/* * Portions Copyright (C) 2003 Sun Microsystems, Inc. * All rights reserved. */ /* * * COPYRIGHT NVIDIA CORPORATION 2003. ALL RIGHTS RESERVED. * BY ACCESSING OR USING THIS SOFTWARE, YOU AGREE TO: * * 1) ACKNOWLEDGE NVIDIA'S EXCLUSIVE OWNERSHIP OF ALL RIGHTS * IN AND TO THE SOFTWARE; * * 2) NOT MAKE OR DISTRIBUTE COPIES OF THE SOFTWARE WITHOUT * INCLUDING THIS NOTICE AND AGREEMENT; * * 3) ACKNOWLEDGE THAT TO THE MAXIMUM EXTENT PERMITTED BY * APPLICABLE LAW, THIS SOFTWARE IS PROVIDED *AS IS* AND * THAT NVIDIA AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, * EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL NVIDIA OR ITS SUPPLIERS BE LIABLE FOR ANY * SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES * WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS * OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS * INFORMATION, OR ANY OTHER PECUNIARY LOSS), INCLUDING ATTORNEYS' * FEES, RELATING TO THE USE OF OR INABILITY TO USE THIS SOFTWARE, * EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * */ package demos.vertexProgWarp; import demos.common.Demo; import demos.common.DemoListener; import demos.util.DurationTimer; import demos.util.SystemTime; import demos.util.Time; import demos.util.Triceratops; import gleem.BSphere; import gleem.BSphereProvider; import gleem.ExaminerViewer; import gleem.ManipManager; import gleem.linalg.Vec3f; import java.awt.BorderLayout; import java.awt.Frame; import java.awt.event.KeyAdapter; import java.awt.event.KeyEvent; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent; import java.io.IOException; import javax.media.opengl.GL; import javax.media.opengl.GL2ES1; import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.awt.AWTGLAutoDrawable; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.media.opengl.glu.GLUquadric; import com.sun.opengl.util.Animator; import com.sun.opengl.util.BufferUtil; import javax.swing.JOptionPane; /** Simple space-warp/distortion vertex program demo<br> (Press the space bar to switch through programs)<br><p> sgreen@nvidia.com 9/2000, based on Cass's vtxprog_silhouette<br><p> Ported to Java by Kenneth Russell */ public class VertexProgWarp extends Demo { private Frame frame; private Animator animator; private volatile boolean quit; private GLAutoDrawable drawable; private DurationTimer timer = new DurationTimer(); private boolean firstRender = true; private int frameCount; public static void main(String[] args) { new VertexProgWarp().run(args); } public void run(String[] args) { VertexProgWarp demo = new VertexProgWarp(); GLCanvas canvas = new GLCanvas(); canvas.addGLEventListener(demo); canvas.addKeyListener(new KeyAdapter() { public void keyPressed(KeyEvent e) { dispatchKey(e.getKeyCode(), e.getKeyChar()); } }); final Animator animator = new Animator(canvas); demo.setDemoListener(new DemoListener() { public void shutdownDemo() { runExit(animator); } public void repaint() {} }); final Frame frame = new Frame(); demo.setTitleSetter(new VertexProgWarp.TitleSetter() { public void setTitle(String title) { frame.setTitle(title); } }); frame.setLayout(new BorderLayout()); canvas.setSize(512, 512); frame.add(canvas, BorderLayout.CENTER); frame.pack(); frame.setVisible(true); canvas.requestFocus(); frame.addWindowListener(new WindowAdapter() { public void windowClosing(WindowEvent e) { runExit(animator); } }); animator.start(); } public static abstract class TitleSetter { public abstract void setTitle(String title); } public void setTitleSetter(TitleSetter setter) { titleSetter = setter; } private TitleSetter titleSetter; private boolean initComplete; // period of 4-term Taylor approximation to sin isn't quite 2*M_PI private static final float SIN_PERIOD = 3.079f; private static final int NUM_OBJS = 5; private static final int NUM_PROGS = 7; private int[] programs = new int[NUM_PROGS]; private float zNear = 0.1f; private float zFar = 10.0f; private int program = 2; private int obj = 2; private boolean[] b = new boolean[256]; private boolean wire = false; private boolean toggleWire = false; private boolean animating = true; private boolean doViewAll = true; private Time time = new SystemTime(); private float anim = 0.0f; private float animScale = 7.0f; private float amp = 0.05f; private float freq = 8.0f; private float d = 4.0f; private GLU glu = new GLU(); private ExaminerViewer viewer; public void init(GLAutoDrawable drawable) { initComplete = false; GL2 gl = drawable.getGL().getGL2(); float cc = 0.0f; gl.glClearColor(cc, cc, cc, 1); gl.glColor3f(1,1,1); gl.glEnable(GL.GL_DEPTH_TEST); gl.glDisable(GL.GL_CULL_FACE); try { initExtension(gl, "GL_vertex_program"); } catch (RuntimeException e) { shutdownDemo(); throw(e); } for(int i=0; i<NUM_OBJS; i++) { gl.glNewList(i+1, GL2.GL_COMPILE); drawObject(gl, i); gl.glEndList(); } for(int i=0; i<NUM_PROGS; i++) { int[] vtxProgTmp = new int[1]; gl.glGenProgramsARB(1, vtxProgTmp, 0); programs[i] = vtxProgTmp[0]; gl.glBindProgramARB(GL2.GL_VERTEX_PROGRAM_ARB, programs[i]); gl.glProgramStringARB(GL2.GL_VERTEX_PROGRAM_ARB, GL2.GL_PROGRAM_FORMAT_ASCII_ARB, programTexts[i].length(), programTexts[i]); } gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, 0, 0.0f, 0.0f, 1.0f, 0.0f); // light position/direction gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, 1, 0.0f, 1.0f, 0.0f, 0.0f); // diffuse color gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, 2, 1.0f, 1.0f, 1.0f, 0.0f); // specular color gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, 3, 0.0f, 1.0f, 2.0f, 3.0f); // smoothstep constants // sin Taylor series constants - 1, 1/3!, 1/5!, 1/7! gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, 4, 1.0f, 1.0f / (3*2), 1.0f / (5*4*3*2), 1.0f / (7*6*5*4*3*2)); gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, 5, 1.0f / (2.0f * SIN_PERIOD), 2.0f * SIN_PERIOD, SIN_PERIOD, SIN_PERIOD/2.0f); // sin wave frequency, amplitude gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, 6, 1.0f, 0.2f, 0.0f, 0.0f); // phase animation gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, 7, 0.0f, 0.0f, 0.0f, 0.0f); // fisheye sphere radius gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, 8, 1.0f, 0.0f, 0.0f, 0.0f); setWindowTitle(); doViewAll = true; b['p'] = true; // Register the window with the ManipManager ManipManager manager = ManipManager.getManipManager(); manager.registerWindow((AWTGLAutoDrawable) drawable); this.drawable = drawable; viewer = new ExaminerViewer(); viewer.setUpVector(Vec3f.Y_AXIS); viewer.setNoAltKeyMode(true); viewer.setAutoRedrawMode(false); viewer.attach((AWTGLAutoDrawable) drawable, new BSphereProvider() { public BSphere getBoundingSphere() { return new BSphere(new Vec3f(0, 0, 0), 1.0f); } }); viewer.setVertFOV((float) Math.toRadians(60)); viewer.setZNear(zNear); viewer.setZFar(zFar); initComplete = true; } public void dispose(GLAutoDrawable drawable) { } public void display(GLAutoDrawable drawable) { if (!initComplete) { return; } if (!firstRender) { if (++frameCount == 30) { timer.stop(); System.err.println("Frames per second: " + (30.0f / timer.getDurationAsSeconds())); timer.reset(); timer.start(); frameCount = 0; } } else { firstRender = false; timer.start(); } time.update(); GL2 gl = drawable.getGL().getGL2(); gl.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT); if (toggleWire) { wire = !wire; if (wire) gl.glPolygonMode(GL.GL_FRONT_AND_BACK, GL2.GL_LINE); else gl.glPolygonMode(GL.GL_FRONT_AND_BACK, GL2.GL_FILL); toggleWire = false; } gl.glPushMatrix(); if (doViewAll) { viewer.viewAll(gl); doViewAll = false; } if (animating) { anim -= (float) (animScale * time.deltaT()); } viewer.update(gl); ManipManager.getManipManager().updateCameraParameters((AWTGLAutoDrawable) drawable, viewer.getCameraParameters()); ManipManager.getManipManager().render((AWTGLAutoDrawable) drawable, gl); gl.glBindProgramARB(GL2.GL_VERTEX_PROGRAM_ARB, programs[program]); gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, 7, anim, 0.0f, 0.0f, 0.0f); if (program==6) gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, 6, (float) Math.sin(anim)*amp*50.0f, 0.0f, 0.0f, 0.0f); else gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, 6, freq, amp, d, d+1); if (b['p']) gl.glEnable(GL2.GL_VERTEX_PROGRAM_ARB); gl.glDisable(GL.GL_TEXTURE_2D); gl.glCallList(obj+1); gl.glDisable(GL2.GL_VERTEX_PROGRAM_ARB); gl.glPopMatrix(); } // Unused routines public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height) {} public void displayChanged(GLAutoDrawable drawable, boolean modeChanged, boolean deviceChanged) {} //---------------------------------------------------------------------- // Internals only below this point // public void shutdownDemo() { ManipManager.getManipManager().unregisterWindow((AWTGLAutoDrawable) drawable); drawable.removeGLEventListener(this); super.shutdownDemo(); } private void initExtension(GL2 gl, String glExtensionName) { if (!gl.isExtensionAvailable(glExtensionName)) { final String message = "OpenGL extension \"" + glExtensionName + "\" not available"; new Thread(new Runnable() { public void run() { JOptionPane.showMessageDialog(null, message, "Unavailable extension", JOptionPane.ERROR_MESSAGE); shutdownDemo(); } }).start(); throw new RuntimeException(message); } } private void dispatchKey(int keyCode, char k) { if (k < 256) b[k] = !b[k]; switch (keyCode) { case KeyEvent.VK_HOME: case KeyEvent.VK_R: anim = 0.0f; amp = 0.05f; freq = 8.0f; d = 4.0f; doViewAll = true; break; case KeyEvent.VK_LEFT: case KeyEvent.VK_KP_LEFT: program--; if (program < 0) program = NUM_PROGS-1; setWindowTitle(); break; case KeyEvent.VK_RIGHT: case KeyEvent.VK_KP_RIGHT: program = (program + 1) % NUM_PROGS; setWindowTitle(); break; case KeyEvent.VK_F1: case KeyEvent.VK_H: String endl = System.getProperty("line.separator"); endl = endl + endl; String msg = ("F1/h - Help" + endl + "Home - Reset" + endl + "Left Button & Mouse - Rotate viewpoint" + endl + "1..5 - Switch object (Sphere, Torus, Triceratop, Cube, Cylinder)" + endl + "- / + - Change amplitude" + endl + "[ / ] - Change frequency" + endl + ", / . - Change square fisheye size" + endl + "Left - Next vertex program" + endl + "Right - Previous vertex program" + endl + "W - Toggle wireframe" + endl + "Space - Toggle animation" + endl + "Esc/q - Exit program" + endl); JOptionPane.showMessageDialog(null, msg, "Help", JOptionPane.INFORMATION_MESSAGE); break; case KeyEvent.VK_ESCAPE: case KeyEvent.VK_Q: shutdownDemo(); return; case KeyEvent.VK_W: toggleWire = true; break; case KeyEvent.VK_EQUALS: case KeyEvent.VK_PLUS: amp += 0.01; break; case KeyEvent.VK_MINUS: amp -= 0.01; break; case KeyEvent.VK_CLOSE_BRACKET: freq += 0.5; break; case KeyEvent.VK_OPEN_BRACKET: freq -= 0.5; break; case KeyEvent.VK_PERIOD: d += 0.1; break; case KeyEvent.VK_COMMA: d -= 0.1; break; case KeyEvent.VK_SPACE: // Could also start/stop Animator here animating = !animating; break; case KeyEvent.VK_1: obj = 0; break; case KeyEvent.VK_2: obj = 1; break; case KeyEvent.VK_3: obj = 2; break; case KeyEvent.VK_4: obj = 3; break; case KeyEvent.VK_5: obj = 4; break; } } private void setWindowTitle() { titleSetter.setTitle("SpaceWarp - " + programNames[program]); } private void drawObject(GL2 gl, int which) { switch(which) { case 0: drawSphere(gl, 0.5f, 100, 100); break; case 1: drawTorus(gl, 0.25f, 0.5f, 100, 100); break; case 2: try { Triceratops.drawObject(gl); } catch (IOException e) { shutdownDemo(); throw new RuntimeException(e); } break; case 3: drawCube(gl); break; case 4: drawCylinder(gl); break; } } private void drawSphere(GL2 gl, float radius, int slices, int stacks) { int J = stacks; int I = slices; for(int j = 0; j < J; j++) { float v = j/(float) J; float phi = (float) (v * 2 * Math.PI); float v2 = (j+1)/(float) J; float phi2 = (float) (v2 * 2 * Math.PI); gl.glBegin(GL2.GL_QUAD_STRIP); for(int i = 0; i < I; i++) { float u = i/(I-1.0f); float theta = (float) (u * Math.PI); float x,y,z,nx,ny,nz; nx = (float) (Math.cos(theta)*Math.cos(phi)); ny = (float) (Math.sin(theta)*Math.cos(phi)); nz = (float) (Math.sin(phi)); x = radius * nx; y = radius * ny; z = radius * nz; gl.glColor3f ( u, v, 0.0f); gl.glNormal3f(nx, ny, nz); gl.glVertex3f( x, y, z); nx = (float) (Math.cos(theta)*Math.cos(phi2)); ny = (float) (Math.sin(theta)*Math.cos(phi2)); nz = (float) (Math.sin(phi2)); x = radius * nx; y = radius * ny; z = radius * nz; gl.glColor3f ( u, v+(1.0f/(J-1.0f)), 0.0f); gl.glNormal3f(nx, ny, nz); gl.glVertex3f( x, y, z); } gl.glEnd(); } } private void drawTorus(GL2 gl, float meridian_radius, float core_radius, int meridian_slices, int core_slices) { int J = meridian_slices; int I = core_slices; for(int j = 0; j < J-1; j++) { float v = j/(J-1.0f); float rho = (float) (v * 2.0f * Math.PI); float v2 = (j+1)/(J-1.0f); float rho2 = (float) (v2 * 2.0f * Math.PI); gl.glBegin(GL2.GL_QUAD_STRIP); for(int i = 0; i < I; i++) { float u = i/(I-1.0f); float theta = (float) (u * 2.0f * Math.PI); float x,y,z,nx,ny,nz; x = (float) (core_radius*Math.cos(theta) + meridian_radius*Math.cos(theta)*Math.cos(rho)); y = (float) (core_radius*Math.sin(theta) + meridian_radius*Math.sin(theta)*Math.cos(rho)); z = (float) (meridian_radius*Math.sin(rho)); nx = (float) (Math.cos(theta)*Math.cos(rho)); ny = (float) (Math.sin(theta)*Math.cos(rho)); nz = (float) (Math.sin(rho)); gl.glColor3f ( u, v, 0.0f); gl.glNormal3f(nx, ny, nz); gl.glVertex3f( x, y, z); x = (float) (core_radius*Math.cos(theta) + meridian_radius*Math.cos(theta)*Math.cos(rho2)); y = (float) (core_radius*Math.sin(theta) + meridian_radius*Math.sin(theta)*Math.cos(rho2)); z = (float) (meridian_radius*Math.sin(rho2)); nx = (float) (Math.cos(theta)*Math.cos(rho2)); ny = (float) (Math.sin(theta)*Math.cos(rho2)); nz = (float) (Math.sin(rho2)); gl.glColor3f ( u, v, 0.0f); gl.glNormal3f(nx, ny, nz); gl.glVertex3f( x, y, z); } gl.glEnd(); } } private void drawCube(GL2 gl) { int cr = 40; float scaleFactor = 0.5f; // back gl.glColor3f(1.0f, 0.0f, 0.0f); gl.glNormal3f(0.0f, 0.0f, -1.0f); drawGrid(gl, cr, cr, scaleFactor, -1.0f, -1.0f, -1.0f, 2.0f, 0.0f, 0.0f, 0.0f, 2.0f, 0.0f); // front gl.glColor3f(1.0f, 0.0f, 0.0f); gl.glNormal3f(0.0f, 0.0f, 1.0f); drawGrid(gl, cr, cr, scaleFactor, -1.0f, -1.0f, 1.0f, 2.0f, 0.0f, 0.0f, 0.0f, 2.0f, 0.0f); // left gl.glColor3f(0.0f, 1.0f, 0.0f); gl.glNormal3f(-1.0f, 0.0f, 0.0f); drawGrid(gl, cr, cr, scaleFactor, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 2.0f, 0.0f, 2.0f, 0.0f); // right gl.glColor3f(0.0f, 0.0f, 1.0f); gl.glNormal3f(1.0f, 0.0f, 0.0f); drawGrid(gl, cr, cr, scaleFactor, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 2.0f, 0.0f, 2.0f, 0.0f); // bottom gl.glColor3f(1.0f, 1.0f, 0.0f); gl.glNormal3f(0.0f,-1.0f, 0.0f); drawGrid(gl, cr, cr, scaleFactor, -1.0f, -1.0f, -1.0f, 2.0f, 0.0f, 0.0f, 0.0f, 0.0f, 2.0f); // top gl.glColor3f(0.0f, 1.0f, 1.0f); gl.glNormal3f(0.0f, 1.0f, 0.0f); drawGrid(gl, cr, cr, scaleFactor, -1.0f, 1.0f, -1.0f, 2.0f, 0.0f, 0.0f, 0.0f, 0.0f, 2.0f); } private void drawGrid(GL2 gl, int rows, int cols, float scaleFactor, float sx, float sy, float sz, float ux, float uy, float uz, float vx, float vy, float vz) { int x, y; for(y=0; y<rows; y++) { gl.glBegin(GL2.GL_QUAD_STRIP); for(x=0; x<=cols; x++) { float u = x / (float) cols; float v = y / (float) rows; float v2 = v + (1.0f / (float) rows); gl.glTexCoord2f(u, v); gl.glVertex3f(scaleFactor * (sx + (u*ux) + (v*vx)), scaleFactor * (sy + (u*uy) + (v*vy)), scaleFactor * (sz + (u*uz) + (v*vz))); gl.glTexCoord2f(u, v2); gl.glVertex3f(scaleFactor * (sx + (u*ux) + (v2*vx)), scaleFactor * (sy + (u*uy) + (v2*vy)), scaleFactor * (sz + (u*uz) + (v2*vz))); } gl.glEnd(); } } private void drawCylinder(GL2 gl) { GLUquadric quad; quad = glu.gluNewQuadric(); glu.gluQuadricDrawStyle (quad, GLU.GLU_FILL); glu.gluQuadricOrientation(quad, GLU.GLU_OUTSIDE); glu.gluQuadricNormals (quad, GLU.GLU_SMOOTH); glu.gluQuadricTexture (quad, true); gl.glMatrixMode(GL2ES1.GL_MODELVIEW); gl.glPushMatrix(); gl.glTranslatef(-1.0f, 0.0f, 0.0f); gl.glRotatef (90.0f, 0.0f, 1.0f, 0.0f); glu.gluCylinder(quad, 0.25f, 0.25f, 2.0f, 60, 30); gl.glPopMatrix(); glu.gluDeleteQuadric(quad); } private static final String[] programNames = new String[] { "Normal", "Pulsate", "Wave", "Square fisheye", "Spherical fisheye", "Ripple", "Twist" }; private static final String programSetup = "PARAM mvp [4] = { state.matrix.mvp }; # modelview projection matrix\n" + "PARAM mvit[4] = { state.matrix.modelview.invtrans }; # modelview matrix inverse transpose\n" + "PARAM mv [4] = { state.matrix.modelview }; # modelview matrix\n" + "PARAM proj[4] = { state.matrix.projection }; # projection matrix\n" + "PARAM lightPos = program.env[0]; # light position/direction\n" + "PARAM diffuseCol = program.env[1]; # diffuse color\n" + "PARAM specularCol = program.env[2]; # specular color\n" + "PARAM smoothstep = program.env[3]; # smoothstep constants\n" + "PARAM sinTaylorConst1 = program.env[4]; # sin Taylor series constants 1 of 2\n" + "PARAM sinTaylorConst2 = program.env[5]; # sin Taylor series constants 2 of 2\n" + "PARAM sinFreqAmplitude = program.env[6]; # sin wave frequency, amplitude\n" + "PARAM phaseAnim = program.env[7]; # phase animation\n" + "PARAM fisheyeRadius = program.env[8]; # fisheye sphere radius\n" + "\n" + "# Per vertex inputs\n" + "ATTRIB iPos = vertex.position; # position\n" + "ATTRIB iTex = vertex.texcoord; # tex coord\n" + "ATTRIB iNorm = vertex.normal; # normal\n" + "\n" + "# Outputs\n" + "OUTPUT oPos = result.position; # position\n" + "OUTPUT oCol0 = result.color; # color\n" + "OUTPUT oTex0 = result.texcoord; # tex coord\n" + "\n" + "# Temporaries\n" + "TEMP r0;\n" + "TEMP r1;\n" + "TEMP r2;\n" + "TEMP r3;\n" + "TEMP r4;\n"; private static final String[] programTexts = new String[] { // // Transform with diffuse lighting // "!!ARBvp1.0\n" + "#Simple transform and diffuse lighting\n" + programSetup + "DP4 oPos.x, mvp[0], iPos ; # object x MVP -> clip\n" + "DP4 oPos.y, mvp[1], iPos ;\n" + "DP4 oPos.z, mvp[2], iPos ;\n" + "DP4 oPos.w, mvp[3], iPos ;\n" + "\n" + "DP3 r1.x, mvit[0], iNorm ; # normal x MV-1T -> lighting normal\n" + "DP3 r1.y, mvit[1], iNorm ;\n" + "DP3 r1.z, mvit[2], iNorm ;\n" + "\n" + "DP3 r0, lightPos, r1 ; # L.N\n" + "MUL oCol0.xyz, r0, diffuseCol ; # col = L.N * diffuse\n" + "MOV oTex0, iTex;\n" + "END\n", // // Pulsate // "!!ARBvp1.0\n" + "#Displace geometry along normal based on sine function of distance from origin\n" + "#(in object space)\n" + "#sinFreqAmplitude.x = wave frequency\n" + "#sinFreqAmplitude.y = wave amplitude\n" + "#sinTaylorConst2 = PI constants\n" + "#sinTaylorConst1 = Taylor series constants (see below)\n" + "\n" + programSetup + "MOV r0, iPos; \n" + "\n" + "#calculate distance from (0, 0, 0)\n" + "DP3 r3.x, r0, r0;\n" + "RSQ r3.x, r3.x;\n" + "RCP r3.x, r3.x;\n" + "\n" + "MUL r3.x, r3.x, sinFreqAmplitude.x; # wave frequency\n" + "ADD r3.x, r3.x, phaseAnim.x; # phase animation\n" + "\n" + "#reduce to period of 2*PI\n" + "MUL r2, r3.x, sinTaylorConst2.x;\n" + "EXP r4, r2.x; # r4.y = r2.x - floor(r2.x)\n" + "MUL r3.x, r4.y, sinTaylorConst2.y;\n" + "\n" + "# offset to -PI - PI\n" + "ADD r3.x, r3.x, -sinTaylorConst2.z;\n" + "\n" + "#Sine approximation using Taylor series (accurate between -PI and PI) :\n" + "#sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...\n" + "#sin(x) ~= x*(1 - (x^2)*(1/3! - (x^2)(1/5! - (x^2)/7! )))\n" + "# = x * (a - y*(b - y*(c - y*d)))\n" + "#where\n" + "#a = 1.0 sinTaylorConst1.x\n" + "#b = 1/3! sinTaylorConst1.y\n" + "#c = 1/5! sinTaylorConst1.z\n" + "#d = 1/7! sinTaylorConst1.w\n" + "#y = x^2 r2\n" + "\n" + "#r1.x = sin(r3.x);\n" + "\n" + "MUL r2, r3.x, r3.x;\n" + "MAD r1, -r2, sinTaylorConst1.w, sinTaylorConst1.z;\n" + "MAD r1, r1, -r2, sinTaylorConst1.y;\n" + "MAD r1, r1, -r2, sinTaylorConst1.x;\n" + "MUL r1, r1, r3.x;\n" + "\n" + "#displace vertex along normal\n" + "MUL r1.x, r1.x, sinFreqAmplitude.y;\n" + "MAX r1.x, r1.x, smoothstep.x; # r1.x = max(r1.x, 0.0);\n" + "MUL r2.xyz, iNorm, r1.x;\n" + "ADD r0.xyz, r0, r2;\n" + "\n" + "#simple lighting\n" + "DP3 r1.x, mvit[0], iNorm ; # normal x MV-1T -> lighting normal\n" + "DP3 r1.y, mvit[1], iNorm ;\n" + "DP3 r1.z, mvit[2], iNorm ;\n" + "\n" + "DP3 r2, lightPos, r1 ; # light position DOT normal\n" + "MUL oCol0.xyz, r2, diffuseCol ; # col = ldotn * diffuse\n" + "\n" + "MOV oTex0, iTex;\n" + "\n" + "DP4 oPos.x, mvp[0], r0 ; # object x MVP -> clip\n" + "DP4 oPos.y, mvp[1], r0 ;\n" + "DP4 oPos.z, mvp[2], r0 ;\n" + "DP4 oPos.w, mvp[3], r0 ;\n" + "\n" + "END\n", // // Wave // "!!ARBvp1.0\n" + "# Perturb vertices in clip space with sine wave\n" + "# x += sin((y*freq)+anim) * amp\n" + programSetup + "DP4 r0.x, mvp[0], iPos ;\n" + "DP4 r0.y, mvp[1], iPos ;\n" + "DP4 r0.z, mvp[2], iPos ;\n" + "DP4 r0.w, mvp[3], iPos ;\n" + "\n" + "MUL r3.x, r0.y, sinFreqAmplitude.x; # wave frequency\n" + "ADD r3.x, r3.x, phaseAnim.x; # phase animation\n" + "\n" + "# reduce to period of 2*PI\n" + "MUL r2, r3.x, sinTaylorConst2.x;\n" + "EXP r4, r2.x; # r4.y = r2.x - floor(r2.x)\n" + "MUL r3.x, r4.y, sinTaylorConst2.y;\n" + "\n" + "# offset to -PI - PI\n" + "ADD r3.x, r3.x, -sinTaylorConst2.z;\n" + "\n" + "# r1.x = sin(r3.x);\n" + "MUL r2, r3.x, r3.x;\n" + "MAD r1, -r2, sinTaylorConst1.w, sinTaylorConst1.z;\n" + "MAD r1, r1, -r2, sinTaylorConst1.y;\n" + "MAD r1, r1, -r2, sinTaylorConst1.x;\n" + "MUL r1, r1, r3.x;\n" + "\n" + "MAD r0.x, r1.x, sinFreqAmplitude.y, r0.x;\n" + "\n" + "# simple lighting\n" + "DP3 r1.x, mvit[0], iNorm ; # normal x MV-1T -> lighting normal\n" + "DP3 r1.y, mvit[1], iNorm ;\n" + "DP3 r1.z, mvit[2], iNorm ;\n" + "DP3 r2, lightPos, r1 ; # light position DOT normal\n" + "MUL oCol0.xyz, r2, diffuseCol ; # col = ldotn * diffuse\n" + "MOV oTex0, iTex;\n" + "\n" + "MOV oPos, r0;\n" + "\n" + "END\n", // // Fisheye // "!!ARBvp1.0\n" + "#Fisheye distortion based on function:\n" + "#f(x)=(d+1)/(d+(1/x))\n" + "#maps the [0,1] interval monotonically onto [0,1]\n" + "\n" + "#sinFreqAmplitude.z = d\n" + "#sinFreqAmplitude.w = d+1\n" + programSetup + "\n" + "DP4 r0.x, mvp[0], iPos ;\n" + "DP4 r0.y, mvp[1], iPos ;\n" + "DP4 r0.z, mvp[2], iPos ;\n" + "DP4 r0.w, mvp[3], iPos ;\n" + "\n" + "# do perspective divide\n" + "RCP r1, r0.w;\n" + "MUL r0, r0, r1.w;\n" + "\n" + "MAX r1, r0, -r0; # r1 = abs(r0)\n" + "\n" + "SLT r2, r0, smoothstep.x; # r2 = (r0 < 0.0) ? 1.0 : 0.0\n" + "SGE r3, r0, smoothstep.x; # r3 = (r0 >= 0.0) ? 1.0 : 0.0\n" + "\n" + "# distort x\n" + "# h(x)=(d+1)/(d+(1/x))\n" + "RCP r1.x, r1.x; # r1 = 1 / r1\n" + "ADD r1.x, r1.x, sinFreqAmplitude.z; # r1 += d\n" + "RCP r1.x, r1.x; # r1 = 1 / r1\n" + "MUL r1.x, r1.x, sinFreqAmplitude.w; # r1 *= d + 1\n" + "\n" + "# distort y\n" + "RCP r1.y, r1.y; # r1 = 1 / r1\n" + "ADD r1.y, r1.y, sinFreqAmplitude.z; # r1 += d\n" + "RCP r1.y, r1.y; # r1 = 1 / r1\n" + "MUL r1.y, r1.y, sinFreqAmplitude.w; # r1 *= d + 1\n" + "\n" + "# handle negative cases\n" + "MUL r4.xy, r1, r3; # r4 = r1 * r3\n" + "MAD r1.xy, r1, -r2, r4; # r1 = r1 * -r2 + r4\n" + "\n" + "# simple lighting\n" + "DP3 r2.x, mvit[0], iNorm ; # normal x MV-1T -> lighting normal\n" + "DP3 r2.y, mvit[1], iNorm ;\n" + "DP3 r2.z, mvit[2], iNorm ;\n" + "DP3 r3, lightPos, r2 ; # light position DOT normal\n" + "MUL oCol0.xyz, r3, diffuseCol ; # col = ldotn * diffuse\n" + "\n" + "MOV oTex0, iTex;\n" + "\n" + "MOV oPos, r1;\n" + "\n" + "END\n", // // Spherize // "!!ARBvp1.0\n" + "# Spherical fish-eye distortion\n" + "# in clip space\n" + programSetup + "DP4 r0.x, mvp[0], iPos;\n" + "DP4 r0.y, mvp[1], iPos;\n" + "DP4 r0.z, mvp[2], iPos;\n" + "DP4 r0.w, mvp[3], iPos;\n" + "\n" + "# do perspective divide\n" + "RCP r1.x, r0.w;\n" + "MUL r2, r0, r1.x;\n" + "\n" + "# calculate distance from centre\n" + "MUL r1.x, r2.x, r2.x;\n" + "MAD r1.x, r2.y, r2.y, r1.x;\n" + "RSQ r1.x, r1.x; # r1.x = 1 / sqrt(x*x+y*y)\n" + "\n" + "# calculate r3 = normalized direction vector\n" + "MUL r3.xy, r0, r1.x;\n" + "\n" + "RCP r1.x, r1.x; # r1.x = actual distance\n" + "MIN r1.x, r1.x, smoothstep.y; # r1.x = min(r1.x, 1.0)\n" + "\n" + "# remap based on: f(x) = sqrt(1-x^2)\n" + "ADD r1.x, smoothstep.y, -r1.x;\n" + "MAD r1.x, -r1.x, r1.x, smoothstep.y;\n" + "RSQ r1.x, r1.x;\n" + "RCP r1.x, r1.x;\n" + "\n" + "# move vertex to new distance from centre\n" + "MUL r0.xy, r3, r1.x;\n" + "\n" + "# simple lighting\n" + "DP3 r2.x, mvit[0], iNorm; # normal x MV-1T -> lighting normal\n" + "DP3 r2.y, mvit[1], iNorm;\n" + "DP3 r2.z, mvit[2], iNorm;\n" + "DP3 r3, lightPos, r2 ; # light position DOT normal\n" + "MUL oCol0.xyz, r3, diffuseCol ; # col = ldotn * diffuse\n" + "\n" + "MOV oTex0, iTex;\n" + "\n" + "MOV oPos, r0;\n" + "\n" + "END\n", // // Ripple // "!!ARBvp1.0\n" + "# Ripple distortion\n" + programSetup + "DP4 r0.x, mvp[0], iPos;\n" + "DP4 r0.y, mvp[1], iPos;\n" + "DP4 r0.z, mvp[2], iPos;\n" + "DP4 r0.w, mvp[3], iPos;\n" + "\n" + "# do perspective divide\n" + "RCP r1.x, r0.w;\n" + "MUL r4, r0, r1.x;\n" + "\n" + "# calculate distance from centre\n" + "MUL r1.x, r4.x, r4.x;\n" + "MAD r1.x, r4.y, r4.y, r1.x;\n" + "RSQ r1.x, r1.x;\n" + "\n" + "RCP r1.x, r1.x;\n" + "\n" + "MUL r1.x, r1.x, sinFreqAmplitude.x; # wave frequency\n" + "ADD r1.x, r1.x, phaseAnim.x; # phase animation\n" + "\n" + "# reduce to period of 2*PI\n" + "MUL r2, r1.x, sinTaylorConst2.x; # r2 = r1 / 2.0 * PI\n" + "EXP r4, r2.x; # r4.y = r2.x - floor(r2.x)\n" + "MUL r1.x, r4.y, sinTaylorConst2.y;\n" + "\n" + "# offset to -PI - PI\n" + "ADD r1.x, r1.x, -sinTaylorConst2.z;\n" + "\n" + "# r3.x = sin(r1.x)\n" + "MUL r2, r1.x, r1.x;\n" + "MAD r3, -r2, sinTaylorConst1.w, sinTaylorConst1.z;\n" + "MAD r3, r3, -r2, sinTaylorConst1.y;\n" + "MAD r3, r3, -r2, sinTaylorConst1.x;\n" + "MUL r3, r3, r1.x;\n" + "\n" + "MUL r3.x, r3.x, sinFreqAmplitude.y;\n" + "\n" + "# move vertex towards centre based on distance\n" + "MAD r0.xy, r0, -r3.x, r0;\n" + "\n" + "# lighting\n" + "DP3 r2.x, mvit[0], iNorm; # normal x MV-1T -> lighting normal\n" + "DP3 r2.y, mvit[1], iNorm;\n" + "DP3 r2.z, mvit[2], iNorm;\n" + "DP3 r3, lightPos, r2; # light position DOT normal\n" + "MUL oCol0.xyz, r3, diffuseCol; # col = ldotn * diffuse\n" + "\n" + "MOV oTex0, iTex;\n" + "\n" + "MOV oPos, r0;\n" + "\n" + "END\n", // // Twist // "!!ARBvp1.0\n" + "# Twist\n" + programSetup + "MOV r0, iPos;\n" + "\n" + "MUL r1.x, r0.x, sinFreqAmplitude.x; # frequency\n" + "\n" + "# calculate sin(angle) and cos(angle)\n" + "ADD r1.y, r1.x, -sinTaylorConst2.w; # r1.y = r1.x + PI/2.0\n" + "\n" + "# reduce to period of 2*PI\n" + "MUL r2, r1, sinTaylorConst2.x; # r2 = r1 / 2.0 * PI\n" + "EXP r3.y, r2.x; # r2.y = r2.x - floor(r2.x)\n" + "MOV r3.x, r3.y;\n" + "EXP r3.y, r2.y; # r2.y = r2.x - floor(r2.x)\n" + "MAD r2, r3, sinTaylorConst2.y, -sinTaylorConst2.z; # r2 = (r3 * 2.0*PI) - M_PI\n" + "\n" + "# r4.x = sin(r2.x);\n" + "# r4.y = cos(r2.y);\n" + "# parallel taylor series\n" + "MUL r3, r2, r2;\n" + "MAD r4, -r3, sinTaylorConst1.w, sinTaylorConst1.z;\n" + "MAD r4, r4, -r3, sinTaylorConst1.y;\n" + "MAD r4, r4, -r3, sinTaylorConst1.x;\n" + "MUL r4, r4, r2;\n" + "\n" + "# x y z w\n" + "# R:\n" + "# 1 0 0 0\n" + "# 0 c -s 0\n" + "# 0 s c 0\n" + "# 0 0 0 1\n" + "\n" + "# c = cos(a)\n" + "# s = sin(a)\n" + "\n" + "# calculate rotation around X\n" + "MOV r1, r0;\n" + "\n" + "MUL r1.y, r0.y, r4.y;\n" + "MAD r1.y, r0.z, -r4.x, r1.y; # ny = y*cos(a) - z*sin(a)\n" + "\n" + "MUL r1.z, r0.y, r4.x;\n" + "MAD r1.z, r0.z, r4.y, r1.z; # nz = y*sin(a) + z*cos(a)\n" + "\n" + "DP4 oPos.x, mvp[0], r1; # object x MVP -> clip\n" + "DP4 oPos.y, mvp[1], r1;\n" + "DP4 oPos.z, mvp[2], r1;\n" + "DP4 oPos.w, mvp[3], r1;\n" + "\n" + "# rotate normal\n" + "MOV r2, iNorm;\n" + "MUL r2.y, iNorm.y, r4.y;\n" + "MAD r2.y, iNorm.z, -r4.x, r2.y; # ny = y*cos(a) - z*sin(a)\n" + "\n" + "MUL r2.z, iNorm.y, r4.x;\n" + "MAD r2.z, iNorm.z, r4.y, r2.z; # nz = y*sin(a) + z*cos(a)\n" + "\n" + "# diffuse lighting\n" + "DP3 r1.x, mvit[0], r2; # normal x MV-1T -> lighting normal\n" + "DP3 r1.y, mvit[1], r2;\n" + "DP3 r1.z, mvit[2], r2;\n" + "\n" + "DP3 r3, lightPos, r1; # light position DOT normal\n" + "MUL oCol0.xyz, r3, diffuseCol; # col = ldotn * diffuse\n" + "\n" + "MOV oTex0, iTex;\n" + "\n" + "END\n" }; private static void runExit(final Animator animator) { // Note: calling System.exit() synchronously inside the draw, // reshape or init callbacks can lead to deadlocks on certain // platforms (in particular, X11) because the JAWT's locking // routines cause a global AWT lock to be grabbed. Instead run // the exit routine in another thread. new Thread(new Runnable() { public void run() { animator.stop(); System.exit(0); } }).start(); } }