[i] = std::conj(mFftBuffer[ConvolveUpdateSize-i]);
-
/* Apply iFFT to get the 256 (really 255) samples for output. The
* 128 output samples are combined with the last output's 127
* second-half samples (and this output's second half is
* subsequently saved for next time).
*/
- inverse_fft(al::as_span(mFftBuffer));
+ pffft_transform(mFft.get(), mFftBuffer.data(), mFftBuffer.data(),
+ mFftWorkBuffer.data(), PFFFT_BACKWARD);
- /* The iFFT'd response is scaled up by the number of bins, so apply
- * the inverse to normalize the output.
- */
+ /* The filter was attenuated, so the response is already scaled. */
for(size_t i{0};i < ConvolveUpdateSamples;++i)
- mOutput[c][i] =
- (mFftBuffer[i].real()+mOutput[c][ConvolveUpdateSamples+i]) *
- (1.0f/float{ConvolveUpdateSize});
+ mOutput[c][i] = mFftBuffer[i] + mOutput[c][ConvolveUpdateSamples+i];
for(size_t i{0};i < ConvolveUpdateSamples;++i)
- mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real();
+ mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i];
}
/* Shift the input history. */
diff --git a/alc/effects/dedicated.cpp b/alc/effects/dedicated.cpp
index 047e6761..a9131bfa 100644
--- a/alc/effects/dedicated.cpp
+++ b/alc/effects/dedicated.cpp
@@ -74,7 +74,7 @@ void DedicatedState::update(const ContextBase*, const EffectSlot *slot,
if(slot->EffectType == EffectSlotType::DedicatedLFE)
{
- const uint idx{target.RealOut ? target.RealOut->ChannelIndex[LFE] : InvalidChannelIndex};
+ const size_t idx{target.RealOut ? target.RealOut->ChannelIndex[LFE] : InvalidChannelIndex};
if(idx != InvalidChannelIndex)
{
mOutTarget = target.RealOut->Buffer;
@@ -85,7 +85,7 @@ void DedicatedState::update(const ContextBase*, const EffectSlot *slot,
{
/* Dialog goes to the front-center speaker if it exists, otherwise it
* plays from the front-center location. */
- const uint idx{target.RealOut ? target.RealOut->ChannelIndex[FrontCenter]
+ const size_t idx{target.RealOut ? target.RealOut->ChannelIndex[FrontCenter]
: InvalidChannelIndex};
if(idx != InvalidChannelIndex)
{
@@ -94,10 +94,10 @@ void DedicatedState::update(const ContextBase*, const EffectSlot *slot,
}
else
{
- static constexpr auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f});
+ static constexpr auto coeffs = CalcDirectionCoeffs(std::array{0.0f, 0.0f, -1.0f});
mOutTarget = target.Main->Buffer;
- ComputePanGains(target.Main, coeffs.data(), Gain, mTargetGains);
+ ComputePanGains(target.Main, coeffs, Gain, mTargetGains);
}
}
}
diff --git a/alc/effects/distortion.cpp b/alc/effects/distortion.cpp
index b4e2167e..3d77ff35 100644
--- a/alc/effects/distortion.cpp
+++ b/alc/effects/distortion.cpp
@@ -95,10 +95,10 @@ void DistortionState::update(const ContextBase *context, const EffectSlot *slot,
bandwidth = props->Distortion.EQBandwidth / (cutoff * 0.67f);
mBandpass.setParamsFromBandwidth(BiquadType::BandPass, cutoff/frequency/4.0f, 1.0f, bandwidth);
- static constexpr auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f});
+ static constexpr auto coeffs = CalcDirectionCoeffs(std::array{0.0f, 0.0f, -1.0f});
mOutTarget = target.Main->Buffer;
- ComputePanGains(target.Main, coeffs.data(), slot->Gain*props->Distortion.Gain, mGain);
+ ComputePanGains(target.Main, coeffs, slot->Gain*props->Distortion.Gain, mGain);
}
void DistortionState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
diff --git a/alc/effects/echo.cpp b/alc/effects/echo.cpp
index a69529dc..714649c9 100644
--- a/alc/effects/echo.cpp
+++ b/alc/effects/echo.cpp
@@ -25,6 +25,7 @@
#include <cstdlib>
#include <iterator>
#include <tuple>
+#include <vector>
#include "alc/effects/base.h"
#include "almalloc.h"
@@ -39,7 +40,6 @@
#include "core/mixer.h"
#include "intrusive_ptr.h"
#include "opthelpers.h"
-#include "vector.h"
namespace {
@@ -49,7 +49,7 @@ using uint = unsigned int;
constexpr float LowpassFreqRef{5000.0f};
struct EchoState final : public EffectState {
- al::vector<float,16> mSampleBuffer;
+ std::vector<float> mSampleBuffer;
// The echo is two tap. The delay is the number of samples from before the
// current offset
@@ -87,7 +87,7 @@ void EchoState::deviceUpdate(const DeviceBase *Device, const BufferStorage*)
const uint maxlen{NextPowerOf2(float2uint(EchoMaxDelay*frequency + 0.5f) +
float2uint(EchoMaxLRDelay*frequency + 0.5f))};
if(maxlen != mSampleBuffer.size())
- al::vector<float,16>(maxlen).swap(mSampleBuffer);
+ decltype(mSampleBuffer)(maxlen).swap(mSampleBuffer);
std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
for(auto &e : mGains)
@@ -118,8 +118,8 @@ void EchoState::update(const ContextBase *context, const EffectSlot *slot,
const auto coeffs1 = CalcAngleCoeffs( angle, 0.0f, 0.0f);
mOutTarget = target.Main->Buffer;
- ComputePanGains(target.Main, coeffs0.data(), slot->Gain, mGains[0].Target);
- ComputePanGains(target.Main, coeffs1.data(), slot->Gain, mGains[1].Target);
+ ComputePanGains(target.Main, coeffs0, slot->Gain, mGains[0].Target);
+ ComputePanGains(target.Main, coeffs1, slot->Gain, mGains[1].Target);
}
void EchoState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
diff --git a/alc/effects/fshifter.cpp b/alc/effects/fshifter.cpp
index 3e6a7385..d3989e84 100644
--- a/alc/effects/fshifter.cpp
+++ b/alc/effects/fshifter.cpp
@@ -164,16 +164,16 @@ void FshifterState::update(const ContextBase *context, const EffectSlot *slot,
}
static constexpr auto inv_sqrt2 = static_cast<float>(1.0 / al::numbers::sqrt2);
- static constexpr auto lcoeffs_pw = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f});
- static constexpr auto rcoeffs_pw = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f});
- static constexpr auto lcoeffs_nrml = CalcDirectionCoeffs({-inv_sqrt2, 0.0f, inv_sqrt2});
- static constexpr auto rcoeffs_nrml = CalcDirectionCoeffs({ inv_sqrt2, 0.0f, inv_sqrt2});
+ static constexpr auto lcoeffs_pw = CalcDirectionCoeffs(std::array{-1.0f, 0.0f, 0.0f});
+ static constexpr auto rcoeffs_pw = CalcDirectionCoeffs(std::array{ 1.0f, 0.0f, 0.0f});
+ static constexpr auto lcoeffs_nrml = CalcDirectionCoeffs(std::array{-inv_sqrt2, 0.0f, inv_sqrt2});
+ static constexpr auto rcoeffs_nrml = CalcDirectionCoeffs(std::array{ inv_sqrt2, 0.0f, inv_sqrt2});
auto &lcoeffs = (device->mRenderMode != RenderMode::Pairwise) ? lcoeffs_nrml : lcoeffs_pw;
auto &rcoeffs = (device->mRenderMode != RenderMode::Pairwise) ? rcoeffs_nrml : rcoeffs_pw;
mOutTarget = target.Main->Buffer;
- ComputePanGains(target.Main, lcoeffs.data(), slot->Gain, mGains[0].Target);
- ComputePanGains(target.Main, rcoeffs.data(), slot->Gain, mGains[1].Target);
+ ComputePanGains(target.Main, lcoeffs, slot->Gain, mGains[0].Target);
+ ComputePanGains(target.Main, rcoeffs, slot->Gain, mGains[1].Target);
}
void FshifterState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
diff --git a/alc/effects/modulator.cpp b/alc/effects/modulator.cpp
index 14ee5004..f99ba19c 100644
--- a/alc/effects/modulator.cpp
+++ b/alc/effects/modulator.cpp
@@ -45,43 +45,49 @@ namespace {
using uint = unsigned int;
-#define MAX_UPDATE_SAMPLES 128
+inline float Sin(uint index, float scale)
+{ return std::sin(static_cast<float>(index) * scale); }
-#define WAVEFORM_FRACBITS 24
-#define WAVEFORM_FRACONE (1<<WAVEFORM_FRACBITS)
-#define WAVEFORM_FRACMASK (WAVEFORM_FRACONE-1)
+inline float Saw(uint index, float scale)
+{ return static_cast<float>(index)*scale - 1.0f; }
-inline float Sin(uint index)
-{
- constexpr float scale{al::numbers::pi_v<float>*2.0f / WAVEFORM_FRACONE};
- return std::sin(static_cast<float>(index) * scale);
-}
+inline float Square(uint index, float scale)
+{ return (static_cast<float>(index)*scale < 0.5f)*2.0f - 1.0f; }
-inline float Saw(uint index)
-{ return static_cast<float>(index)*(2.0f/WAVEFORM_FRACONE) - 1.0f; }
+inline float One(uint, float)
+{ return 1.0f; }
-inline float Square(uint index)
-{ return static_cast<float>(static_cast<int>((index>>(WAVEFORM_FRACBITS-2))&2) - 1); }
+struct ModulatorState final : public EffectState {
+ template<float (&func)(uint,float)>
+ void Modulate(size_t todo)
+ {
+ const uint range{mRange};
+ const float scale{mIndexScale};
+ uint index{mIndex};
-inline float One(uint) { return 1.0f; }
+ ASSUME(range > 1);
+ ASSUME(todo > 0);
-template<float (&func)(uint)>
-void Modulate(float *RESTRICT dst, uint index, const uint step, size_t todo)
-{
- for(size_t i{0u};i < todo;i++)
- {
- index += step;
- index &= WAVEFORM_FRACMASK;
- dst[i] = func(index);
+ for(size_t i{0};i < todo;)
+ {
+ size_t rem{minz(todo-i, range-index)};
+ do {
+ mModSamples[i++] = func(index++, scale);
+ } while(--rem);
+ if(index == range)
+ index = 0;
+ }
+ mIndex = index;
}
-}
-
-struct ModulatorState final : public EffectState {
- void (*mGetSamples)(float*RESTRICT, uint, const uint, size_t){};
+ void (ModulatorState::*mGenModSamples)(size_t){};
uint mIndex{0};
- uint mStep{1};
+ uint mRange{1};
+ float mIndexScale{0.0f};
+
+ alignas(16) FloatBufferLine mModSamples{};
+ alignas(16) FloatBufferLine mBuffer{};
struct {
uint mTargetChannel{InvalidChannelIndex};
@@ -102,6 +108,13 @@ struct ModulatorState final : public EffectState {
DEF_NEWDEL(ModulatorState)
};
+template<>
+void ModulatorState::Modulate<One>(size_t todo)
+{
+ std::fill_n(mModSamples.begin(), todo, 1.0f);
+ mIndex = 0;
+}
+
void ModulatorState::deviceUpdate(const DeviceBase*, const BufferStorage*)
{
for(auto &e : mChans)
@@ -117,17 +130,46 @@ void ModulatorState::update(const ContextBase *context, const EffectSlot *slot,
{
const DeviceBase *device{context->mDevice};
- const float step{props->Modulator.Frequency / static_cast<float>(device->Frequency)};
- mStep = fastf2u(clampf(step*WAVEFORM_FRACONE, 0.0f, float{WAVEFORM_FRACONE-1}));
-
- if(mStep == 0)
- mGetSamples = Modulate<One>;
+ /* The effective frequency will be adjusted to have a whole number of
+ * samples per cycle (at 48khz, that allows 8000, 6857.14, 6000, 5333.33,
+ * 4800, etc). We could do better by using fixed-point stepping over a sin
+ * function, with additive synthesis for the square and sawtooth waveforms,
+ * but that may need a more efficient sin function since it needs to do
+ * many iterations per sample.
+ */
+ const float samplesPerCycle{props->Modulator.Frequency > 0.0f
+ ? static_cast<float>(device->Frequency)/props->Modulator.Frequency + 0.5f
+ : 1.0f};
+ const uint range{static_cast<uint>(clampf(samplesPerCycle, 1.0f,
+ static_cast<float>(device->Frequency)))};
+ mIndex = static_cast<uint>(uint64_t{mIndex} * range / mRange);
+ mRange = range;
+
+ if(mRange == 1)
+ {
+ mIndexScale = 0.0f;
+ mGenModSamples = &ModulatorState::Modulate<One>;
+ }
else if(props->Modulator.Waveform == ModulatorWaveform::Sinusoid)
- mGetSamples = Modulate<Sin>;
+ {
+ mIndexScale = al::numbers::pi_v<float>*2.0f / static_cast<float>(mRange);
+ mGenModSamples = &ModulatorState::Modulate<Sin>;
+ }
else if(props->Modulator.Waveform == ModulatorWaveform::Sawtooth)
- mGetSamples = Modulate<Saw>;
+ {
+ mIndexScale = 2.0f / static_cast<float>(mRange-1);
+ mGenModSamples = &ModulatorState::Modulate<Saw>;
+ }
else /*if(props->Modulator.Waveform == ModulatorWaveform::Square)*/
- mGetSamples = Modulate<Square>;
+ {
+ /* For square wave, the range should be even (there should be an equal
+ * number of high and low samples). An odd number of samples per cycle
+ * would need a more complex value generator.
+ */
+ mRange = (mRange+1) & ~1u;
+ mIndexScale = 1.0f / static_cast<float>(mRange-1);
+ mGenModSamples = &ModulatorState::Modulate<Square>;
+ }
float f0norm{props->Modulator.HighPassCutoff / static_cast<float>(device->Frequency)};
f0norm = clampf(f0norm, 1.0f/512.0f, 0.49f);
@@ -147,34 +189,22 @@ void ModulatorState::update(const ContextBase *context, const EffectSlot *slot,
void ModulatorState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
- for(size_t base{0u};base < samplesToDo;)
- {
- alignas(16) float modsamples[MAX_UPDATE_SAMPLES];
- const size_t td{minz(MAX_UPDATE_SAMPLES, samplesToDo-base)};
-
- mGetSamples(modsamples, mIndex, mStep, td);
- mIndex += static_cast<uint>(mStep * td);
- mIndex &= WAVEFORM_FRACMASK;
+ (this->*mGenModSamples)(samplesToDo);
- auto chandata = std::begin(mChans);
- for(const auto &input : samplesIn)
+ auto chandata = std::begin(mChans);
+ for(const auto &input : samplesIn)
+ {
+ const size_t outidx{chandata->mTargetChannel};
+ if(outidx != InvalidChannelIndex)
{
- const size_t outidx{chandata->mTargetChannel};
- if(outidx != InvalidChannelIndex)
- {
- alignas(16) float temps[MAX_UPDATE_SAMPLES];
-
- chandata->mFilter.process({&input[base], td}, temps);
- for(size_t i{0u};i < td;i++)
- temps[i] *= modsamples[i];
-
- MixSamples({temps, td}, samplesOut[outidx].data()+base, chandata->mCurrentGain,
- chandata->mTargetGain, samplesToDo-base);
- }
- ++chandata;
- }
+ chandata->mFilter.process({input.data(), samplesToDo}, mBuffer.data());
+ for(size_t i{0u};i < samplesToDo;++i)
+ mBuffer[i] *= mModSamples[i];
- base += td;
+ MixSamples({mBuffer.data(), samplesToDo}, samplesOut[outidx].data(),
+ chandata->mCurrentGain, chandata->mTargetGain, minz(samplesToDo, 64));
+ }
+ ++chandata;
}
}
diff --git a/alc/effects/pshifter.cpp b/alc/effects/pshifter.cpp
index 426a2264..0c27be30 100644
--- a/alc/effects/pshifter.cpp
+++ b/alc/effects/pshifter.cpp
@@ -28,7 +28,6 @@
#include <iterator>
#include "alc/effects/base.h"
-#include "alcomplex.h"
#include "almalloc.h"
#include "alnumbers.h"
#include "alnumeric.h"
@@ -40,6 +39,7 @@
#include "core/mixer.h"
#include "core/mixer/defs.h"
#include "intrusive_ptr.h"
+#include "pffft.h"
struct ContextBase;
@@ -74,6 +74,12 @@ struct Windower {
const Windower gWindow{};
+struct PFFFTSetupDeleter {
+ void operator()(PFFFT_Setup *ptr) { pffft_destroy_setup(ptr); }
+};
+using PFFFTSetupPtr = std::unique_ptr<PFFFT_Setup,PFFFTSetupDeleter>;
+
+
struct FrequencyBin {
float Magnitude;
float FreqBin;
@@ -93,7 +99,9 @@ struct PshifterState final : public EffectState {
std::array<float,StftHalfSize+1> mSumPhase;
std::array<float,StftSize> mOutputAccum;
- std::array<complex_f,StftSize> mFftBuffer;
+ PFFFTSetupPtr mFft;
+ alignas(16) std::array<float,StftSize> mFftBuffer;
+ alignas(16) std::array<float,StftSize> mFftWorkBuffer;
std::array<FrequencyBin,StftHalfSize+1> mAnalysisBuffer;
std::array<FrequencyBin,StftHalfSize+1> mSynthesisBuffer;
@@ -126,12 +134,15 @@ void PshifterState::deviceUpdate(const DeviceBase*, const BufferStorage*)
mLastPhase.fill(0.0f);
mSumPhase.fill(0.0f);
mOutputAccum.fill(0.0f);
- mFftBuffer.fill(complex_f{});
+ mFftBuffer.fill(0.0f);
mAnalysisBuffer.fill(FrequencyBin{});
mSynthesisBuffer.fill(FrequencyBin{});
std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f);
std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f);
+
+ if(!mFft)
+ mFft = PFFFTSetupPtr{pffft_new_setup(StftSize, PFFFT_REAL)};
}
void PshifterState::update(const ContextBase*, const EffectSlot *slot,
@@ -142,10 +153,10 @@ void PshifterState::update(const ContextBase*, const EffectSlot *slot,
mPitchShiftI = clampu(fastf2u(pitch*MixerFracOne), MixerFracHalf, MixerFracOne*2);
mPitchShift = static_cast<float>(mPitchShiftI) * float{1.0f/MixerFracOne};
- static constexpr auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f});
+ static constexpr auto coeffs = CalcDirectionCoeffs(std::array{0.0f, 0.0f, -1.0f});
mOutTarget = target.Main->Buffer;
- ComputePanGains(target.Main, coeffs.data(), slot->Gain, mTargetGains);
+ ComputePanGains(target.Main, coeffs, slot->Gain, mTargetGains);
}
void PshifterState::process(const size_t samplesToDo,
@@ -186,15 +197,19 @@ void PshifterState::process(const size_t samplesToDo,
mFftBuffer[k] = mFIFO[src] * gWindow.mData[k];
for(size_t src{0u}, k{StftSize-mPos};src < mPos;++src,++k)
mFftBuffer[k] = mFIFO[src] * gWindow.mData[k];
- forward_fft(al::as_span(mFftBuffer));
+ pffft_transform_ordered(mFft.get(), mFftBuffer.data(), mFftBuffer.data(),
+ mFftWorkBuffer.data(), PFFFT_FORWARD);
/* Analyze the obtained data. Since the real FFT is symmetric, only
* StftHalfSize+1 samples are needed.
*/
- for(size_t k{0u};k < StftHalfSize+1;k++)
+ for(size_t k{0u};k < StftHalfSize+1;++k)
{
- const float magnitude{std::abs(mFftBuffer[k])};
- const float phase{std::arg(mFftBuffer[k])};
+ const auto cplx = (k == 0) ? complex_f{mFftBuffer[0]} :
+ (k == StftHalfSize) ? complex_f{mFftBuffer[1]} :
+ complex_f{mFftBuffer[k*2], mFftBuffer[k*2 + 1]};
+ const float magnitude{std::abs(cplx)};
+ const float phase{std::arg(cplx)};
/* Compute the phase difference from the last update and subtract
* the expected phase difference for this bin.
@@ -266,21 +281,29 @@ void PshifterState::process(const size_t samplesToDo,
tmp -= static_cast<float>(qpd + (qpd%2));
mSumPhase[k] = tmp * al::numbers::pi_v<float>;
- mFftBuffer[k] = std::polar(mSynthesisBuffer[k].Magnitude, mSumPhase[k]);
+ const complex_f cplx{std::polar(mSynthesisBuffer[k].Magnitude, mSumPhase[k])};
+ if(k == 0)
+ mFftBuffer[0] = cplx.real();
+ else if(k == StftHalfSize)
+ mFftBuffer[1] = cplx.real();
+ else
+ {
+ mFftBuffer[k*2 + 0] = cplx.real();
+ mFftBuffer[k*2 + 1] = cplx.imag();
+ }
}
- for(size_t k{StftHalfSize+1};k < StftSize;++k)
- mFftBuffer[k] = std::conj(mFftBuffer[StftSize-k]);
/* Apply an inverse FFT to get the time-domain signal, and accumulate
* for the output with windowing.
*/
- inverse_fft(al::as_span(mFftBuffer));
+ pffft_transform_ordered(mFft.get(), mFftBuffer.data(), mFftBuffer.data(),
+ mFftWorkBuffer.data(), PFFFT_BACKWARD);
static constexpr float scale{3.0f / OversampleFactor / StftSize};
for(size_t dst{mPos}, k{0u};dst < StftSize;++dst,++k)
- mOutputAccum[dst] += gWindow.mData[k]*mFftBuffer[k].real() * scale;
+ mOutputAccum[dst] += gWindow.mData[k]*mFftBuffer[k] * scale;
for(size_t dst{0u}, k{StftSize-mPos};dst < mPos;++dst,++k)
- mOutputAccum[dst] += gWindow.mData[k]*mFftBuffer[k].real() * scale;
+ mOutputAccum[dst] += gWindow.mData[k]*mFftBuffer[k] * scale;
/* Copy out the accumulated result, then clear for the next iteration. */
std::copy_n(mOutputAccum.begin() + mPos, StftStep, mFIFO.begin() + mPos);
diff --git a/alc/effects/reverb.cpp b/alc/effects/reverb.cpp
index 3875bedb..0f1fcca1 100644
--- a/alc/effects/reverb.cpp
+++ b/alc/effects/reverb.cpp
@@ -98,8 +98,6 @@ struct CubicFilter {
constexpr CubicFilter gCubicTable;
-using namespace std::placeholders;
-
/* Max samples per process iteration. Used to limit the size needed for
* temporary buffers. Must be a multiple of 4 for SIMD alignment.
*/
@@ -122,12 +120,9 @@ constexpr size_t NUM_LINES{4u};
constexpr float MODULATION_DEPTH_COEFF{0.05f};
-/* The B-Format to A-Format conversion matrix. The arrangement of rows is
- * deliberately chosen to align the resulting lines to their spatial opposites
- * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
- * back left). It's not quite opposite, since the A-Format results in a
- * tetrahedron, but it's close enough. Should the model be extended to 8-lines
- * in the future, true opposites can be used.
+/* The B-Format to (W-normalized) A-Format conversion matrix. This produces a
+ * tetrahedral array of discrete signals (boosted by a factor of sqrt(3), to
+ * reduce the error introduced in the conversion).
*/
alignas(16) constexpr float B2A[NUM_LINES][NUM_LINES]{
{ 0.5f, 0.5f, 0.5f, 0.5f },
@@ -136,7 +131,9 @@ alignas(16) constexpr float B2A[NUM_LINES][NUM_LINES]{
{ 0.5f, -0.5f, 0.5f, -0.5f }
};
-/* Converts A-Format to B-Format for early reflections. */
+/* Converts (W-normalized) A-Format to B-Format for early reflections (scaled
+ * by 1/sqrt(3) to compensate for the boost in the B2A matrix).
+ */
alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> EarlyA2B{{
{{ 0.5f, 0.5f, 0.5f, 0.5f }},
{{ 0.5f, -0.5f, 0.5f, -0.5f }},
@@ -144,7 +141,11 @@ alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> EarlyA2B
{{ 0.5f, 0.5f, -0.5f, -0.5f }}
}};
-/* Converts A-Format to B-Format for late reverb. */
+/* Converts (W-normalized) A-Format to B-Format for late reverb (scaled
+ * by 1/sqrt(3) to compensate for the boost in the B2A matrix). The response
+ * is rotated around Z (ambisonic X) so that the front lines are placed
+ * horizontally in front, and the rear lines are placed vertically in back.
+ */
constexpr auto InvSqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> LateA2B{{
{{ 0.5f, 0.5f, 0.5f, 0.5f }},
@@ -330,6 +331,39 @@ struct DelayLineI {
} while(--td);
}
}
+
+ /* Writes the given input lines to the delay buffer, applying a geometric
+ * reflection. This effectively applies the matrix
+ *
+ * [ -1/2 +1/2 +1/2 +1/2 ]
+ * [ +1/2 -1/2 +1/2 +1/2 ]
+ * [ +1/2 +1/2 -1/2 +1/2 ]
+ * [ +1/2 +1/2 +1/2 -1/2 ]
+ *
+ * to the four input lines when writing to the delay buffer. The effect on
+ * the B-Format signal is negating X,Y,Z, moving each response to its
+ * spatially opposite location.
+ */
+ void writeReflected(size_t offset, const al::span<const ReverbUpdateLine,NUM_LINES> in,
+ const size_t count) const noexcept
+ {
+ ASSUME(count > 0);
+ for(size_t i{0u};i < count;)
+ {
+ offset &= Mask;
+ size_t td{minz(Mask+1 - offset, count - i)};
+ do {
+ const std::array src{in[0][i], in[1][i], in[2][i], in[3][i]};
+ ++i;
+
+ Line[offset][0] = ( src[1] + src[2] + src[3] - src[0]) * 0.5f;
+ Line[offset][1] = (src[0] + src[2] + src[3] - src[1]) * 0.5f;
+ Line[offset][2] = (src[0] + src[1] + src[3] - src[2]) * 0.5f;
+ Line[offset][3] = (src[0] + src[1] + src[2] - src[3]) * 0.5f;
+ ++offset;
+ } while(--td);
+ }
+ }
};
struct VecAllpass {
@@ -461,8 +495,9 @@ struct ReverbPipeline {
void updateDelayLine(const float earlyDelay, const float lateDelay, const float density_mult,
const float decayTime, const float frequency);
- void update3DPanning(const float *ReflectionsPan, const float *LateReverbPan,
- const float earlyGain, const float lateGain, const bool doUpmix, const MixParams *mainMix);
+ void update3DPanning(const al::span<const float,3> ReflectionsPan,
+ const al::span<const float,3> LateReverbPan, const float earlyGain, const float lateGain,
+ const bool doUpmix, const MixParams *mainMix);
void processEarly(size_t offset, const size_t samplesToDo,
const al::span<ReverbUpdateLine,NUM_LINES> tempSamples,
@@ -643,8 +678,8 @@ inline float CalcDelayLengthMult(float density)
*/
void ReverbState::allocLines(const float frequency)
{
- /* All delay line lengths are calculated to accomodate the full range of
- * lengths given their respective paramters.
+ /* All delay line lengths are calculated to accommodate the full range of
+ * lengths given their respective parameters.
*/
size_t totalSamples{0u};
@@ -1017,8 +1052,12 @@ void ReverbPipeline::updateDelayLine(const float earlyDelay, const float lateDel
mEarlyDelayTap[i][1] = float2uint((earlyDelay+length) * frequency);
mEarlyDelayCoeff[i] = CalcDecayCoeff(length, decayTime);
+ /* Reduce the late delay tap by the shortest early delay line length to
+ * compensate for the late line input being fed by the delayed early
+ * output.
+ */
length = (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front())/float{NUM_LINES}*density_mult +
- lateDelay;
+ std::max(lateDelay - EARLY_LINE_LENGTHS[0]*density_mult, 0.0f);
mLateDelayTap[i][1] = float2uint(length * frequency);
}
}
@@ -1028,7 +1067,7 @@ void ReverbPipeline::updateDelayLine(const float earlyDelay, const float lateDel
* focal strength. This function results in a B-Format transformation matrix
* that spatially focuses the signal in the desired direction.
*/
-std::array<std::array<float,4>,4> GetTransformFromVector(const float *vec)
+std::array<std::array<float,4>,4> GetTransformFromVector(const al::span<const float,3> vec)
{
/* Normalize the panning vector according to the N3D scale, which has an
* extra sqrt(3) term on the directional components. Converting from OpenAL
@@ -1041,9 +1080,10 @@ std::array<std::array<float,4>,4> GetTransformFromVector(const float *vec)
float mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])};
if(mag > 1.0f)
{
- norm[0] = vec[0] / mag * -al::numbers::sqrt3_v<float>;
- norm[1] = vec[1] / mag * al::numbers::sqrt3_v<float>;
- norm[2] = vec[2] / mag * al::numbers::sqrt3_v<float>;
+ const float scale{al::numbers::sqrt3_v<float> / mag};
+ norm[0] = vec[0] * -scale;
+ norm[1] = vec[1] * scale;
+ norm[2] = vec[2] * scale;
mag = 1.0f;
}
else
@@ -1066,8 +1106,9 @@ std::array<std::array<float,4>,4> GetTransformFromVector(const float *vec)
}
/* Update the early and late 3D panning gains. */
-void ReverbPipeline::update3DPanning(const float *ReflectionsPan, const float *LateReverbPan,
- const float earlyGain, const float lateGain, const bool doUpmix, const MixParams *mainMix)
+void ReverbPipeline::update3DPanning(const al::span<const float,3> ReflectionsPan,
+ const al::span<const float,3> LateReverbPan, const float earlyGain, const float lateGain,
+ const bool doUpmix, const MixParams *mainMix)
{
/* Create matrices that transform a B-Format signal according to the
* panning vectors.
@@ -1105,9 +1146,9 @@ void ReverbPipeline::update3DPanning(const float *ReflectionsPan, const float *L
auto latecoeffs = mult_matrix(latemat);
for(size_t i{0u};i < NUM_LINES;i++)
- ComputePanGains(mainMix, earlycoeffs[i].data(), earlyGain, mEarly.TargetGains[i]);
+ ComputePanGains(mainMix, earlycoeffs[i], earlyGain, mEarly.TargetGains[i]);
for(size_t i{0u};i < NUM_LINES;i++)
- ComputePanGains(mainMix, latecoeffs[i].data(), lateGain, mLate.TargetGains[i]);
+ ComputePanGains(mainMix, latecoeffs[i], lateGain, mLate.TargetGains[i]);
}
else
{
@@ -1137,9 +1178,9 @@ void ReverbPipeline::update3DPanning(const float *ReflectionsPan, const float *L
auto latecoeffs = mult_matrix(LateA2B, latemat);
for(size_t i{0u};i < NUM_LINES;i++)
- ComputePanGains(mainMix, earlycoeffs[i].data(), earlyGain, mEarly.TargetGains[i]);
+ ComputePanGains(mainMix, earlycoeffs[i], earlyGain, mEarly.TargetGains[i]);
for(size_t i{0u};i < NUM_LINES;i++)
- ComputePanGains(mainMix, latecoeffs[i].data(), lateGain, mLate.TargetGains[i]);
+ ComputePanGains(mainMix, latecoeffs[i], lateGain, mLate.TargetGains[i]);
}
}
@@ -1244,9 +1285,36 @@ void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot,
props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, frequency);
}
- const float decaySamples{(props->Reverb.ReflectionsDelay + props->Reverb.LateReverbDelay
- + props->Reverb.DecayTime) * frequency};
- pipeline.mFadeSampleCount = static_cast<size_t>(minf(decaySamples, 1'000'000.0f));
+ /* Calculate the gain at the start of the late reverb stage, and the gain
+ * difference from the decay target (0.001, or -60dB).
+ */
+ const float decayBase{props->Reverb.ReflectionsGain * props->Reverb.LateReverbGain};
+ const float decayDiff{ReverbDecayGain / decayBase};
+
+ if(decayDiff < 1.0f)
+ {
+ /* Given the DecayTime (the amount of time for the late reverb to decay
+ * by -60dB), calculate the time to decay to -60dB from the start of
+ * the late reverb.
+ */
+ const float diffTime{std::log10(decayDiff)*(20.0f / -60.0f) * props->Reverb.DecayTime};
+
+ const float decaySamples{(props->Reverb.ReflectionsDelay + props->Reverb.LateReverbDelay
+ + diffTime) * frequency};
+ /* Limit to 100,000 samples (a touch over 2 seconds at 48khz) to
+ * avoid excessive double-processing.
+ */
+ pipeline.mFadeSampleCount = static_cast<size_t>(minf(decaySamples, 100'000.0f));
+ }
+ else
+ {
+ /* Otherwise, if the late reverb already starts at -60dB or less, only
+ * include the time to get to the late reverb.
+ */
+ const float decaySamples{(props->Reverb.ReflectionsDelay + props->Reverb.LateReverbDelay)
+ * frequency};
+ pipeline.mFadeSampleCount = static_cast<size_t>(minf(decaySamples, 100'000.0f));
+ }
}
@@ -1303,7 +1371,9 @@ inline auto VectorPartialScatter(const std::array<float,NUM_LINES> &RESTRICT in,
}};
}
-/* Utilizes the above, but reverses the input channels. */
+/* Utilizes the above, but also applies a geometric reflection on the input
+ * channels.
+ */
void VectorScatterRevDelayIn(const DelayLineI delay, size_t offset, const float xCoeff,
const float yCoeff, const al::span<const ReverbUpdateLine,NUM_LINES> in, const size_t count)
{
@@ -1314,9 +1384,13 @@ void VectorScatterRevDelayIn(const DelayLineI delay, size_t offset, const float
offset &= delay.Mask;
size_t td{minz(delay.Mask+1 - offset, count-i)};
do {
- std::array<float,NUM_LINES> f;
- for(size_t j{0u};j < NUM_LINES;j++)
- f[NUM_LINES-1-j] = in[j][i];
+ std::array src{in[0][i], in[1][i], in[2][i], in[3][i]};
+ std::array f{
+ ( src[1] + src[2] + src[3] - src[0]) * 0.5f,
+ (src[0] + src[2] + src[3] - src[1]) * 0.5f,
+ (src[0] + src[1] + src[3] - src[2]) * 0.5f,
+ (src[0] + src[1] + src[2] - src[3]) * 0.5f
+ };
++i;
delay.Line[offset++] = VectorPartialScatter(f, xCoeff, yCoeff);
@@ -1330,9 +1404,6 @@ void VectorScatterRevDelayIn(const DelayLineI delay, size_t offset, const float
* It works by vectorizing a regular all-pass filter and replacing the delay
* element with a scattering matrix (like the one above) and a diagonal
* matrix of delay elements.
- *
- * Two static specializations are used for transitional (cross-faded) delay
- * line processing and non-transitional processing.
*/
void VecAllpass::process(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset,
const float xCoeff, const float yCoeff, const size_t todo)
@@ -1379,14 +1450,13 @@ void VecAllpass::process(const al::span<ReverbUpdateLine,NUM_LINES> samples, siz
* same direction as the source) from the main delay line. These are
* attenuated and all-pass filtered (based on the diffusion parameter).
*
- * The early lines are then fed in reverse (according to the approximately
- * opposite spatial location of the A-Format lines) to create the secondary
+ * The early lines are then reflected about the origin to create the secondary
* reflections (those arriving from the opposite direction as the source).
*
* The early response is then completed by combining the primary reflections
* with the delayed and attenuated output from the early lines.
*
- * Finally, the early response is reversed, scattered (based on diffusion),
+ * Finally, the early response is reflected, scattered (based on diffusion),
* and fed into the late reverb section of the main delay line.
*/
void ReverbPipeline::processEarly(size_t offset, const size_t samplesToDo,
@@ -1442,8 +1512,7 @@ void ReverbPipeline::processEarly(size_t offset, const size_t samplesToDo,
/* Apply a delay and bounce to generate secondary reflections, combine
* with the primary reflections and write out the result for mixing.
*/
- for(size_t j{0u};j < NUM_LINES;j++)
- early_delay.write(offset, NUM_LINES-1-j, tempSamples[j].data(), todo);
+ early_delay.writeReflected(offset, tempSamples, todo);
for(size_t j{0u};j < NUM_LINES;j++)
{
size_t feedb_tap{offset - mEarly.Offset[j]};
@@ -1455,8 +1524,9 @@ void ReverbPipeline::processEarly(size_t offset, const size_t samplesToDo,
feedb_tap &= early_delay.Mask;
size_t td{minz(early_delay.Mask+1 - feedb_tap, todo - i)};
do {
- tempSamples[j][i] += early_delay.Line[feedb_tap++][j]*feedb_coeff;
- out[i] = tempSamples[j][i];
+ float sample{early_delay.Line[feedb_tap++][j]};
+ out[i] = tempSamples[j][i] + sample*feedb_coeff;
+ tempSamples[j][i] = sample;
++i;
} while(--td);
}
@@ -1475,14 +1545,19 @@ void ReverbPipeline::processEarly(size_t offset, const size_t samplesToDo,
void Modulation::calcDelays(size_t todo)
{
- constexpr float mod_scale{al::numbers::pi_v<float> * 2.0f / MOD_FRACONE};
uint idx{Index};
const uint step{Step};
const float depth{Depth};
for(size_t i{0};i < todo;++i)
{
idx += step;
- const float lfo{std::sin(static_cast<float>(idx&MOD_FRACMASK) * mod_scale)};
+ const float x{static_cast<float>(idx&MOD_FRACMASK) * (1.0f/MOD_FRACONE)};
+ /* Approximate sin(x*2pi). As long as it roughly fits a sinusoid shape
+ * and stays within [-1...+1], it needn't be perfect.
+ */
+ const float lfo{!(idx&(MOD_FRACONE>>1))
+ ? ((-16.0f * x * x) + (8.0f * x))
+ : ((16.0f * x * x) + (-8.0f * x) + (-16.0f * x) + 8.0f)};
ModDelays[i] = (lfo+1.0f) * depth;
}
Index = idx;