aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--alc/effects/convolution.cpp13
-rw-r--r--alc/effects/reverb.cpp33
-rw-r--r--core/ambidefs.cpp19
-rw-r--r--core/ambidefs.h14
-rw-r--r--core/voice.cpp56
5 files changed, 119 insertions, 16 deletions
diff --git a/alc/effects/convolution.cpp b/alc/effects/convolution.cpp
index f72695bd..90220a50 100644
--- a/alc/effects/convolution.cpp
+++ b/alc/effects/convolution.cpp
@@ -194,6 +194,8 @@ struct ConvolutionState final : public EffectState {
struct ChannelData {
alignas(16) FloatBufferLine mBuffer{};
+ float mHfScale{};
+ BandSplitter mFilter{};
float Current[MAX_OUTPUT_CHANNELS]{};
float Target[MAX_OUTPUT_CHANNELS]{};
};
@@ -233,6 +235,7 @@ void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut,
for(auto &chan : *mChans)
{
const al::span<float> src{chan.mBuffer.data(), samplesToDo};
+ chan.mFilter.processHfScale(src, chan.mHfScale);
MixSamples(src, samplesOut, chan.Current, chan.Target, samplesToDo, 0);
}
}
@@ -277,6 +280,10 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const Buffer &buff
(uint64_t{buffer.storage->mSampleLen}*device->Frequency+(buffer.storage->mSampleRate-1)) /
buffer.storage->mSampleRate);
+ const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
+ for(auto &e : *mChans)
+ e.mFilter = splitter;
+
mFilter.resize(numChannels, {});
mOutput.resize(numChannels, {});
@@ -411,7 +418,13 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
{
DeviceBase *device{context->mDevice};
if(device->mAmbiOrder > mAmbiOrder)
+ {
mMix = &ConvolutionState::UpsampleMix;
+ const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, true);
+ (*mChans)[0].mHfScale = scales[0];
+ for(size_t i{1};i < mChans->size();++i)
+ (*mChans)[i].mHfScale = scales[1];
+ }
mOutTarget = target.Main->Buffer;
auto&& scales = GetAmbiScales(mAmbiScaling);
diff --git a/alc/effects/reverb.cpp b/alc/effects/reverb.cpp
index 72f58db5..ea3367d0 100644
--- a/alc/effects/reverb.cpp
+++ b/alc/effects/reverb.cpp
@@ -453,6 +453,8 @@ struct ReverbState final : public EffectState {
bool mUpmixOutput{false};
+ std::array<float,MaxAmbiOrder+1> mOrderScales{};
+ std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter;
static void DoMixRow(const al::span<float> OutBuffer, const al::span<const float,4> Gains,
@@ -499,19 +501,30 @@ struct ReverbState final : public EffectState {
{
ASSUME(todo > 0);
- /* TODO: If HF scaling isn't needed for upsampling, the A-to-B-Format
- * matrix can be included with the panning gains like non-upsampled
- * output.
+ /* When upsampling, the B-Format conversion needs to be done separately
+ * so the proper HF scaling can be applied to each B-Format channel.
+ * The panning gains then pan and upsample the B-Format channels.
*/
const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), todo};
for(size_t c{0u};c < NUM_LINES;c++)
{
DoMixRow(tmpspan, EarlyA2B[c], mEarlySamples[0].data(), mEarlySamples[0].size());
+
+ /* Apply scaling to the B-Format's HF response to "upsample" it to
+ * higher-order output.
+ */
+ const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
+ mAmbiSplitter[0][c].processHfScale(tmpspan, hfscale);
+
MixSamples(tmpspan, samplesOut, mEarly.CurrentGain[c], mEarly.PanGain[c], todo, 0);
}
for(size_t c{0u};c < NUM_LINES;c++)
{
DoMixRow(tmpspan, LateA2B[c], mLateSamples[0].data(), mLateSamples[0].size());
+
+ const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
+ mAmbiSplitter[1][c].processHfScale(tmpspan, hfscale);
+
MixSamples(tmpspan, samplesOut, mLate.CurrentGain[c], mLate.PanGain[c], todo, 0);
}
}
@@ -670,7 +683,19 @@ void ReverbState::deviceUpdate(const DeviceBase *device, const Buffer&)
mDoFading = true;
mOffset = 0;
- mUpmixOutput = (device->mAmbiOrder > 1);
+ if(device->mAmbiOrder > 1)
+ {
+ mUpmixOutput = true;
+ mOrderScales = AmbiScale::GetHFOrderScales(1, true);
+ }
+ else
+ {
+ mUpmixOutput = false;
+ mOrderScales.fill(1.0f);
+ }
+ mAmbiSplitter[0][0].init(device->mXOverFreq / frequency);
+ std::fill(mAmbiSplitter[0].begin()+1, mAmbiSplitter[0].end(), mAmbiSplitter[0][0]);
+ std::fill(mAmbiSplitter[1].begin(), mAmbiSplitter[1].end(), mAmbiSplitter[0][0]);
}
/**************************************
diff --git a/core/ambidefs.cpp b/core/ambidefs.cpp
index e34b520e..864144b8 100644
--- a/core/ambidefs.cpp
+++ b/core/ambidefs.cpp
@@ -366,3 +366,22 @@ const std::array<AmbiChannelFloatArray,9> AmbiScale::SecondOrder2DUp{CalcSecondO
const std::array<AmbiChannelFloatArray,16> AmbiScale::ThirdOrderUp{CalcThirdOrderUp()};
const std::array<AmbiChannelFloatArray,16> AmbiScale::ThirdOrder2DUp{CalcThirdOrder2DUp()};
const std::array<AmbiChannelFloatArray,25> AmbiScale::FourthOrder2DUp{CalcFourthOrder2DUp()};
+
+const std::array<float,MaxAmbiOrder+1> AmbiScale::DecoderHFScale1O{{
+ 2.000000000e+00f, 1.154700538e+00f
+}};
+const std::array<float,MaxAmbiOrder+1> AmbiScale::DecoderHFScale1O2D{{
+ 1.414213562e+00f, 1.000000000e+00f
+}};
+const std::array<float,MaxAmbiOrder+1> AmbiScale::DecoderHFScale2O{{
+ 1.972026594e+00f, 1.527525232e+00f, 7.888106377e-01f
+}};
+const std::array<float,MaxAmbiOrder+1> AmbiScale::DecoderHFScale2O2D{{
+ 1.414213562e+00f, 1.224744871e+00f, 7.071067812e-01f
+}};
+const std::array<float,MaxAmbiOrder+1> AmbiScale::DecoderHFScale3O{{
+ 1.865086714e+00f, 1.606093894e+00f, 1.142055301e+00f, 5.683795528e-01f
+}};
+const std::array<float,MaxAmbiOrder+1> AmbiScale::DecoderHFScale3O2D{{
+ 1.414213562e+00f, 1.306562965e+00f, 1.000000000e+00f, 5.411961001e-01f
+}};
diff --git a/core/ambidefs.h b/core/ambidefs.h
index 70fa23c5..7f0f14ad 100644
--- a/core/ambidefs.h
+++ b/core/ambidefs.h
@@ -113,6 +113,20 @@ struct AmbiScale {
return ret;
}
+ /* Retrieves per-order HF scaling factors for "upsampling" ambisonic data. */
+ static std::array<float,MaxAmbiOrder+1> GetHFOrderScales(const uint order, const bool is3D) noexcept
+ {
+ if(order >= 3) return is3D ? DecoderHFScale3O : DecoderHFScale3O2D;
+ if(order == 2) return is3D ? DecoderHFScale2O : DecoderHFScale2O2D;
+ return is3D ? DecoderHFScale1O : DecoderHFScale1O2D;
+ }
+
+ static const std::array<float,MaxAmbiOrder+1> DecoderHFScale1O;
+ static const std::array<float,MaxAmbiOrder+1> DecoderHFScale1O2D;
+ static const std::array<float,MaxAmbiOrder+1> DecoderHFScale2O;
+ static const std::array<float,MaxAmbiOrder+1> DecoderHFScale2O2D;
+ static const std::array<float,MaxAmbiOrder+1> DecoderHFScale3O;
+ static const std::array<float,MaxAmbiOrder+1> DecoderHFScale3O2D;
static const std::array<std::array<float,MaxAmbiChannels>,4> FirstOrderUp;
static const std::array<std::array<float,MaxAmbiChannels>,4> FirstOrder2DUp;
diff --git a/core/voice.cpp b/core/voice.cpp
index 15330012..5263202e 100644
--- a/core/voice.cpp
+++ b/core/voice.cpp
@@ -892,20 +892,52 @@ void Voice::prepare(DeviceBase *device)
/* Make sure the sample history is cleared. */
std::fill(mPrevSamples.begin(), mPrevSamples.end(), HistoryLine{});
- /* 2-channel UHJ needs different shelf filters. However, we can't just use
- * different shelf filters after mixing it, given any old speaker setup the
- * user has. To make this work, we apply the expected shelf filters for
- * decoding UHJ2 to quad (only needs LF scaling), and act as if those 4
- * quad channels are encoded right back into B-Format.
- *
- * This isn't perfect, but without an entirely separate and limited UHJ2
- * path, it's better than nothing.
- *
- * Do not apply the shelf filter with UHJ output. UHJ2->B-Format->UHJ2 is
- * identity, so don't mess with it.
+ /* Don't need to set the VoiceIsAmbisonic flag if the device is not higher
+ * order than the voice. No HF scaling is necessary to mix it.
*/
- if(mFmtChannels == FmtUHJ2 && !device->mUhjEncoder)
+ if(mAmbiOrder && device->mAmbiOrder > mAmbiOrder)
{
+ const uint8_t *OrderFromChan{Is2DAmbisonic(mFmtChannels) ?
+ AmbiIndex::OrderFrom2DChannel().data() : AmbiIndex::OrderFromChannel().data()};
+ const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, !Is2DAmbisonic(mFmtChannels));
+
+ const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
+ for(auto &chandata : mChans)
+ {
+ chandata.mAmbiHFScale = scales[*(OrderFromChan++)];
+ chandata.mAmbiLFScale = 1.0f;
+ chandata.mAmbiSplitter = splitter;
+ chandata.mDryParams = DirectParams{};
+ chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
+ std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
+ }
+ /* 2-channel UHJ needs different shelf filters. However, we can't just
+ * use different shelf filters after mixing it and with any old speaker
+ * setup the user has. To make this work, we apply the expected shelf
+ * filters for decoding UHJ2 to quad (only needs LF scaling), and act
+ * as if those 4 quad channels are encoded right back onto higher-order
+ * B-Format.
+ *
+ * This isn't perfect, but without an entirely separate and limited
+ * UHJ2 path, it's better than nothing.
+ */
+ if(mFmtChannels == FmtUHJ2)
+ {
+ mChans[0].mAmbiHFScale = 1.0f;
+ mChans[0].mAmbiLFScale = UhjDecoder<UhjLengthStd>::sWLFScale;
+ mChans[1].mAmbiHFScale = 1.0f;
+ mChans[1].mAmbiLFScale = UhjDecoder<UhjLengthStd>::sXYLFScale;
+ mChans[2].mAmbiHFScale = 1.0f;
+ mChans[2].mAmbiLFScale = UhjDecoder<UhjLengthStd>::sXYLFScale;
+ }
+ mFlags.set(VoiceIsAmbisonic);
+ }
+ else if(mFmtChannels == FmtUHJ2 && !device->mUhjEncoder)
+ {
+ /* 2-channel UHJ with first-order output also needs the shelf filter
+ * correction applied, except with UHJ output (UHJ2->B-Format->UHJ2 is
+ * identity, so don't mess with it).
+ */
const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
for(auto &chandata : mChans)
{