aboutsummaryrefslogtreecommitdiffstats
path: root/src/jogl/classes/com/jogamp/math/Matrix4f.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/jogl/classes/com/jogamp/math/Matrix4f.java')
-rw-r--r--src/jogl/classes/com/jogamp/math/Matrix4f.java2152
1 files changed, 2152 insertions, 0 deletions
diff --git a/src/jogl/classes/com/jogamp/math/Matrix4f.java b/src/jogl/classes/com/jogamp/math/Matrix4f.java
new file mode 100644
index 000000000..ee505a95d
--- /dev/null
+++ b/src/jogl/classes/com/jogamp/math/Matrix4f.java
@@ -0,0 +1,2152 @@
+/**
+ * Copyright 2014-2023 JogAmp Community. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification, are
+ * permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice, this list of
+ * conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright notice, this list
+ * of conditions and the following disclaimer in the documentation and/or other materials
+ * provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
+ * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * The views and conclusions contained in the software and documentation are those of the
+ * authors and should not be interpreted as representing official policies, either expressed
+ * or implied, of JogAmp Community.
+ */
+
+package com.jogamp.math;
+
+import java.nio.FloatBuffer;
+
+import com.jogamp.math.geom.AABBox;
+import com.jogamp.math.geom.Frustum;
+import com.jogamp.math.geom.Frustum.Plane;
+
+/**
+ * Basic 4x4 float matrix implementation using fields for intensive use-cases (host operations).
+ * <p>
+ * Implementation covers {@link FloatUtil} matrix functionality, exposed in an object oriented manner.
+ * </p>
+ * <p>
+ * Unlike {@link com.jogamp.math.util.PMVMatrix4f PMVMatrix4f}, this class only represents one single matrix.
+ * </p>
+ * <p>
+ * For array operations the layout is expected in column-major order
+ * matching OpenGL's implementation, illustration:
+ * <pre>
+ Row-Major Column-Major (OpenGL):
+
+ | 0 1 2 tx |
+ | |
+ | 4 5 6 ty |
+ M = | |
+ | 8 9 10 tz |
+ | |
+ | 12 13 14 15 |
+
+ R C R C
+ m[0*4+3] = tx; m[0+4*3] = tx;
+ m[1*4+3] = ty; m[1+4*3] = ty;
+ m[2*4+3] = tz; m[2+4*3] = tz;
+
+ RC (std subscript order) RC (std subscript order)
+ m03 = tx; m03 = tx;
+ m13 = ty; m13 = ty;
+ m23 = tz; m23 = tz;
+
+ * </pre>
+ * </p>
+ * <p>
+ * <ul>
+ * <li><a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html">Matrix-FAQ</a></li>
+ * <li><a href="https://en.wikipedia.org/wiki/Matrix_%28mathematics%29">Wikipedia-Matrix</a></li>
+ * <li><a href="http://www.euclideanspace.com/maths/algebra/matrix/index.htm">euclideanspace.com-Matrix</a></li>
+ * </ul>
+ * </p>
+ * <p>
+ * Implementation utilizes unrolling of small vertices and matrices wherever possible
+ * while trying to access memory in a linear fashion for performance reasons, see:
+ * <ul>
+ * <li><a href="https://lessthanoptimal.github.io/Java-Matrix-Benchmark/">java-matrix-benchmark</a></li>
+ * <li><a href="https://github.com/lessthanoptimal/ejml">EJML Efficient Java Matrix Library</a></li>
+ * </ul>
+ * </p>
+ * @see com.jogamp.math.util.PMVMatrix4f
+ * @see FloatUtil
+ */
+public class Matrix4f {
+
+ /**
+ * Creates a new identity matrix.
+ */
+ public Matrix4f() {
+ m00 = m11 = m22 = m33 = 1.0f;
+ // remaining fields have default init to zero
+ }
+
+ /**
+ * Creates a new matrix copying the values of the given {@code src} matrix.
+ */
+ public Matrix4f(final Matrix4f src) {
+ load(src);
+ }
+
+ /**
+ * Creates a new matrix based on given float[4*4] column major order.
+ * @param m 4x4 matrix in column-major order
+ */
+ public Matrix4f(final float[] m) {
+ load(m);
+ }
+
+ /**
+ * Creates a new matrix based on given float[4*4] column major order.
+ * @param m 4x4 matrix in column-major order
+ * @param m_off offset for matrix {@code m}
+ */
+ public Matrix4f(final float[] m, final int m_off) {
+ load(m, m_off);
+ }
+
+ /**
+ * Creates a new matrix based on given {@link FloatBuffer} 4x4 column major order.
+ * @param m 4x4 matrix in column-major order
+ */
+ public Matrix4f(final FloatBuffer m) {
+ load(m);
+ }
+
+ //
+ // Write to Matrix via set(..) or load(..)
+ //
+
+ /** Sets the {@code i}th component with float {@code v} 0 <= i < 16 */
+ public void set(final int i, final float v) {
+ switch (i) {
+ case 0+4*0: m00 = v; break;
+ case 1+4*0: m10 = v; break;
+ case 2+4*0: m20 = v; break;
+ case 3+4*0: m30 = v; break;
+
+ case 0+4*1: m01 = v; break;
+ case 1+4*1: m11 = v; break;
+ case 2+4*1: m21 = v; break;
+ case 3+4*1: m31 = v; break;
+
+ case 0+4*2: m02 = v; break;
+ case 1+4*2: m12 = v; break;
+ case 2+4*2: m22 = v; break;
+ case 3+4*2: m32 = v; break;
+
+ case 0+4*3: m03 = v; break;
+ case 1+4*3: m13 = v; break;
+ case 2+4*3: m23 = v; break;
+ case 3+4*3: m33 = v; break;
+ default: throw new IndexOutOfBoundsException();
+ }
+ }
+
+ /**
+ * Set this matrix to identity.
+ * <pre>
+ Translation matrix (Column Order):
+ 1 0 0 0
+ 0 1 0 0
+ 0 0 1 0
+ 0 0 0 1
+ * </pre>
+ * @return this matrix for chaining
+ */
+ public final Matrix4f loadIdentity() {
+ m00 = m11 = m22 = m33 = 1.0f;
+ m01 = m02 = m03 =
+ m10 = m12 = m13 =
+ m20 = m21 = m23 =
+ m30 = m31 = m32 = 0.0f;
+ return this;
+ }
+
+ /**
+ * Load the values of the given matrix {@code b} to this matrix.
+ * @param src the source values
+ * @return this matrix for chaining
+ */
+ public Matrix4f load(final Matrix4f src) {
+ m00 = src.m00; m10 = src.m10; m20 = src.m20; m30 = src.m30;
+ m01 = src.m01; m11 = src.m11; m21 = src.m21; m31 = src.m31;
+ m02 = src.m02; m12 = src.m12; m22 = src.m22; m32 = src.m32;
+ m03 = src.m03; m13 = src.m13; m23 = src.m23; m33 = src.m33;
+ return this;
+ }
+
+ /**
+ * Load the values of the given matrix {@code src} to this matrix.
+ * @param src 4x4 matrix float[16] in column-major order
+ * @return this matrix for chaining
+ */
+ public Matrix4f load(final float[] src) {
+ m00 = src[0+0*4]; // column 0
+ m10 = src[1+0*4];
+ m20 = src[2+0*4];
+ m30 = src[3+0*4];
+ m01 = src[0+1*4]; // column 1
+ m11 = src[1+1*4];
+ m21 = src[2+1*4];
+ m31 = src[3+1*4];
+ m02 = src[0+2*4]; // column 2
+ m12 = src[1+2*4];
+ m22 = src[2+2*4];
+ m32 = src[3+2*4];
+ m03 = src[0+3*4]; // column 3
+ m13 = src[1+3*4];
+ m23 = src[2+3*4];
+ m33 = src[3+3*4];
+ return this;
+ }
+
+ /**
+ * Load the values of the given matrix {@code src} to this matrix.
+ * @param src 4x4 matrix float[16] in column-major order
+ * @param src_off offset for matrix {@code src}
+ * @return this matrix for chaining
+ */
+ public Matrix4f load(final float[] src, final int src_off) {
+ m00 = src[src_off+0+0*4];
+ m10 = src[src_off+1+0*4];
+ m20 = src[src_off+2+0*4];
+ m30 = src[src_off+3+0*4];
+ m01 = src[src_off+0+1*4];
+ m11 = src[src_off+1+1*4];
+ m21 = src[src_off+2+1*4];
+ m31 = src[src_off+3+1*4];
+ m02 = src[src_off+0+2*4];
+ m12 = src[src_off+1+2*4];
+ m22 = src[src_off+2+2*4];
+ m32 = src[src_off+3+2*4];
+ m03 = src[src_off+0+3*4];
+ m13 = src[src_off+1+3*4];
+ m23 = src[src_off+2+3*4];
+ m33 = src[src_off+3+3*4];
+ return this;
+ }
+
+ /**
+ * Load the values of the given matrix {@code src} to this matrix.
+ * <p>
+ * Implementation uses relative {@link FloatBuffer#get()},
+ * hence caller may want to issue {@link FloatBuffer#reset()} thereafter.
+ * </p>
+ * @param src 4x4 matrix {@link FloatBuffer} in column-major order
+ * @return this matrix for chaining
+ */
+ public Matrix4f load(final FloatBuffer src) {
+ m00 = src.get();
+ m10 = src.get();
+ m20 = src.get();
+ m30 = src.get();
+ m01 = src.get();
+ m11 = src.get();
+ m21 = src.get();
+ m31 = src.get();
+ m02 = src.get();
+ m12 = src.get();
+ m22 = src.get();
+ m32 = src.get();
+ m03 = src.get();
+ m13 = src.get();
+ m23 = src.get();
+ m33 = src.get();
+ return this;
+ }
+
+ //
+ // Read out Matrix via get(..)
+ //
+
+ /** Gets the {@code i}th component, 0 <= i < 16 */
+ public float get(final int i) {
+ switch (i) {
+ case 0+4*0: return m00;
+ case 1+4*0: return m10;
+ case 2+4*0: return m20;
+ case 3+4*0: return m30;
+
+ case 0+4*1: return m01;
+ case 1+4*1: return m11;
+ case 2+4*1: return m21;
+ case 3+4*1: return m31;
+
+ case 0+4*2: return m02;
+ case 1+4*2: return m12;
+ case 2+4*2: return m22;
+ case 3+4*2: return m32;
+
+ case 0+4*3: return m03;
+ case 1+4*3: return m13;
+ case 2+4*3: return m23;
+ case 3+4*3: return m33;
+
+ default: throw new IndexOutOfBoundsException();
+ }
+ }
+
+ /**
+ * Get the named column of the given column-major matrix to v_out.
+ * @param column named column to copy
+ * @param v_out the column-vector storage
+ * @return given result vector <i>v_out</i> for chaining
+ */
+ public Vec4f getColumn(final int column, final Vec4f v_out) {
+ v_out.set( get(0+column*4),
+ get(1+column*4),
+ get(2+column*4),
+ get(3+column*4) );
+ return v_out;
+ }
+
+ /**
+ * Get the named column of the given column-major matrix to v_out.
+ * @param column named column to copy
+ * @param v_out the column-vector storage
+ * @return given result vector <i>v_out</i> for chaining
+ */
+ public Vec3f getColumn(final int column, final Vec3f v_out) {
+ v_out.set( get(0+column*4),
+ get(1+column*4),
+ get(2+column*4) );
+ return v_out;
+ }
+
+ /**
+ * Get the named row of the given column-major matrix to v_out.
+ * @param row named row to copy
+ * @param v_out the row-vector storage
+ * @return given result vector <i>v_out</i> for chaining
+ */
+ public Vec4f getRow(final int row, final Vec4f v_out) {
+ v_out.set( get(row+0*4),
+ get(row+1*4),
+ get(row+2*4),
+ get(row+3*4) );
+ return v_out;
+ }
+
+ /**
+ * Get the named row of the given column-major matrix to v_out.
+ * @param row named row to copy
+ * @param v_out the row-vector storage
+ * @return given result vector <i>v_out</i> for chaining
+ */
+ public Vec3f getRow(final int row, final Vec3f v_out) {
+ v_out.set( get(row+0*4),
+ get(row+1*4),
+ get(row+2*4) );
+ return v_out;
+ }
+
+ /**
+ * Get this matrix into the given float[16] array at {@code dst_off} in column major order.
+ *
+ * @param dst float[16] array storage in column major order
+ * @param dst_off offset
+ * @return {@code dst} for chaining
+ */
+ public float[] get(final float[] dst, final int dst_off) {
+ dst[dst_off+0+0*4] = m00;
+ dst[dst_off+1+0*4] = m10;
+ dst[dst_off+2+0*4] = m20;
+ dst[dst_off+3+0*4] = m30;
+ dst[dst_off+0+1*4] = m01;
+ dst[dst_off+1+1*4] = m11;
+ dst[dst_off+2+1*4] = m21;
+ dst[dst_off+3+1*4] = m31;
+ dst[dst_off+0+2*4] = m02;
+ dst[dst_off+1+2*4] = m12;
+ dst[dst_off+2+2*4] = m22;
+ dst[dst_off+3+2*4] = m32;
+ dst[dst_off+0+3*4] = m03;
+ dst[dst_off+1+3*4] = m13;
+ dst[dst_off+2+3*4] = m23;
+ dst[dst_off+3+3*4] = m33;
+ return dst;
+ }
+
+ /**
+ * Get this matrix into the given float[16] array in column major order.
+ *
+ * @param dst float[16] array storage in column major order
+ * @return {@code dst} for chaining
+ */
+ public float[] get(final float[] dst) {
+ dst[0+0*4] = m00;
+ dst[1+0*4] = m10;
+ dst[2+0*4] = m20;
+ dst[3+0*4] = m30;
+ dst[0+1*4] = m01;
+ dst[1+1*4] = m11;
+ dst[2+1*4] = m21;
+ dst[3+1*4] = m31;
+ dst[0+2*4] = m02;
+ dst[1+2*4] = m12;
+ dst[2+2*4] = m22;
+ dst[3+2*4] = m32;
+ dst[0+3*4] = m03;
+ dst[1+3*4] = m13;
+ dst[2+3*4] = m23;
+ dst[3+3*4] = m33;
+ return dst;
+ }
+
+ /**
+ * Get this matrix into the given {@link FloatBuffer} in column major order.
+ * <p>
+ * Implementation uses relative {@link FloatBuffer#put(float)},
+ * hence caller may want to issue {@link FloatBuffer#reset()} thereafter.
+ * </p>
+ *
+ * @param dst {@link FloatBuffer} array storage in column major order
+ * @return {@code dst} for chaining
+ */
+ public FloatBuffer get(final FloatBuffer dst) {
+ dst.put( m00 );
+ dst.put( m10 );
+ dst.put( m20 );
+ dst.put( m30 );
+ dst.put( m01 );
+ dst.put( m11 );
+ dst.put( m21 );
+ dst.put( m31 );
+ dst.put( m02 );
+ dst.put( m12 );
+ dst.put( m22 );
+ dst.put( m32 );
+ dst.put( m03 );
+ dst.put( m13 );
+ dst.put( m23 );
+ dst.put( m33 );
+ return dst;
+ }
+
+ //
+ // Basic matrix operations
+ //
+
+ /**
+ * Returns the determinant of this matrix
+ * @return the matrix determinant
+ */
+ public float determinant() {
+ float ret = 0;
+ ret += m00 * ( + m11*(m22*m33 - m23*m32) - m12*(m21*m33 - m23*m31) + m13*(m21*m32 - m22*m31));
+ ret -= m01 * ( + m10*(m22*m33 - m23*m32) - m12*(m20*m33 - m23*m30) + m13*(m20*m32 - m22*m30));
+ ret += m02 * ( + m10*(m21*m33 - m23*m31) - m11*(m20*m33 - m23*m30) + m13*(m20*m31 - m21*m30));
+ ret -= m03 * ( + m10*(m21*m32 - m22*m31) - m11*(m20*m32 - m22*m30) + m12*(m20*m31 - m21*m30));
+ return ret;
+ }
+
+ /**
+ * Transpose this matrix.
+ *
+ * @return this matrix for chaining
+ */
+ public final Matrix4f transpose() {
+ float tmp;
+
+ tmp = m10;
+ m10 = m01;
+ m01 = tmp;
+
+ tmp = m20;
+ m20 = m02;
+ m02 = tmp;
+
+ tmp = m30;
+ m30 = m03;
+ m03 = tmp;
+
+ tmp = m21;
+ m21 = m12;
+ m12 = tmp;
+
+ tmp = m31;
+ m31 = m13;
+ m13 = tmp;
+
+ tmp = m32;
+ m32 = m23;
+ m23 = tmp;
+
+ return this;
+ }
+
+ /**
+ * Transpose the given {@code src} matrix into this matrix.
+ *
+ * @param src source 4x4 matrix
+ * @return this matrix (result) for chaining
+ */
+ public final Matrix4f transpose(final Matrix4f src) {
+ if( src == this ) {
+ return transpose();
+ }
+ m00 = src.m00;
+ m10 = src.m01;
+ m20 = src.m02;
+ m30 = src.m03;
+
+ m01 = src.m10;
+ m11 = src.m11;
+ m21 = src.m12;
+ m31 = src.m13;
+
+ m02 = src.m20;
+ m12 = src.m21;
+ m22 = src.m22;
+ m32 = src.m23;
+
+ m03 = src.m30;
+ m13 = src.m31;
+ m23 = src.m32;
+ m33 = src.m33;
+ return this;
+ }
+
+ /**
+ * Invert this matrix.
+ * @return false if this matrix is singular and inversion not possible, otherwise true
+ */
+ public boolean invert() {
+ final float scale;
+ try {
+ scale = mulScale();
+ } catch(final ArithmeticException aex) {
+ return false; // max was 0
+ }
+ final float a00 = m00*scale;
+ final float a10 = m10*scale;
+ final float a20 = m20*scale;
+ final float a30 = m30*scale;
+
+ final float a01 = m01*scale;
+ final float a11 = m11*scale;
+ final float a21 = m21*scale;
+ final float a31 = m31*scale;
+
+ final float a02 = m02*scale;
+ final float a12 = m12*scale;
+ final float a22 = m22*scale;
+ final float a32 = m32*scale;
+
+ final float a03 = m03*scale;
+ final float a13 = m13*scale;
+ final float a23 = m23*scale;
+ final float a33 = m33*scale;
+
+ final float b00 = + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31);
+ final float b01 = -( + a10*(a22*a33 - a23*a32) - a12*(a20*a33 - a23*a30) + a13*(a20*a32 - a22*a30));
+ final float b02 = + a10*(a21*a33 - a23*a31) - a11*(a20*a33 - a23*a30) + a13*(a20*a31 - a21*a30);
+ final float b03 = -( + a10*(a21*a32 - a22*a31) - a11*(a20*a32 - a22*a30) + a12*(a20*a31 - a21*a30));
+
+ final float b10 = -( + a01*(a22*a33 - a23*a32) - a02*(a21*a33 - a23*a31) + a03*(a21*a32 - a22*a31));
+ final float b11 = + a00*(a22*a33 - a23*a32) - a02*(a20*a33 - a23*a30) + a03*(a20*a32 - a22*a30);
+ final float b12 = -( + a00*(a21*a33 - a23*a31) - a01*(a20*a33 - a23*a30) + a03*(a20*a31 - a21*a30));
+ final float b13 = + a00*(a21*a32 - a22*a31) - a01*(a20*a32 - a22*a30) + a02*(a20*a31 - a21*a30);
+
+ final float b20 = + a01*(a12*a33 - a13*a32) - a02*(a11*a33 - a13*a31) + a03*(a11*a32 - a12*a31);
+ final float b21 = -( + a00*(a12*a33 - a13*a32) - a02*(a10*a33 - a13*a30) + a03*(a10*a32 - a12*a30));
+ final float b22 = + a00*(a11*a33 - a13*a31) - a01*(a10*a33 - a13*a30) + a03*(a10*a31 - a11*a30);
+ final float b23 = -( + a00*(a11*a32 - a12*a31) - a01*(a10*a32 - a12*a30) + a02*(a10*a31 - a11*a30));
+
+ final float b30 = -( + a01*(a12*a23 - a13*a22) - a02*(a11*a23 - a13*a21) + a03*(a11*a22 - a12*a21));
+ final float b31 = + a00*(a12*a23 - a13*a22) - a02*(a10*a23 - a13*a20) + a03*(a10*a22 - a12*a20);
+ final float b32 = -( + a00*(a11*a23 - a13*a21) - a01*(a10*a23 - a13*a20) + a03*(a10*a21 - a11*a20));
+ final float b33 = + a00*(a11*a22 - a12*a21) - a01*(a10*a22 - a12*a20) + a02*(a10*a21 - a11*a20);
+
+ final float det = (a00*b00 + a01*b01 + a02*b02 + a03*b03) / scale;
+ if( 0 == det ) {
+ return false;
+ }
+ final float invdet = 1.0f / det;
+
+ m00 = b00 * invdet;
+ m10 = b01 * invdet;
+ m20 = b02 * invdet;
+ m30 = b03 * invdet;
+
+ m01 = b10 * invdet;
+ m11 = b11 * invdet;
+ m21 = b12 * invdet;
+ m31 = b13 * invdet;
+
+ m02 = b20 * invdet;
+ m12 = b21 * invdet;
+ m22 = b22 * invdet;
+ m32 = b23 * invdet;
+
+ m03 = b30 * invdet;
+ m13 = b31 * invdet;
+ m23 = b32 * invdet;
+ m33 = b33 * invdet;
+ return true;
+ }
+
+ /**
+ * Invert the {@code src} matrix values into this matrix
+ * @param src the source matrix, which values are to be inverted
+ * @return false if {@code src} matrix is singular and inversion not possible, otherwise true
+ */
+ public boolean invert(final Matrix4f src) {
+ final float scale;
+ try {
+ scale = src.mulScale();
+ } catch(final ArithmeticException aex) {
+ return false; // max was 0
+ }
+ final float a00 = src.m00*scale;
+ final float a10 = src.m10*scale;
+ final float a20 = src.m20*scale;
+ final float a30 = src.m30*scale;
+
+ final float a01 = src.m01*scale;
+ final float a11 = src.m11*scale;
+ final float a21 = src.m21*scale;
+ final float a31 = src.m31*scale;
+
+ final float a02 = src.m02*scale;
+ final float a12 = src.m12*scale;
+ final float a22 = src.m22*scale;
+ final float a32 = src.m32*scale;
+
+ final float a03 = src.m03*scale;
+ final float a13 = src.m13*scale;
+ final float a23 = src.m23*scale;
+ final float a33 = src.m33*scale;
+
+ final float b00 = + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31);
+ final float b01 = -( + a10*(a22*a33 - a23*a32) - a12*(a20*a33 - a23*a30) + a13*(a20*a32 - a22*a30));
+ final float b02 = + a10*(a21*a33 - a23*a31) - a11*(a20*a33 - a23*a30) + a13*(a20*a31 - a21*a30);
+ final float b03 = -( + a10*(a21*a32 - a22*a31) - a11*(a20*a32 - a22*a30) + a12*(a20*a31 - a21*a30));
+
+ final float b10 = -( + a01*(a22*a33 - a23*a32) - a02*(a21*a33 - a23*a31) + a03*(a21*a32 - a22*a31));
+ final float b11 = + a00*(a22*a33 - a23*a32) - a02*(a20*a33 - a23*a30) + a03*(a20*a32 - a22*a30);
+ final float b12 = -( + a00*(a21*a33 - a23*a31) - a01*(a20*a33 - a23*a30) + a03*(a20*a31 - a21*a30));
+ final float b13 = + a00*(a21*a32 - a22*a31) - a01*(a20*a32 - a22*a30) + a02*(a20*a31 - a21*a30);
+
+ final float b20 = + a01*(a12*a33 - a13*a32) - a02*(a11*a33 - a13*a31) + a03*(a11*a32 - a12*a31);
+ final float b21 = -( + a00*(a12*a33 - a13*a32) - a02*(a10*a33 - a13*a30) + a03*(a10*a32 - a12*a30));
+ final float b22 = + a00*(a11*a33 - a13*a31) - a01*(a10*a33 - a13*a30) + a03*(a10*a31 - a11*a30);
+ final float b23 = -( + a00*(a11*a32 - a12*a31) - a01*(a10*a32 - a12*a30) + a02*(a10*a31 - a11*a30));
+
+ final float b30 = -( + a01*(a12*a23 - a13*a22) - a02*(a11*a23 - a13*a21) + a03*(a11*a22 - a12*a21));
+ final float b31 = + a00*(a12*a23 - a13*a22) - a02*(a10*a23 - a13*a20) + a03*(a10*a22 - a12*a20);
+ final float b32 = -( + a00*(a11*a23 - a13*a21) - a01*(a10*a23 - a13*a20) + a03*(a10*a21 - a11*a20));
+ final float b33 = + a00*(a11*a22 - a12*a21) - a01*(a10*a22 - a12*a20) + a02*(a10*a21 - a11*a20);
+
+ final float det = (a00*b00 + a01*b01 + a02*b02 + a03*b03) / scale;
+
+ if( 0 == det ) {
+ return false;
+ }
+ final float invdet = 1.0f / det;
+
+ m00 = b00 * invdet;
+ m10 = b01 * invdet;
+ m20 = b02 * invdet;
+ m30 = b03 * invdet;
+
+ m01 = b10 * invdet;
+ m11 = b11 * invdet;
+ m21 = b12 * invdet;
+ m31 = b13 * invdet;
+
+ m02 = b20 * invdet;
+ m12 = b21 * invdet;
+ m22 = b22 * invdet;
+ m32 = b23 * invdet;
+
+ m03 = b30 * invdet;
+ m13 = b31 * invdet;
+ m23 = b32 * invdet;
+ m33 = b33 * invdet;
+ return true;
+ }
+
+ private final float mulScale() {
+ /**
+ // No Hotspot intrinsic Math.* optimization for at least Math.max(),
+ // hence this chunk is slower.
+ float max = Math.abs(m00);
+
+ max = Math.max(max, Math.abs(m01));
+ max = Math.max(max, Math.abs(m02));
+ ... etc
+ */
+ float a = Math.abs(m00);
+ float max = a;
+ a = Math.abs(m01); if( a > max ) max = a;
+ a = Math.abs(m02); if( a > max ) max = a;
+ a = Math.abs(m03); if( a > max ) max = a;
+
+ a = Math.abs(m10); if( a > max ) max = a;
+ a = Math.abs(m11); if( a > max ) max = a;
+ a = Math.abs(m12); if( a > max ) max = a;
+ a = Math.abs(m13); if( a > max ) max = a;
+
+ a = Math.abs(m20); if( a > max ) max = a;
+ a = Math.abs(m21); if( a > max ) max = a;
+ a = Math.abs(m22); if( a > max ) max = a;
+ a = Math.abs(m23); if( a > max ) max = a;
+
+ a = Math.abs(m30); if( a > max ) max = a;
+ a = Math.abs(m31); if( a > max ) max = a;
+ a = Math.abs(m32); if( a > max ) max = a;
+ a = Math.abs(m33); if( a > max ) max = a;
+
+ return 1.0f/max;
+ }
+
+ /**
+ * Multiply matrix: [this] = [this] x [b]
+ * @param b 4x4 matrix
+ * @return this matrix for chaining
+ * @see #mul(Matrix4f, Matrix4f)
+ */
+ public final Matrix4f mul(final Matrix4f b) {
+ // return mul(new Matrix4f(this), b); // <- roughly half speed
+ float ai0=m00; // row-0, m[0+0*4]
+ float ai1=m01;
+ float ai2=m02;
+ float ai3=m03;
+ m00 = ai0 * b.m00 + ai1 * b.m10 + ai2 * b.m20 + ai3 * b.m30 ;
+ m01 = ai0 * b.m01 + ai1 * b.m11 + ai2 * b.m21 + ai3 * b.m31 ;
+ m02 = ai0 * b.m02 + ai1 * b.m12 + ai2 * b.m22 + ai3 * b.m32 ;
+ m03 = ai0 * b.m03 + ai1 * b.m13 + ai2 * b.m23 + ai3 * b.m33 ;
+
+ ai0=m10; //row-1, m[1+0*4]
+ ai1=m11;
+ ai2=m12;
+ ai3=m13;
+ m10 = ai0 * b.m00 + ai1 * b.m10 + ai2 * b.m20 + ai3 * b.m30 ;
+ m11 = ai0 * b.m01 + ai1 * b.m11 + ai2 * b.m21 + ai3 * b.m31 ;
+ m12 = ai0 * b.m02 + ai1 * b.m12 + ai2 * b.m22 + ai3 * b.m32 ;
+ m13 = ai0 * b.m03 + ai1 * b.m13 + ai2 * b.m23 + ai3 * b.m33 ;
+
+ ai0=m20; // row-2, m[2+0*4]
+ ai1=m21;
+ ai2=m22;
+ ai3=m23;
+ m20 = ai0 * b.m00 + ai1 * b.m10 + ai2 * b.m20 + ai3 * b.m30 ;
+ m21 = ai0 * b.m01 + ai1 * b.m11 + ai2 * b.m21 + ai3 * b.m31 ;
+ m22 = ai0 * b.m02 + ai1 * b.m12 + ai2 * b.m22 + ai3 * b.m32 ;
+ m23 = ai0 * b.m03 + ai1 * b.m13 + ai2 * b.m23 + ai3 * b.m33 ;
+
+ ai0=m30; // row-3, m[3+0*4]
+ ai1=m31;
+ ai2=m32;
+ ai3=m33;
+ m30 = ai0 * b.m00 + ai1 * b.m10 + ai2 * b.m20 + ai3 * b.m30 ;
+ m31 = ai0 * b.m01 + ai1 * b.m11 + ai2 * b.m21 + ai3 * b.m31 ;
+ m32 = ai0 * b.m02 + ai1 * b.m12 + ai2 * b.m22 + ai3 * b.m32 ;
+ m33 = ai0 * b.m03 + ai1 * b.m13 + ai2 * b.m23 + ai3 * b.m33 ;
+ return this;
+ }
+
+ /**
+ * Multiply matrix: [this] = [a] x [b]
+ * @param a 4x4 matrix, can't be this matrix
+ * @param b 4x4 matrix, can't be this matrix
+ * @return this matrix for chaining
+ * @see #mul(Matrix4f)
+ */
+ public final Matrix4f mul(final Matrix4f a, final Matrix4f b) {
+ // row-0, m[0+0*4]
+ m00 = a.m00 * b.m00 + a.m01 * b.m10 + a.m02 * b.m20 + a.m03 * b.m30 ;
+ m01 = a.m00 * b.m01 + a.m01 * b.m11 + a.m02 * b.m21 + a.m03 * b.m31 ;
+ m02 = a.m00 * b.m02 + a.m01 * b.m12 + a.m02 * b.m22 + a.m03 * b.m32 ;
+ m03 = a.m00 * b.m03 + a.m01 * b.m13 + a.m02 * b.m23 + a.m03 * b.m33 ;
+
+ //row-1, m[1+0*4]
+ m10 = a.m10 * b.m00 + a.m11 * b.m10 + a.m12 * b.m20 + a.m13 * b.m30 ;
+ m11 = a.m10 * b.m01 + a.m11 * b.m11 + a.m12 * b.m21 + a.m13 * b.m31 ;
+ m12 = a.m10 * b.m02 + a.m11 * b.m12 + a.m12 * b.m22 + a.m13 * b.m32 ;
+ m13 = a.m10 * b.m03 + a.m11 * b.m13 + a.m12 * b.m23 + a.m13 * b.m33 ;
+
+ // row-2, m[2+0*4]
+ m20 = a.m20 * b.m00 + a.m21 * b.m10 + a.m22 * b.m20 + a.m23 * b.m30 ;
+ m21 = a.m20 * b.m01 + a.m21 * b.m11 + a.m22 * b.m21 + a.m23 * b.m31 ;
+ m22 = a.m20 * b.m02 + a.m21 * b.m12 + a.m22 * b.m22 + a.m23 * b.m32 ;
+ m23 = a.m20 * b.m03 + a.m21 * b.m13 + a.m22 * b.m23 + a.m23 * b.m33 ;
+
+ // row-3, m[3+0*4]
+ m30 = a.m30 * b.m00 + a.m31 * b.m10 + a.m32 * b.m20 + a.m33 * b.m30 ;
+ m31 = a.m30 * b.m01 + a.m31 * b.m11 + a.m32 * b.m21 + a.m33 * b.m31 ;
+ m32 = a.m30 * b.m02 + a.m31 * b.m12 + a.m32 * b.m22 + a.m33 * b.m32 ;
+ m33 = a.m30 * b.m03 + a.m31 * b.m13 + a.m32 * b.m23 + a.m33 * b.m33 ;
+
+ return this;
+ }
+
+ /**
+ * @param v_in 4-component column-vector, can be v_out for in-place transformation
+ * @param v_out this * v_in
+ * @returns v_out for chaining
+ */
+ public final Vec4f mulVec4f(final Vec4f v_in, final Vec4f v_out) {
+ // (one matrix row in column-major order) X (column vector)
+ final float x = v_in.x(), y = v_in.y(), z = v_in.z(), w = v_in.w();
+ v_out.set( x * m00 + y * m01 + z * m02 + w * m03,
+ x * m10 + y * m11 + z * m12 + w * m13,
+ x * m20 + y * m21 + z * m22 + w * m23,
+ x * m30 + y * m31 + z * m32 + w * m33 );
+ return v_out;
+ }
+
+ /**
+ * @param v_inout 4-component column-vector input and output, i.e. in-place transformation
+ * @returns v_inout for chaining
+ */
+ public final Vec4f mulVec4f(final Vec4f v_inout) {
+ // (one matrix row in column-major order) X (column vector)
+ final float x = v_inout.x(), y = v_inout.y(), z = v_inout.z(), w = v_inout.w();
+ v_inout.set( x * m00 + y * m01 + z * m02 + w * m03,
+ x * m10 + y * m11 + z * m12 + w * m13,
+ x * m20 + y * m21 + z * m22 + w * m23,
+ x * m30 + y * m31 + z * m32 + w * m33 );
+ return v_inout;
+ }
+
+ /**
+ * Affine 3f-vector transformation by 4x4 matrix
+ *
+ * 4x4 matrix multiplication with 3-component vector,
+ * using {@code 1} for for {@code v_in.w()} and dropping {@code v_out.w()},
+ * which shall be {@code 1}.
+ *
+ * @param v_in 3-component column-vector {@link Vec3f}, can be v_out for in-place transformation
+ * @param v_out m_in * v_in, 3-component column-vector {@link Vec3f}
+ * @returns v_out for chaining
+ */
+ public final Vec3f mulVec3f(final Vec3f v_in, final Vec3f v_out) {
+ // (one matrix row in column-major order) X (column vector)
+ final float x = v_in.x(), y = v_in.y(), z = v_in.z();
+ v_out.set( x * m00 + y * m01 + z * m02 + 1f * m03,
+ x * m10 + y * m11 + z * m12 + 1f * m13,
+ x * m20 + y * m21 + z * m22 + 1f * m23 );
+ return v_out;
+ }
+
+ /**
+ * Affine 3f-vector transformation by 4x4 matrix
+ *
+ * 4x4 matrix multiplication with 3-component vector,
+ * using {@code 1} for for {@code v_inout.w()} and dropping {@code v_inout.w()},
+ * which shall be {@code 1}.
+ *
+ * @param v_inout 3-component column-vector {@link Vec3f} input and output, i.e. in-place transformation
+ * @returns v_inout for chaining
+ */
+ public final Vec3f mulVec3f(final Vec3f v_inout) {
+ // (one matrix row in column-major order) X (column vector)
+ final float x = v_inout.x(), y = v_inout.y(), z = v_inout.z();
+ v_inout.set( x * m00 + y * m01 + z * m02 + 1f * m03,
+ x * m10 + y * m11 + z * m12 + 1f * m13,
+ x * m20 + y * m21 + z * m22 + 1f * m23 );
+ return v_inout;
+ }
+
+ //
+ // Matrix setTo...(), affine + basic
+ //
+
+ /**
+ * Set this matrix to translation.
+ * <pre>
+ Translation matrix (Column Order):
+ 1 0 0 0
+ 0 1 0 0
+ 0 0 1 0
+ x y z 1
+ * </pre>
+ * @param x x-axis translate
+ * @param y y-axis translate
+ * @param z z-axis translate
+ * @return this matrix for chaining
+ */
+ public final Matrix4f setToTranslation(final float x, final float y, final float z) {
+ m00 = m11 = m22 = m33 = 1.0f;
+ m03 = x;
+ m13 = y;
+ m23 = z;
+ m01 = m02 =
+ m10 = m12 =
+ m20 = m21 =
+ m30 = m31 = m32 = 0.0f;
+ return this;
+ }
+
+ /**
+ * Set this matrix to translation.
+ * <pre>
+ Translation matrix (Column Order):
+ 1 0 0 0
+ 0 1 0 0
+ 0 0 1 0
+ x y z 1
+ * </pre>
+ * @param t translate Vec3f
+ * @return this matrix for chaining
+ */
+ public final Matrix4f setToTranslation(final Vec3f t) {
+ return setToTranslation(t.x(), t.y(), t.z());
+ }
+
+ /**
+ * Set this matrix to scale.
+ * <pre>
+ Scale matrix (Any Order):
+ x 0 0 0
+ 0 y 0 0
+ 0 0 z 0
+ 0 0 0 1
+ * </pre>
+ * @param x x-axis scale
+ * @param y y-axis scale
+ * @param z z-axis scale
+ * @return this matrix for chaining
+ */
+ public final Matrix4f setToScale(final float x, final float y, final float z) {
+ m33 = 1.0f;
+ m00 = x;
+ m11 = y;
+ m22 = z;
+ m01 = m02 = m03 =
+ m10 = m12 = m13 =
+ m20 = m21 = m23 =
+ m30 = m31 = m32 = 0.0f;
+ return this;
+ }
+
+ /**
+ * Set this matrix to scale.
+ * <pre>
+ Scale matrix (Any Order):
+ x 0 0 0
+ 0 y 0 0
+ 0 0 z 0
+ 0 0 0 1
+ * </pre>
+ * @param s scale Vec3f
+ * @return this matrix for chaining
+ */
+ public final Matrix4f setToScale(final Vec3f s) {
+ return setToScale(s.x(), s.y(), s.z());
+ }
+
+ /**
+ * Set this matrix to rotation from the given axis and angle in radians.
+ * <pre>
+ Rotation matrix (Column Order):
+ xx(1-c)+c xy(1-c)+zs xz(1-c)-ys 0
+ xy(1-c)-zs yy(1-c)+c yz(1-c)+xs 0
+ xz(1-c)+ys yz(1-c)-xs zz(1-c)+c 0
+ 0 0 0 1
+ * </pre>
+ * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a>
+ * @param ang_rad angle in radians
+ * @param x x of rotation axis
+ * @param y y of rotation axis
+ * @param z z of rotation axis
+ * @return this matrix for chaining
+ */
+ public final Matrix4f setToRotationAxis(final float ang_rad, float x, float y, float z) {
+ final float c = FloatUtil.cos(ang_rad);
+ final float ic= 1.0f - c;
+ final float s = FloatUtil.sin(ang_rad);
+
+ final Vec3f tmp = new Vec3f(x, y, z).normalize();
+ x = tmp.x(); y = tmp.y(); z = tmp.z();
+
+ final float xy = x*y;
+ final float xz = x*z;
+ final float xs = x*s;
+ final float ys = y*s;
+ final float yz = y*z;
+ final float zs = z*s;
+ m00 = x*x*ic+c;
+ m10 = xy*ic+zs;
+ m20 = xz*ic-ys;
+ m30 = 0;
+
+ m01 = xy*ic-zs;
+ m11 = y*y*ic+c;
+ m21 = yz*ic+xs;
+ m31 = 0;
+
+ m02 = xz*ic+ys;
+ m12 = yz*ic-xs;
+ m22 = z*z*ic+c;
+ m32 = 0;
+
+ m03 = 0f;
+ m13 = 0f;
+ m23 = 0f;
+ m33 = 1f;
+
+ return this;
+ }
+
+ /**
+ * Set this matrix to rotation from the given axis and angle in radians.
+ * <pre>
+ Rotation matrix (Column Order):
+ xx(1-c)+c xy(1-c)+zs xz(1-c)-ys 0
+ xy(1-c)-zs yy(1-c)+c yz(1-c)+xs 0
+ xz(1-c)+ys yz(1-c)-xs zz(1-c)+c 0
+ 0 0 0 1
+ * </pre>
+ * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a>
+ * @param ang_rad angle in radians
+ * @param axis rotation axis
+ * @return this matrix for chaining
+ */
+ public final Matrix4f setToRotationAxis(final float ang_rad, final Vec3f axis) {
+ return setToRotationAxis(ang_rad, axis.x(), axis.y(), axis.z());
+ }
+
+ /**
+ * Set this matrix to rotation from the given Euler rotation angles in radians.
+ * <p>
+ * The rotations are applied in the given order:
+ * <ul>
+ * <li>y - heading</li>
+ * <li>z - attitude</li>
+ * <li>x - bank</li>
+ * </ul>
+ * </p>
+ * @param bankX the Euler pitch angle in radians. (rotation about the X axis)
+ * @param headingY the Euler yaw angle in radians. (rotation about the Y axis)
+ * @param attitudeZ the Euler roll angle in radians. (rotation about the Z axis)
+ * @return this matrix for chaining
+ * <p>
+ * Implementation does not use Quaternion and hence is exposed to
+ * <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q34">Gimbal-Lock</a>,
+ * consider using {@link #setToRotation(Quaternion)}.
+ * </p>
+ * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q36">Matrix-FAQ Q36</a>
+ * @see <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToMatrix/index.htm">euclideanspace.com-eulerToMatrix</a>
+ * @see #setToRotation(Quaternion)
+ */
+ public Matrix4f setToRotationEuler(final float bankX, final float headingY, final float attitudeZ) {
+ // Assuming the angles are in radians.
+ final float ch = FloatUtil.cos(headingY);
+ final float sh = FloatUtil.sin(headingY);
+ final float ca = FloatUtil.cos(attitudeZ);
+ final float sa = FloatUtil.sin(attitudeZ);
+ final float cb = FloatUtil.cos(bankX);
+ final float sb = FloatUtil.sin(bankX);
+
+ m00 = ch*ca;
+ m10 = sa;
+ m20 = -sh*ca;
+ m30 = 0;
+
+ m01 = sh*sb - ch*sa*cb;
+ m11 = ca*cb;
+ m21 = sh*sa*cb + ch*sb;
+ m31 = 0;
+
+ m02 = ch*sa*sb + sh*cb;
+ m12 = -ca*sb;
+ m22 = -sh*sa*sb + ch*cb;
+ m32 = 0;
+
+ m03 = 0;
+ m13 = 0;
+ m23 = 0;
+ m33 = 1;
+
+ return this;
+ }
+
+ /**
+ * Set this matrix to rotation from the given Euler rotation angles in radians.
+ * <p>
+ * The rotations are applied in the given order:
+ * <ul>
+ * <li>y - heading</li>
+ * <li>z - attitude</li>
+ * <li>x - bank</li>
+ * </ul>
+ * </p>
+ * @param angradXYZ euler angle vector in radians holding x-bank, y-heading and z-attitude
+ * @return this quaternion for chaining.
+ * <p>
+ * Implementation does not use Quaternion and hence is exposed to
+ * <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q34">Gimbal-Lock</a>,
+ * consider using {@link #setToRotation(Quaternion)}.
+ * </p>
+ * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q36">Matrix-FAQ Q36</a>
+ * @see <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToMatrix/index.htm">euclideanspace.com-eulerToMatrix</a>
+ * @see #setToRotation(Quaternion)
+ */
+ public Matrix4f setToRotationEuler(final Vec3f angradXYZ) {
+ return setToRotationEuler(angradXYZ.x(), angradXYZ.y(), angradXYZ.z());
+ }
+
+ /**
+ * Set this matrix to rotation using the given Quaternion.
+ * <p>
+ * Implementation Details:
+ * <ul>
+ * <li> makes identity matrix if {@link #magnitudeSquared()} is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li>
+ * <li> The fields [m00 .. m22] define the rotation</li>
+ * </ul>
+ * </p>
+ *
+ * @param q the Quaternion representing the rotation
+ * @return this matrix for chaining
+ * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q54">Matrix-FAQ Q54</a>
+ * @see Quaternion#toMatrix(float[])
+ * @see #getRotation()
+ */
+ public final Matrix4f setToRotation(final Quaternion q) {
+ // pre-multiply scaled-reciprocal-magnitude to reduce multiplications
+ final float norm = q.magnitudeSquared();
+ if ( FloatUtil.isZero(norm) ) {
+ // identity matrix -> srecip = 0f
+ loadIdentity();
+ return this;
+ }
+ final float srecip;
+ if ( FloatUtil.isEqual(1f, norm) ) {
+ srecip = 2f;
+ } else {
+ srecip = 2.0f / norm;
+ }
+
+ final float x = q.x();
+ final float y = q.y();
+ final float z = q.z();
+ final float w = q.w();
+
+ final float xs = srecip * x;
+ final float ys = srecip * y;
+ final float zs = srecip * z;
+
+ final float xx = x * xs;
+ final float xy = x * ys;
+ final float xz = x * zs;
+ final float xw = xs * w;
+ final float yy = y * ys;
+ final float yz = y * zs;
+ final float yw = ys * w;
+ final float zz = z * zs;
+ final float zw = zs * w;
+
+ m00 = 1f - ( yy + zz );
+ m01 = ( xy - zw );
+ m02 = ( xz + yw );
+ m03 = 0f;
+
+ m10 = ( xy + zw );
+ m11 = 1f - ( xx + zz );
+ m12 = ( yz - xw );
+ m13 = 0f;
+
+ m20 = ( xz - yw );
+ m21 = ( yz + xw );
+ m22 = 1f - ( xx + yy );
+ m23 = 0f;
+
+ m30 = m31 = m32 = 0f;
+ m33 = 1f;
+ return this;
+ }
+
+ /**
+ * Returns the rotation [m00 .. m22] fields converted to a Quaternion.
+ * @param res resulting Quaternion
+ * @return the resulting Quaternion for chaining.
+ * @see Quaternion#setFromMatrix(float, float, float, float, float, float, float, float, float)
+ * @see #setToRotation(Quaternion)
+ */
+ public final Quaternion getRotation(final Quaternion res) {
+ res.setFromMatrix(m00, m01, m02, m10, m11, m12, m20, m21, m22);
+ return res;
+ }
+
+ /**
+ * Set this matrix to orthogonal projection.
+ * <pre>
+ Ortho matrix (Column Order):
+ 2/dx 0 0 0
+ 0 2/dy 0 0
+ 0 0 2/dz 0
+ tx ty tz 1
+ * </pre>
+ * @param left
+ * @param right
+ * @param bottom
+ * @param top
+ * @param zNear
+ * @param zFar
+ * @return this matrix for chaining
+ */
+ public Matrix4f setToOrtho(final float left, final float right,
+ final float bottom, final float top,
+ final float zNear, final float zFar) {
+ {
+ // m00 = m11 = m22 = m33 = 1f;
+ m10 = m20 = m30 = 0f;
+ m01 = m21 = m31 = 0f;
+ m02 = m12 = m32 = 0f;
+ // m03 = m13 = m23 = 0f;
+ }
+ final float dx=right-left;
+ final float dy=top-bottom;
+ final float dz=zFar-zNear;
+ final float tx=-1.0f*(right+left)/dx;
+ final float ty=-1.0f*(top+bottom)/dy;
+ final float tz=-1.0f*(zFar+zNear)/dz;
+
+ m00 = 2.0f/dx;
+ m11 = 2.0f/dy;
+ m22 = -2.0f/dz;
+
+ m03 = tx;
+ m13 = ty;
+ m23 = tz;
+ m33 = 1f;
+
+ return this;
+ }
+
+ /**
+ * Set this matrix to frustum.
+ * <pre>
+ Frustum matrix (Column Order):
+ 2*zNear/dx 0 0 0
+ 0 2*zNear/dy 0 0
+ A B C -1
+ 0 0 D 0
+ * </pre>
+ * @param left
+ * @param right
+ * @param bottom
+ * @param top
+ * @param zNear
+ * @param zFar
+ * @return this matrix for chaining
+ * @throws IllegalArgumentException if {@code zNear <= 0} or {@code zFar <= zNear}
+ * or {@code left == right}, or {@code bottom == top}.
+ */
+ public Matrix4f setToFrustum(final float left, final float right,
+ final float bottom, final float top,
+ final float zNear, final float zFar) throws IllegalArgumentException {
+ if( zNear <= 0.0f || zFar <= zNear ) {
+ throw new IllegalArgumentException("Requirements zNear > 0 and zFar > zNear, but zNear "+zNear+", zFar "+zFar);
+ }
+ if( left == right || top == bottom) {
+ throw new IllegalArgumentException("GL_INVALID_VALUE: top,bottom and left,right must not be equal");
+ }
+ {
+ // m00 = m11 = m22 = m33 = 1f;
+ m10 = m20 = m30 = 0f;
+ m01 = m21 = m31 = 0f;
+ m03 = m13 = 0f;
+ }
+ final float zNear2 = 2.0f*zNear;
+ final float dx=right-left;
+ final float dy=top-bottom;
+ final float dz=zFar-zNear;
+ final float A=(right+left)/dx;
+ final float B=(top+bottom)/dy;
+ final float C=-1.0f*(zFar+zNear)/dz;
+ final float D=-2.0f*(zFar*zNear)/dz;
+
+ m00 = zNear2/dx;
+ m11 = zNear2/dy;
+
+ m02 = A;
+ m12 = B;
+ m22 = C;
+ m32 = -1.0f;
+
+ m23 = D;
+ m33 = 0f;
+
+ return this;
+ }
+
+ /**
+ * Set this matrix to perspective {@link #setToFrustum(float, float, float, float, float, float) frustum} projection.
+ *
+ * @param fovy_rad angle in radians
+ * @param aspect aspect ratio width / height
+ * @param zNear
+ * @param zFar
+ * @return this matrix for chaining
+ * @throws IllegalArgumentException if {@code zNear <= 0} or {@code zFar <= zNear}
+ * @see #setToFrustum(float, float, float, float, float, float)
+ */
+ public Matrix4f setToPerspective(final float fovy_rad, final float aspect, final float zNear, final float zFar) throws IllegalArgumentException {
+ final float top = FloatUtil.tan(fovy_rad/2f) * zNear; // use tangent of half-fov !
+ final float bottom = -1.0f * top; // -1f * fovhvTan.top * zNear
+ final float left = aspect * bottom; // aspect * -1f * fovhvTan.top * zNear
+ final float right = aspect * top; // aspect * fovhvTan.top * zNear
+ return setToFrustum(left, right, bottom, top, zNear, zFar);
+ }
+
+ /**
+ * Set this matrix to perspective {@link #setToFrustum(float, float, float, float, float, float) frustum} projection.
+ *
+ * @param fovhv {@link FovHVHalves} field of view in both directions, may not be centered, either in radians or tangent
+ * @param zNear
+ * @param zFar
+ * @return this matrix for chaining
+ * @throws IllegalArgumentException if {@code zNear <= 0} or {@code zFar <= zNear}
+ * @see #setToFrustum(float, float, float, float, float, float)
+ * @see Frustum#updateByFovDesc(Matrix4f, com.jogamp.math.geom.Frustum.FovDesc)
+ */
+ public Matrix4f setToPerspective(final FovHVHalves fovhv, final float zNear, final float zFar) throws IllegalArgumentException {
+ final FovHVHalves fovhvTan = fovhv.toTangents(); // use tangent of half-fov !
+ final float top = fovhvTan.top * zNear;
+ final float bottom = -1.0f * fovhvTan.bottom * zNear;
+ final float left = -1.0f * fovhvTan.left * zNear;
+ final float right = fovhvTan.right * zNear;
+ return setToFrustum(left, right, bottom, top, zNear, zFar);
+ }
+
+ /**
+ * Calculate the frustum planes in world coordinates
+ * using this premultiplied P*MV (column major order) matrix.
+ * <p>
+ * Frustum plane's normals will point to the inside of the viewing frustum,
+ * as required by this class.
+ * </p>
+ * <p>
+ * Usually called by {@link Frustum#updateFrustumPlanes(Matrix4f)}.
+ * </p>
+ */
+ public void updateFrustumPlanes(final Frustum frustum) {
+ // Left: a = m41 + m11, b = m42 + m12, c = m43 + m13, d = m44 + m14 - [1..4] column-major
+ // Left: a = m30 + m00, b = m31 + m01, c = m32 + m02, d = m33 + m03 - [0..3] column-major
+ {
+ final Frustum.Plane p = frustum.getPlanes()[Frustum.LEFT];
+ final Vec3f p_n = p.n;
+ p_n.set( m30 + m00,
+ m31 + m01,
+ m32 + m02 );
+ p.d = m33 + m03;
+ }
+
+ // Right: a = m41 - m11, b = m42 - m12, c = m43 - m13, d = m44 - m14 - [1..4] column-major
+ // Right: a = m30 - m00, b = m31 - m01, c = m32 - m02, d = m33 - m03 - [0..3] column-major
+ {
+ final Frustum.Plane p = frustum.getPlanes()[Frustum.RIGHT];
+ final Vec3f p_n = p.n;
+ p_n.set( m30 - m00,
+ m31 - m01,
+ m32 - m02 );
+ p.d = m33 - m03;
+ }
+
+ // Bottom: a = m41m21, b = m42m22, c = m43m23, d = m44m24 - [1..4] column-major
+ // Bottom: a = m30m10, b = m31m11, c = m32m12, d = m33m13 - [0..3] column-major
+ {
+ final Frustum.Plane p = frustum.getPlanes()[Frustum.BOTTOM];
+ final Vec3f p_n = p.n;
+ p_n.set( m30 + m10,
+ m31 + m11,
+ m32 + m12 );
+ p.d = m33 + m13;
+ }
+
+ // Top: a = m41 - m21, b = m42 - m22, c = m43 - m23, d = m44 - m24 - [1..4] column-major
+ // Top: a = m30 - m10, b = m31 - m11, c = m32 - m12, d = m33 - m13 - [0..3] column-major
+ {
+ final Frustum.Plane p = frustum.getPlanes()[Frustum.TOP];
+ final Vec3f p_n = p.n;
+ p_n.set( m30 - m10,
+ m31 - m11,
+ m32 - m12 );
+ p.d = m33 - m13;
+ }
+
+ // Near: a = m41m31, b = m42m32, c = m43m33, d = m44m34 - [1..4] column-major
+ // Near: a = m30m20, b = m31m21, c = m32m22, d = m33m23 - [0..3] column-major
+ {
+ final Frustum.Plane p = frustum.getPlanes()[Frustum.NEAR];
+ final Vec3f p_n = p.n;
+ p_n.set( m30 + m20,
+ m31 + m21,
+ m32 + m22 );
+ p.d = m33 + m23;
+ }
+
+ // Far: a = m41 - m31, b = m42 - m32, c = m43 - m33, d = m44 - m34 - [1..4] column-major
+ // Far: a = m30 - m20, b = m31 - m21, c = m32m22, d = m33m23 - [0..3] column-major
+ {
+ final Frustum.Plane p = frustum.getPlanes()[Frustum.FAR];
+ final Vec3f p_n = p.n;
+ p_n.set( m30 - m20,
+ m31 - m21,
+ m32 - m22 );
+ p.d = m33 - m23;
+ }
+
+ // Normalize all planes
+ for (int i = 0; i < 6; ++i) {
+ final Plane p = frustum.getPlanes()[i];
+ final Vec3f p_n = p.n;
+ final float invLen = 1f / p_n.length();
+ p_n.scale(invLen);
+ p.d *= invLen;
+ }
+ }
+
+ /**
+ * Set this matrix to the <i>look-at</i> matrix based on given parameters.
+ * <p>
+ * Consist out of two matrix multiplications:
+ * <pre>
+ * <b>R</b> = <b>L</b> x <b>T</b>,
+ * with <b>L</b> for <i>look-at</i> matrix and
+ * <b>T</b> for eye translation.
+ *
+ * Result <b>R</b> can be utilized for <i>projection or modelview</i> multiplication, i.e.
+ * <b>M</b> = <b>M</b> x <b>R</b>,
+ * with <b>M</b> being the <i>projection or modelview</i> matrix.
+ * </pre>
+ * </p>
+ * @param eye 3 component eye vector
+ * @param center 3 component center vector
+ * @param up 3 component up vector
+ * @param tmp temporary Matrix4f used for multiplication
+ * @return this matrix for chaining
+ */
+ public Matrix4f setToLookAt(final Vec3f eye, final Vec3f center, final Vec3f up, final Matrix4f tmp) {
+ // normalized forward!
+ final Vec3f fwd = new Vec3f( center.x() - eye.x(),
+ center.y() - eye.y(),
+ center.z() - eye.z() ).normalize();
+
+ /* Side = forward x up, normalized */
+ final Vec3f side = fwd.cross(up).normalize();
+
+ /* Recompute up as: up = side x forward */
+ final Vec3f up2 = side.cross(fwd);
+
+ m00 = side.x();
+ m10 = up2.x();
+ m20 = -fwd.x();
+ m30 = 0;
+
+ m01 = side.y();
+ m11 = up2.y();
+ m21 = -fwd.y();
+ m31 = 0;
+
+ m02 = side.z();
+ m12 = up2.z();
+ m22 = -fwd.z();
+ m32 = 0;
+
+ m03 = 0;
+ m13 = 0;
+ m23 = 0;
+ m33 = 1;
+
+ return mul( tmp.setToTranslation( -eye.x(), -eye.y(), -eye.z() ) );
+ }
+
+ /**
+ * Set this matrix to the <i>pick</i> matrix based on given parameters.
+ * <p>
+ * Traditional <code>gluPickMatrix</code> implementation.
+ * </p>
+ * <p>
+ * Consist out of two matrix multiplications:
+ * <pre>
+ * <b>R</b> = <b>T</b> x <b>S</b>,
+ * with <b>T</b> for viewport translation matrix and
+ * <b>S</b> for viewport scale matrix.
+ *
+ * Result <b>R</b> can be utilized for <i>projection</i> multiplication, i.e.
+ * <b>P</b> = <b>P</b> x <b>R</b>,
+ * with <b>P</b> being the <i>projection</i> matrix.
+ * </pre>
+ * </p>
+ * <p>
+ * To effectively use the generated pick matrix for picking,
+ * call {@link #setToPick(float, float, float, float, Recti, Matrix4f) setToPick(..)}
+ * and multiply a {@link #setToPerspective(float, float, float, float) custom perspective matrix}
+ * by this pick matrix. Then you may load the result onto the perspective matrix stack.
+ * </p>
+ * @param x the center x-component of a picking region in window coordinates
+ * @param y the center y-component of a picking region in window coordinates
+ * @param deltaX the width of the picking region in window coordinates.
+ * @param deltaY the height of the picking region in window coordinates.
+ * @param viewport Rect4i viewport
+ * @param mat4Tmp temp storage
+ * @return this matrix for chaining or {@code null} if either delta value is <= zero.
+ */
+ public Matrix4f setToPick(final float x, final float y, final float deltaX, final float deltaY,
+ final Recti viewport, final Matrix4f mat4Tmp) {
+ if (deltaX <= 0 || deltaY <= 0) {
+ return null;
+ }
+ /* Translate and scale the picked region to the entire window */
+ setToTranslation( ( viewport.width() - 2 * ( x - viewport.x() ) ) / deltaX,
+ ( viewport.height() - 2 * ( y - viewport.y() ) ) / deltaY,
+ 0);
+ mat4Tmp.setToScale( viewport.width() / deltaX, viewport.height() / deltaY, 1.0f );
+ return mul(mat4Tmp);
+ }
+
+ //
+ // Matrix affine operations using setTo..()
+ //
+
+ /**
+ * Rotate this matrix about give axis and angle in radians, i.e. multiply by {@link #setToRotationAxis(float, float, float, float) axis-rotation matrix}.
+ * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a>
+ * @param angrad angle in radians
+ * @param x x of rotation axis
+ * @param y y of rotation axis
+ * @param z z of rotation axis
+ * @param tmp temporary Matrix4f used for multiplication
+ * @return this matrix for chaining
+ */
+ public final Matrix4f rotate(final float ang_rad, final float x, final float y, final float z, final Matrix4f tmp) {
+ return mul( tmp.setToRotationAxis(ang_rad, x, y, z) );
+ }
+
+ /**
+ * Rotate this matrix about give axis and angle in radians, i.e. multiply by {@link #setToRotationAxis(float, Vec3f) axis-rotation matrix}.
+ * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a>
+ * @param angrad angle in radians
+ * @param axis rotation axis
+ * @param tmp temporary Matrix4f used for multiplication
+ * @return this matrix for chaining
+ */
+ public final Matrix4f rotate(final float ang_rad, final Vec3f axis, final Matrix4f tmp) {
+ return mul( tmp.setToRotationAxis(ang_rad, axis) );
+ }
+
+ /**
+ * Rotate this matrix with the given {@link Quaternion}, i.e. multiply by {@link #setToRotation(Quaternion) Quaternion's rotation matrix}.
+ * @param tmp temporary Matrix4f used for multiplication
+ * @return this matrix for chaining
+ */
+ public final Matrix4f rotate(final Quaternion quat, final Matrix4f tmp) {
+ return mul( tmp.setToRotation(quat) );
+ }
+
+ /**
+ * Translate this matrix, i.e. multiply by {@link #setToTranslation(float, float, float) translation matrix}.
+ * @param x x translation
+ * @param y y translation
+ * @param z z translation
+ * @param tmp temporary Matrix4f used for multiplication
+ * @return this matrix for chaining
+ */
+ public final Matrix4f translate(final float x, final float y, final float z, final Matrix4f tmp) {
+ return mul( tmp.setToTranslation(x, y, z) );
+ }
+
+ /**
+ * Translate this matrix, i.e. multiply by {@link #setToTranslation(Vec3f) translation matrix}.
+ * @param t translation Vec3f
+ * @param tmp temporary Matrix4f used for multiplication
+ * @return this matrix for chaining
+ */
+ public final Matrix4f translate(final Vec3f t, final Matrix4f tmp) {
+ return mul( tmp.setToTranslation(t) );
+ }
+
+ /**
+ * Scale this matrix, i.e. multiply by {@link #setToScale(float, float, float) scale matrix}.
+ * @param x x scale
+ * @param y y scale
+ * @param z z scale
+ * @param tmp temporary Matrix4f used for multiplication
+ * @return this matrix for chaining
+ */
+ public final Matrix4f scale(final float x, final float y, final float z, final Matrix4f tmp) {
+ return mul( tmp.setToScale(x, y, z) );
+ }
+
+ /**
+ * Scale this matrix, i.e. multiply by {@link #setToScale(float, float, float) scale matrix}.
+ * @param s scale for x-, y- and z-axis
+ * @param tmp temporary Matrix4f used for multiplication
+ * @return this matrix for chaining
+ */
+ public final Matrix4f scale(final float s, final Matrix4f tmp) {
+ return mul( tmp.setToScale(s, s, s) );
+ }
+
+ //
+ // Matrix Stack
+ //
+
+ /**
+ * Push the matrix to it's stack, while preserving this matrix values.
+ * @see #pop()
+ */
+ public final void push() {
+ stack.push(this);
+ }
+
+ /**
+ * Pop the current matrix from it's stack, replacing this matrix values.
+ * @see #push()
+ */
+ public final void pop() {
+ stack.pop(this);
+ }
+
+ //
+ // equals
+ //
+
+ /**
+ * Equals check using a given {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}.
+ * <p>
+ * Implementation considers following corner cases:
+ * <ul>
+ * <li>NaN == NaN</li>
+ * <li>+Inf == +Inf</li>
+ * <li>-Inf == -Inf</li>
+ * </ul>
+ * @param o comparison value
+ * @param epsilon consider using {@link FloatUtil#EPSILON}
+ * @return true if all components differ less than {@code epsilon}, otherwise false.
+ */
+ public boolean isEqual(final Matrix4f o, final float epsilon) {
+ if( this == o ) {
+ return true;
+ } else {
+ return FloatUtil.isEqual(m00, o.m00, epsilon) &&
+ FloatUtil.isEqual(m01, o.m01, epsilon) &&
+ FloatUtil.isEqual(m02, o.m02, epsilon) &&
+ FloatUtil.isEqual(m03, o.m03, epsilon) &&
+ FloatUtil.isEqual(m10, o.m10, epsilon) &&
+ FloatUtil.isEqual(m11, o.m11, epsilon) &&
+ FloatUtil.isEqual(m12, o.m12, epsilon) &&
+ FloatUtil.isEqual(m13, o.m13, epsilon) &&
+ FloatUtil.isEqual(m20, o.m20, epsilon) &&
+ FloatUtil.isEqual(m21, o.m21, epsilon) &&
+ FloatUtil.isEqual(m22, o.m22, epsilon) &&
+ FloatUtil.isEqual(m23, o.m23, epsilon) &&
+ FloatUtil.isEqual(m30, o.m30, epsilon) &&
+ FloatUtil.isEqual(m31, o.m31, epsilon) &&
+ FloatUtil.isEqual(m32, o.m32, epsilon) &&
+ FloatUtil.isEqual(m33, o.m33, epsilon);
+ }
+ }
+
+ /**
+ * Equals check using {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}.
+ * <p>
+ * Implementation considers following corner cases:
+ * <ul>
+ * <li>NaN == NaN</li>
+ * <li>+Inf == +Inf</li>
+ * <li>-Inf == -Inf</li>
+ * </ul>
+ * @param o comparison value
+ * @return true if all components differ less than {@link FloatUtil#EPSILON}, otherwise false.
+ */
+ public boolean isEqual(final Matrix4f o) {
+ return isEqual(o, FloatUtil.EPSILON);
+ }
+
+ @Override
+ public boolean equals(final Object o) {
+ if( o instanceof Matrix4f ) {
+ return isEqual((Matrix4f)o, FloatUtil.EPSILON);
+ } else {
+ return false;
+ }
+ }
+
+ //
+ // Static multi Matrix ops
+ //
+
+ /**
+ * Map object coordinates to window coordinates.
+ * <p>
+ * Traditional <code>gluProject</code> implementation.
+ * </p>
+ *
+ * @param obj object position, 3 component vector
+ * @param mMv modelview matrix
+ * @param mP projection matrix
+ * @param viewport Rect4i viewport
+ * @param winPos 3 component window coordinate, the result
+ * @return true if successful, otherwise false (z is 1)
+ */
+ public static boolean mapObjToWin(final Vec3f obj, final Matrix4f mMv, final Matrix4f mP,
+ final Recti viewport, final Vec3f winPos)
+ {
+ final Vec4f vec4Tmp1 = new Vec4f(obj, 1f);
+
+ // vec4Tmp2 = Mv * o
+ // rawWinPos = P * vec4Tmp2
+ // rawWinPos = P * ( Mv * o )
+ // rawWinPos = P * Mv * o
+ final Vec4f vec4Tmp2 = mMv.mulVec4f(vec4Tmp1, new Vec4f());
+ final Vec4f rawWinPos = mP.mulVec4f(vec4Tmp2, vec4Tmp1);
+
+ if (rawWinPos.w() == 0.0f) {
+ return false;
+ }
+
+ final float s = ( 1.0f / rawWinPos.w() ) * 0.5f;
+
+ // Map x, y and z to range 0-1 (w is ignored)
+ rawWinPos.scale(s).add(0.5f, 0.5f, 0.5f, 0f);
+
+ // Map x,y to viewport
+ winPos.set( rawWinPos.x() * viewport.width() + viewport.x(),
+ rawWinPos.y() * viewport.height() + viewport.y(),
+ rawWinPos.z() );
+
+ return true;
+ }
+
+ /**
+ * Map object coordinates to window coordinates.
+ * <p>
+ * Traditional <code>gluProject</code> implementation.
+ * </p>
+ *
+ * @param obj object position, 3 component vector
+ * @param mPMv [projection] x [modelview] matrix, i.e. P x Mv
+ * @param viewport Rect4i viewport
+ * @param winPos 3 component window coordinate, the result
+ * @return true if successful, otherwise false (z is 1)
+ */
+ public static boolean mapObjToWin(final Vec3f obj, final Matrix4f mPMv,
+ final Recti viewport, final Vec3f winPos)
+ {
+ final Vec4f vec4Tmp2 = new Vec4f(obj, 1f);
+
+ // rawWinPos = P * Mv * o
+ final Vec4f rawWinPos = mPMv.mulVec4f(vec4Tmp2, new Vec4f());
+
+ if (rawWinPos.w() == 0.0f) {
+ return false;
+ }
+
+ final float s = ( 1.0f / rawWinPos.w() ) * 0.5f;
+
+ // Map x, y and z to range 0-1 (w is ignored)
+ rawWinPos.scale(s).add(0.5f, 0.5f, 0.5f, 0f);
+
+ // Map x,y to viewport
+ winPos.set( rawWinPos.x() * viewport.width() + viewport.x(),
+ rawWinPos.y() * viewport.height() + viewport.y(),
+ rawWinPos.z() );
+
+ return true;
+ }
+
+ /**
+ * Map window coordinates to object coordinates.
+ * <p>
+ * Traditional <code>gluUnProject</code> implementation.
+ * </p>
+ *
+ * @param winx
+ * @param winy
+ * @param winz
+ * @param mMv 4x4 modelview matrix
+ * @param mP 4x4 projection matrix
+ * @param viewport Rect4i viewport
+ * @param objPos 3 component object coordinate, the result
+ * @param mat4Tmp 16 component matrix for temp storage
+ * @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z)
+ */
+ public static boolean mapWinToObj(final float winx, final float winy, final float winz,
+ final Matrix4f mMv, final Matrix4f mP,
+ final Recti viewport,
+ final Vec3f objPos,
+ final Matrix4f mat4Tmp)
+ {
+ // invPMv = Inv(P x Mv)
+ final Matrix4f invPMv = mat4Tmp.mul(mP, mMv);
+ if( !invPMv.invert() ) {
+ return false;
+ }
+
+ final Vec4f winPos = new Vec4f(winx, winy, winz, 1f);
+
+ // Map x and y from window coordinates
+ winPos.add(-viewport.x(), -viewport.y(), 0f, 0f).scale(1f/viewport.width(), 1f/viewport.height(), 1f, 1f);
+
+ // Map to range -1 to 1
+ winPos.scale(2f, 2f, 2f, 1f).add(-1f, -1f, -1f, 0f);
+
+ // rawObjPos = Inv(P x Mv) * winPos
+ final Vec4f rawObjPos = invPMv.mulVec4f(winPos, new Vec4f());
+
+ if ( rawObjPos.w() == 0.0f ) {
+ return false;
+ }
+ objPos.set( rawObjPos.scale( 1f / rawObjPos.w() ) );
+
+ return true;
+ }
+
+ /**
+ * Map window coordinates to object coordinates.
+ * <p>
+ * Traditional <code>gluUnProject</code> implementation.
+ * </p>
+ *
+ * @param winx
+ * @param winy
+ * @param winz
+ * @param invPMv inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv), if null method returns false
+ * @param viewport Rect4i viewport
+ * @param objPos 3 component object coordinate, the result
+ * @return true if successful, otherwise false (null invert matrix, or becomes infinity due to zero z)
+ */
+ public static boolean mapWinToObj(final float winx, final float winy, final float winz,
+ final Matrix4f invPMv,
+ final Recti viewport,
+ final Vec3f objPos)
+ {
+ if( null == invPMv ) {
+ return false;
+ }
+ final Vec4f winPos = new Vec4f(winx, winy, winz, 1f);
+
+ // Map x and y from window coordinates
+ winPos.add(-viewport.x(), -viewport.y(), 0f, 0f).scale(1f/viewport.width(), 1f/viewport.height(), 1f, 1f);
+
+ // Map to range -1 to 1
+ winPos.scale(2f, 2f, 2f, 1f).add(-1f, -1f, -1f, 0f);
+
+ // rawObjPos = Inv(P x Mv) * winPos
+ final Vec4f rawObjPos = invPMv.mulVec4f(winPos, new Vec4f());
+
+ if ( rawObjPos.w() == 0.0f ) {
+ return false;
+ }
+ objPos.set( rawObjPos.scale( 1f / rawObjPos.w() ) );
+
+ return true;
+ }
+
+ /**
+ * Map two window coordinates to two object coordinates,
+ * distinguished by their z component.
+ * <p>
+ * Traditional <code>gluUnProject</code> implementation.
+ * </p>
+ *
+ * @param winx
+ * @param winy
+ * @param winz1
+ * @param winz2
+ * @param invPMv inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv), if null method returns false
+ * @param viewport Rect4i viewport vector
+ * @param objPos1 3 component object coordinate, the result
+ * @return true if successful, otherwise false (null invert matrix, or becomes infinity due to zero z)
+ */
+ public static boolean mapWinToObj(final float winx, final float winy, final float winz1, final float winz2,
+ final Matrix4f invPMv,
+ final Recti viewport,
+ final Vec3f objPos1, final Vec3f objPos2)
+ {
+ if( null == invPMv ) {
+ return false;
+ }
+ final Vec4f winPos = new Vec4f(winx, winy, winz1, 1f);
+
+ // Map x and y from window coordinates
+ winPos.add(-viewport.x(), -viewport.y(), 0f, 0f).scale(1f/viewport.width(), 1f/viewport.height(), 1f, 1f);
+
+ // Map to range -1 to 1
+ winPos.scale(2f, 2f, 2f, 1f).add(-1f, -1f, -1f, 0f);
+
+ // rawObjPos = Inv(P x Mv) * winPos1
+ final Vec4f rawObjPos = invPMv.mulVec4f(winPos, new Vec4f());
+
+ if ( rawObjPos.w() == 0.0f ) {
+ return false;
+ }
+ objPos1.set( rawObjPos.scale( 1f / rawObjPos.w() ) );
+
+ //
+ // winz2
+ //
+ // Map Z to range -1 to 1
+ winPos.setZ( winz2 * 2f - 1f );
+
+ // rawObjPos = Inv(P x Mv) * winPos2
+ invPMv.mulVec4f(winPos, rawObjPos);
+
+ if ( rawObjPos.w() == 0.0f ) {
+ return false;
+ }
+ objPos2.set( rawObjPos.scale( 1f / rawObjPos.w() ) );
+
+ return true;
+ }
+
+ /**
+ * Map window coordinates to object coordinates.
+ * <p>
+ * Traditional <code>gluUnProject4</code> implementation.
+ * </p>
+ *
+ * @param winx
+ * @param winy
+ * @param winz
+ * @param clipw
+ * @param mMv 4x4 modelview matrix
+ * @param mP 4x4 projection matrix
+ * @param viewport Rect4i viewport vector
+ * @param near
+ * @param far
+ * @param obj_pos 4 component object coordinate, the result
+ * @param mat4Tmp 16 component matrix for temp storage
+ * @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z)
+ */
+ public static boolean mapWinToObj4(final float winx, final float winy, final float winz, final float clipw,
+ final Matrix4f mMv, final Matrix4f mP,
+ final Recti viewport,
+ final float near, final float far,
+ final Vec4f objPos,
+ final Matrix4f mat4Tmp)
+ {
+ // invPMv = Inv(P x Mv)
+ final Matrix4f invPMv = mat4Tmp.mul(mP, mMv);
+ if( !invPMv.invert() ) {
+ return false;
+ }
+
+ final Vec4f winPos = new Vec4f(winx, winy, winz, clipw);
+
+ // Map x and y from window coordinates
+ winPos.add(-viewport.x(), -viewport.y(), -near, 0f).scale(1f/viewport.width(), 1f/viewport.height(), 1f/(far-near), 1f);
+
+ // Map to range -1 to 1
+ winPos.scale(2f, 2f, 2f, 1f).add(-1f, -1f, -1f, 0f);
+
+ // objPos = Inv(P x Mv) * winPos
+ invPMv.mulVec4f(winPos, objPos);
+
+ if ( objPos.w() == 0.0f ) {
+ return false;
+ }
+ return true;
+ }
+
+ /**
+ * Map window coordinates to object coordinates.
+ * <p>
+ * Traditional <code>gluUnProject4</code> implementation.
+ * </p>
+ *
+ * @param winx
+ * @param winy
+ * @param winz
+ * @param clipw
+ * @param invPMv inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv), if null method returns false
+ * @param viewport Rect4i viewport vector
+ * @param near
+ * @param far
+ * @param obj_pos 4 component object coordinate, the result
+ * @return true if successful, otherwise false (null invert matrix, or becomes infinity due to zero z)
+ */
+ public static boolean mapWinToObj4(final float winx, final float winy, final float winz, final float clipw,
+ final Matrix4f invPMv,
+ final Recti viewport,
+ final float near, final float far,
+ final Vec4f objPos)
+ {
+ if( null == invPMv ) {
+ return false;
+ }
+ final Vec4f winPos = new Vec4f(winx, winy, winz, clipw);
+
+ // Map x and y from window coordinates
+ winPos.add(-viewport.x(), -viewport.y(), -near, 0f).scale(1f/viewport.width(), 1f/viewport.height(), 1f/(far-near), 1f);
+
+ // Map to range -1 to 1
+ winPos.scale(2f, 2f, 2f, 1f).add(-1f, -1f, -1f, 0f);
+
+ // objPos = Inv(P x Mv) * winPos
+ invPMv.mulVec4f(winPos, objPos);
+
+ if ( objPos.w() == 0.0f ) {
+ return false;
+ }
+ return true;
+ }
+
+ /**
+ * Map two window coordinates w/ shared X/Y and distinctive Z
+ * to a {@link Ray}. The resulting {@link Ray} maybe used for <i>picking</i>
+ * using a {@link AABBox#getRayIntersection(Vec3f, Ray, float, boolean)}.
+ * <p>
+ * Notes for picking <i>winz0</i> and <i>winz1</i>:
+ * <ul>
+ * <li>see {@link FloatUtil#getZBufferEpsilon(int, float, float)}</li>
+ * <li>see {@link FloatUtil#getZBufferValue(int, float, float, float)}</li>
+ * <li>see {@link FloatUtil#getOrthoWinZ(float, float, float)}</li>
+ * </ul>
+ * </p>
+ * @param winx
+ * @param winy
+ * @param winz0
+ * @param winz1
+ * @param mMv 4x4 modelview matrix
+ * @param mP 4x4 projection matrix
+ * @param viewport Rect4i viewport
+ * @param ray storage for the resulting {@link Ray}
+ * @param mat4Tmp1 16 component matrix for temp storage
+ * @param mat4Tmp2 16 component matrix for temp storage
+ * @return true if successful, otherwise false (failed to invert matrix, or becomes z is infinity)
+ */
+ public static boolean mapWinToRay(final float winx, final float winy, final float winz0, final float winz1,
+ final Matrix4f mMv, final Matrix4f mP,
+ final Recti viewport,
+ final Ray ray,
+ final Matrix4f mat4Tmp1, final Matrix4f mat4Tmp2) {
+ // invPMv = Inv(P x Mv)
+ final Matrix4f invPMv = mat4Tmp1.mul(mP, mMv);
+ if( !invPMv.invert() ) {
+ return false;
+ }
+
+ if( mapWinToObj(winx, winy, winz0, winz1, invPMv, viewport, ray.orig, ray.dir) ) {
+ ray.dir.sub(ray.orig).normalize();
+ return true;
+ } else {
+ return false;
+ }
+ }
+
+ /**
+ * Map two window coordinates w/ shared X/Y and distinctive Z
+ * to a {@link Ray}. The resulting {@link Ray} maybe used for <i>picking</i>
+ * using a {@link AABBox#getRayIntersection(Vec3f, Ray, float, boolean)}.
+ * <p>
+ * Notes for picking <i>winz0</i> and <i>winz1</i>:
+ * <ul>
+ * <li>see {@link FloatUtil#getZBufferEpsilon(int, float, float)}</li>
+ * <li>see {@link FloatUtil#getZBufferValue(int, float, float, float)}</li>
+ * <li>see {@link FloatUtil#getOrthoWinZ(float, float, float)}</li>
+ * </ul>
+ * </p>
+ * @param winx
+ * @param winy
+ * @param winz0
+ * @param winz1
+ * @param invPMv inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv), if null method returns false
+ * @param viewport Rect4i viewport
+ * @param ray storage for the resulting {@link Ray}
+ * @return true if successful, otherwise false (null invert matrix, or becomes z is infinity)
+ */
+ public static boolean mapWinToRay(final float winx, final float winy, final float winz0, final float winz1,
+ final Matrix4f invPMv,
+ final Recti viewport,
+ final Ray ray) {
+ if( mapWinToObj(winx, winy, winz0, winz1, invPMv, viewport, ray.orig, ray.dir) ) {
+ ray.dir.sub(ray.orig).normalize();
+ return true;
+ } else {
+ return false;
+ }
+ }
+
+ //
+ // String and internals
+ //
+
+ /**
+ * @param sb optional passed StringBuilder instance to be used
+ * @param rowPrefix optional prefix for each row
+ * @param f the format string of one floating point, i.e. "%10.5f", see {@link java.util.Formatter}
+ * @return matrix string representation
+ */
+ public StringBuilder toString(final StringBuilder sb, final String rowPrefix, final String f) {
+ final float[] tmp = new float[16];
+ this.get(tmp);
+ return FloatUtil.matrixToString(sb, rowPrefix, f,tmp, 0, 4, 4, false /* rowMajorOrder */);
+ }
+
+ @Override
+ public String toString() {
+ return toString(null, null, "%10.5f").toString();
+ }
+
+ private float m00, m10, m20, m30;
+ private float m01, m11, m21, m31;
+ private float m02, m12, m22, m32;
+ private float m03, m13, m23, m33;
+
+ final Stack stack = new Stack(0, 16*16); // start w/ zero size, growSize is half GL-min size (32)
+
+ private static class Stack {
+ private int position;
+ private float[] buffer;
+ private final int growSize;
+
+ /**
+ * @param initialSize initial size
+ * @param growSize grow size if {@link #position()} is reached, maybe <code>0</code>
+ * in which case an {@link IndexOutOfBoundsException} is thrown.
+ */
+ public Stack(final int initialSize, final int growSize) {
+ this.position = 0;
+ this.growSize = growSize;
+ this.buffer = new float[initialSize];
+ }
+
+ private final void growIfNecessary(final int length) throws IndexOutOfBoundsException {
+ if( position + length > buffer.length ) {
+ if( 0 >= growSize ) {
+ throw new IndexOutOfBoundsException("Out of fixed stack size: "+this);
+ }
+ final float[] newBuffer =
+ new float[buffer.length + growSize];
+ System.arraycopy(buffer, 0, newBuffer, 0, position);
+ buffer = newBuffer;
+ }
+ }
+
+ public final Matrix4f push(final Matrix4f src) throws IndexOutOfBoundsException {
+ growIfNecessary(16);
+ src.get(buffer, position);
+ position += 16;
+ return src;
+ }
+
+ public final Matrix4f pop(final Matrix4f dest) throws IndexOutOfBoundsException {
+ position -= 16;
+ dest.load(buffer, position);
+ return dest;
+ }
+ }
+}