/**
 * OpenAL cross platform audio library
 * Copyright (C) 1999-2010 by authors.
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include <algorithm>
#include <array>
#include <chrono>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <functional>
#include <iterator>
#include <memory>
#include <new>
#include <numeric>
#include <string>

#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"

#include "al/auxeffectslot.h"
#include "alcmain.h"
#include "alconfig.h"
#include "alcontext.h"
#include "almalloc.h"
#include "alnumeric.h"
#include "aloptional.h"
#include "alspan.h"
#include "alstring.h"
#include "alu.h"
#include "bformatdec.h"
#include "core/ambdec.h"
#include "core/ambidefs.h"
#include "core/bs2b.h"
#include "core/devformat.h"
#include "core/hrtf.h"
#include "core/logging.h"
#include "core/uhjfilter.h"
#include "front_stablizer.h"
#include "math_defs.h"
#include "opthelpers.h"


namespace {

using namespace std::placeholders;
using std::chrono::seconds;
using std::chrono::nanoseconds;

inline const char *GetLabelFromChannel(Channel channel)
{
    switch(channel)
    {
        case FrontLeft: return "front-left";
        case FrontRight: return "front-right";
        case FrontCenter: return "front-center";
        case LFE: return "lfe";
        case BackLeft: return "back-left";
        case BackRight: return "back-right";
        case BackCenter: return "back-center";
        case SideLeft: return "side-left";
        case SideRight: return "side-right";

        case TopFrontLeft: return "top-front-left";
        case TopFrontCenter: return "top-front-center";
        case TopFrontRight: return "top-front-right";
        case TopCenter: return "top-center";
        case TopBackLeft: return "top-back-left";
        case TopBackCenter: return "top-back-center";
        case TopBackRight: return "top-back-right";

        case MaxChannels: break;
    }
    return "(unknown)";
}


std::unique_ptr<FrontStablizer> CreateStablizer(const size_t outchans, const uint srate)
{
    auto stablizer = FrontStablizer::Create(outchans);
    for(auto &buf : stablizer->DelayBuf)
        std::fill(buf.begin(), buf.end(), 0.0f);

    /* Initialize band-splitting filter for the mid signal, with a crossover at
     * 5khz (could be higher).
     */
    stablizer->MidFilter.init(5000.0f / static_cast<float>(srate));

    return stablizer;
}

void AllocChannels(ALCdevice *device, const size_t main_chans, const size_t real_chans)
{
    TRACE("Channel config, Main: %zu, Real: %zu\n", main_chans, real_chans);

    /* Allocate extra channels for any post-filter output. */
    const size_t num_chans{main_chans + real_chans};

    TRACE("Allocating %zu channels, %zu bytes\n", num_chans,
        num_chans*sizeof(device->MixBuffer[0]));
    device->MixBuffer.resize(num_chans);
    al::span<FloatBufferLine> buffer{device->MixBuffer};

    device->Dry.Buffer = buffer.first(main_chans);
    buffer = buffer.subspan(main_chans);
    if(real_chans != 0)
    {
        device->RealOut.Buffer = buffer.first(real_chans);
        buffer = buffer.subspan(real_chans);
    }
    else
        device->RealOut.Buffer = device->Dry.Buffer;
}


struct ChannelMap {
    Channel ChanName;
    float Config[MaxAmbi2DChannels];
};

bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, uint (&speakermap)[MAX_OUTPUT_CHANNELS])
{
    auto map_spkr = [device](const AmbDecConf::SpeakerConf &speaker) -> uint
    {
        /* NOTE: AmbDec does not define any standard speaker names, however
         * for this to work we have to by able to find the output channel
         * the speaker definition corresponds to. Therefore, OpenAL Soft
         * requires these channel labels to be recognized:
         *
         * LF = Front left
         * RF = Front right
         * LS = Side left
         * RS = Side right
         * LB = Back left
         * RB = Back right
         * CE = Front center
         * CB = Back center
         *
         * Additionally, surround51 will acknowledge back speakers for side
         * channels, and surround51rear will acknowledge side speakers for
         * back channels, to avoid issues with an ambdec expecting 5.1 to
         * use the side channels when the device is configured for back,
         * and vice-versa.
         */
        Channel ch{};
        if(speaker.Name == "LF")
            ch = FrontLeft;
        else if(speaker.Name == "RF")
            ch = FrontRight;
        else if(speaker.Name == "CE")
            ch = FrontCenter;
        else if(speaker.Name == "LS")
        {
            if(device->FmtChans == DevFmtX51Rear)
                ch = BackLeft;
            else
                ch = SideLeft;
        }
        else if(speaker.Name == "RS")
        {
            if(device->FmtChans == DevFmtX51Rear)
                ch = BackRight;
            else
                ch = SideRight;
        }
        else if(speaker.Name == "LB")
        {
            if(device->FmtChans == DevFmtX51)
                ch = SideLeft;
            else
                ch = BackLeft;
        }
        else if(speaker.Name == "RB")
        {
            if(device->FmtChans == DevFmtX51)
                ch = SideRight;
            else
                ch = BackRight;
        }
        else if(speaker.Name == "CB")
            ch = BackCenter;
        else
        {
            ERR("AmbDec speaker label \"%s\" not recognized\n", speaker.Name.c_str());
            return INVALID_CHANNEL_INDEX;
        }
        const uint chidx{GetChannelIdxByName(device->RealOut, ch)};
        if(chidx == INVALID_CHANNEL_INDEX)
            ERR("Failed to lookup AmbDec speaker label %s\n", speaker.Name.c_str());
        return chidx;
    };
    std::transform(conf->Speakers.get(), conf->Speakers.get()+conf->NumSpeakers,
        std::begin(speakermap), map_spkr);
    /* Return success if no invalid entries are found. */
    auto spkrmap_end = std::begin(speakermap) + conf->NumSpeakers;
    return std::find(std::begin(speakermap), spkrmap_end, INVALID_CHANNEL_INDEX) == spkrmap_end;
}


void InitNearFieldCtrl(ALCdevice *device, float ctrl_dist, uint order, bool is3d)
{
    static const uint chans_per_order2d[MaxAmbiOrder+1]{ 1, 2, 2, 2 };
    static const uint chans_per_order3d[MaxAmbiOrder+1]{ 1, 3, 5, 7 };

    /* NFC is only used when AvgSpeakerDist is greater than 0. */
    const char *devname{device->DeviceName.c_str()};
    if(!GetConfigValueBool(devname, "decoder", "nfc", 0) || !(ctrl_dist > 0.0f))
        return;

    device->AvgSpeakerDist = clampf(ctrl_dist, 0.1f, 10.0f);
    TRACE("Using near-field reference distance: %.2f meters\n", device->AvgSpeakerDist);

    auto iter = std::copy_n(is3d ? chans_per_order3d : chans_per_order2d, order+1u,
        std::begin(device->NumChannelsPerOrder));
    std::fill(iter, std::end(device->NumChannelsPerOrder), 0u);
}

void InitDistanceComp(ALCdevice *device, const AmbDecConf *conf,
    const uint (&speakermap)[MAX_OUTPUT_CHANNELS])
{
    auto get_max = std::bind(maxf, _1,
        std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2));
    const float maxdist{std::accumulate(conf->Speakers.get(),
        conf->Speakers.get()+conf->NumSpeakers, 0.0f, get_max)};

    const char *devname{device->DeviceName.c_str()};
    if(!GetConfigValueBool(devname, "decoder", "distance-comp", 1) || !(maxdist > 0.0f))
        return;

    const auto distSampleScale = static_cast<float>(device->Frequency) / SpeedOfSoundMetersPerSec;
    std::vector<DistanceComp::ChanData> ChanDelay;
    size_t total{0u};
    ChanDelay.reserve(conf->NumSpeakers + 1);
    for(size_t i{0u};i < conf->NumSpeakers;i++)
    {
        const AmbDecConf::SpeakerConf &speaker = conf->Speakers[i];
        const uint chan{speakermap[i]};

        /* Distance compensation only delays in steps of the sample rate. This
         * is a bit less accurate since the delay time falls to the nearest
         * sample time, but it's far simpler as it doesn't have to deal with
         * phase offsets. This means at 48khz, for instance, the distance delay
         * will be in steps of about 7 millimeters.
         */
        float delay{std::floor((maxdist - speaker.Distance)*distSampleScale + 0.5f)};
        if(delay > float{MAX_DELAY_LENGTH-1})
        {
            ERR("Delay for speaker \"%s\" exceeds buffer length (%f > %d)\n",
                speaker.Name.c_str(), delay, MAX_DELAY_LENGTH-1);
            delay = float{MAX_DELAY_LENGTH-1};
        }

        ChanDelay.resize(maxz(ChanDelay.size(), chan+1));
        ChanDelay[chan].Length = static_cast<uint>(delay);
        ChanDelay[chan].Gain = speaker.Distance / maxdist;
        TRACE("Channel %u \"%s\" distance compensation: %u samples, %f gain\n", chan,
            speaker.Name.c_str(), ChanDelay[chan].Length, ChanDelay[chan].Gain);

        /* Round up to the next 4th sample, so each channel buffer starts
         * 16-byte aligned.
         */
        total += RoundUp(ChanDelay[chan].Length, 4);
    }

    if(total > 0)
    {
        auto chandelays = DistanceComp::Create(total);
        std::copy(ChanDelay.cbegin(), ChanDelay.cend(), chandelays->mChannels.begin());

        chandelays->mChannels[0].Buffer = chandelays->mSamples.data();
        auto set_bufptr = [](const DistanceComp::ChanData &last, const DistanceComp::ChanData &cur)
            -> DistanceComp::ChanData
        {
            DistanceComp::ChanData ret{cur};
            ret.Buffer = last.Buffer + RoundUp(last.Length, 4);
            return ret;
        };
        std::partial_sum(ChanDelay.begin(), ChanDelay.end(), ChanDelay.begin(), set_bufptr);
        device->ChannelDelays = std::move(chandelays);
    }
}


inline auto& GetAmbiScales(DevAmbiScaling scaletype) noexcept
{
    if(scaletype == DevAmbiScaling::FuMa) return AmbiScale::FromFuMa();
    if(scaletype == DevAmbiScaling::SN3D) return AmbiScale::FromSN3D();
    return AmbiScale::FromN3D();
}

inline auto& GetAmbiLayout(DevAmbiLayout layouttype) noexcept
{
    if(layouttype == DevAmbiLayout::FuMa) return AmbiIndex::FromFuMa();
    return AmbiIndex::FromACN();
}


using ChannelCoeffs = std::array<float,MaxAmbi2DChannels>;
enum DecoderMode : bool {
    SingleBand = false,
    DualBand = true
};

template<DecoderMode Mode, size_t N>
struct DecoderConfig;

template<size_t N>
struct DecoderConfig<SingleBand, N> {
    uint mOrder;
    std::array<Channel,N> mChannels;
    std::array<float,MaxAmbiOrder+1> mOrderGain;
    std::array<ChannelCoeffs,N> mCoeffs;
};

template<size_t N>
struct DecoderConfig<DualBand, N> {
    uint mOrder;
    std::array<Channel,N> mChannels;
    std::array<float,MaxAmbiOrder+1> mOrderGain;
    std::array<ChannelCoeffs,N> mCoeffs;
    std::array<float,MaxAmbiOrder+1> mOrderGainLF;
    std::array<ChannelCoeffs,N> mCoeffsLF;
};

template<>
struct DecoderConfig<DualBand, 0> {
    uint mOrder;
    al::span<const Channel> mChannels;
    al::span<const float> mOrderGain;
    al::span<const ChannelCoeffs> mCoeffs;
    al::span<const float> mOrderGainLF;
    al::span<const ChannelCoeffs> mCoeffsLF;

    template<size_t N>
    DecoderConfig& operator=(const DecoderConfig<SingleBand,N> &rhs) noexcept
    {
        mOrder = rhs.mOrder;
        mChannels = rhs.mChannels;
        mOrderGain = rhs.mOrderGain;
        mCoeffs = rhs.mCoeffs;
        mOrderGainLF = {};
        mCoeffsLF = {};
        return *this;
    }

    template<size_t N>
    DecoderConfig& operator=(const DecoderConfig<DualBand,N> &rhs) noexcept
    {
        mOrder = rhs.mOrder;
        mChannels = rhs.mChannels;
        mOrderGain = rhs.mOrderGain;
        mCoeffs = rhs.mCoeffs;
        mOrderGainLF = rhs.mOrderGainLF;
        mCoeffsLF = rhs.mCoeffsLF;
        return *this;
    }
};
using DecoderView = DecoderConfig<DualBand, 0>;

constexpr DecoderConfig<SingleBand, 1> MonoConfig{
    0, {{FrontCenter}},
    {{1.0f}},
    {{ {{1.0f}} }}
};
constexpr DecoderConfig<SingleBand, 2> StereoConfig{
    1, {{FrontLeft, FrontRight}},
    {{1.0f, 1.0f}},
    {{
        {{5.00000000e-1f,  2.88675135e-1f,  5.52305643e-2f}},
        {{5.00000000e-1f, -2.88675135e-1f,  5.52305643e-2f}},
    }}
};
constexpr DecoderConfig<DualBand, 4> QuadConfig{
    2, {{BackLeft, FrontLeft, FrontRight, BackRight}},
    /*HF*/{{1.15470054e+0f, 1.00000000e+0f, 5.77350269e-1f}},
    {{
        {{2.50000000e-1f,  2.04124145e-1f, -2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
        {{2.50000000e-1f,  2.04124145e-1f,  2.04124145e-1f,  1.29099445e-1f, 0.00000000e+0f}},
        {{2.50000000e-1f, -2.04124145e-1f,  2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
        {{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f,  1.29099445e-1f, 0.00000000e+0f}},
    }},
    /*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
    {{
        {{2.50000000e-1f,  2.04124145e-1f, -2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
        {{2.50000000e-1f,  2.04124145e-1f,  2.04124145e-1f,  1.29099445e-1f, 0.00000000e+0f}},
        {{2.50000000e-1f, -2.04124145e-1f,  2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
        {{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f,  1.29099445e-1f, 0.00000000e+0f}},
    }}
};
constexpr DecoderConfig<SingleBand, 4> X51Config{
    2, {{SideLeft, FrontLeft, FrontRight, SideRight}},
    {{1.0f, 1.0f, 1.0f}},
    {{
        {{3.33000782e-1f,  1.89084803e-1f, -2.00042375e-1f, -2.12307769e-2f, -1.14579885e-2f}},
        {{1.88542860e-1f,  1.27709292e-1f,  1.66295695e-1f,  7.30571517e-2f,  2.10901184e-2f}},
        {{1.88542860e-1f, -1.27709292e-1f,  1.66295695e-1f, -7.30571517e-2f,  2.10901184e-2f}},
        {{3.33000782e-1f, -1.89084803e-1f, -2.00042375e-1f,  2.12307769e-2f, -1.14579885e-2f}},
    }}
};
constexpr DecoderConfig<SingleBand, 4> X51RearConfig{
    2, {{BackLeft, FrontLeft, FrontRight, BackRight}},
    {{1.0f, 1.0f, 1.0f}},
    {{
        {{3.33000782e-1f,  1.89084803e-1f, -2.00042375e-1f, -2.12307769e-2f, -1.14579885e-2f}},
        {{1.88542860e-1f,  1.27709292e-1f,  1.66295695e-1f,  7.30571517e-2f,  2.10901184e-2f}},
        {{1.88542860e-1f, -1.27709292e-1f,  1.66295695e-1f, -7.30571517e-2f,  2.10901184e-2f}},
        {{3.33000782e-1f, -1.89084803e-1f, -2.00042375e-1f,  2.12307769e-2f, -1.14579885e-2f}},
    }}
};
constexpr DecoderConfig<SingleBand, 5> X61Config{
    2, {{SideLeft, FrontLeft, FrontRight, SideRight, BackCenter}},
    {{1.0f, 1.0f, 1.0f}},
    {{
        {{2.04460341e-1f,  2.17177926e-1f, -4.39996780e-2f, -2.60790269e-2f, -6.87239792e-2f}},
        {{1.58923161e-1f,  9.21772680e-2f,  1.59658796e-1f,  6.66278083e-2f,  3.84686854e-2f}},
        {{1.58923161e-1f, -9.21772680e-2f,  1.59658796e-1f, -6.66278083e-2f,  3.84686854e-2f}},
        {{2.04460341e-1f, -2.17177926e-1f, -4.39996780e-2f,  2.60790269e-2f, -6.87239792e-2f}},
        {{2.50001688e-1f,  0.00000000e+0f, -2.50000094e-1f,  0.00000000e+0f,  6.05133395e-2f}},
    }}
};
constexpr DecoderConfig<DualBand, 6> X71Config{
    3, {{BackLeft, SideLeft, FrontLeft, FrontRight, SideRight, BackRight}},
    /*HF*/{{1.22474487e+0f, 1.13151672e+0f, 8.66025404e-1f, 4.68689571e-1f}},
    {{
        {{1.66666667e-1f,  9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f,  8.60662966e-2f,  7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f,  1.92450090e-1f,  0.00000000e+0f,  0.00000000e+0f, -1.72132593e-1f, -7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f,  9.62250449e-2f,  1.66666667e-1f,  1.49071198e-1f,  8.60662966e-2f,  7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f, -9.62250449e-2f,  1.66666667e-1f, -1.49071198e-1f,  8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f, -1.92450090e-1f,  0.00000000e+0f,  0.00000000e+0f, -1.72132593e-1f,  7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f,  1.49071198e-1f,  8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
    }},
    /*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
    {{
        {{1.66666667e-1f,  9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f,  8.60662966e-2f,  7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f,  1.92450090e-1f,  0.00000000e+0f,  0.00000000e+0f, -1.72132593e-1f, -7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f,  9.62250449e-2f,  1.66666667e-1f,  1.49071198e-1f,  8.60662966e-2f,  7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f, -9.62250449e-2f,  1.66666667e-1f, -1.49071198e-1f,  8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f, -1.92450090e-1f,  0.00000000e+0f,  0.00000000e+0f, -1.72132593e-1f,  7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f,  1.49071198e-1f,  8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
    }}
};

void InitPanning(ALCdevice *device, const bool hqdec=false, const bool stablize=false)
{
    DecoderView decoder{};
    switch(device->FmtChans)
    {
    case DevFmtMono:
        decoder = MonoConfig;
        break;
    case DevFmtStereo:
        decoder = StereoConfig;
        break;
    case DevFmtQuad:
        decoder = QuadConfig;
        break;
    case DevFmtX51:
        decoder = X51Config;
        break;
    case DevFmtX51Rear:
        decoder = X51RearConfig;
        break;
    case DevFmtX61:
        decoder = X61Config;
        break;
    case DevFmtX71:
        decoder = X71Config;
        break;
    case DevFmtAmbi3D:
        const char *devname{device->DeviceName.c_str()};
        auto&& acnmap = GetAmbiLayout(device->mAmbiLayout);
        auto&& n3dscale = GetAmbiScales(device->mAmbiScale);

        /* For DevFmtAmbi3D, the ambisonic order is already set. */
        const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};
        std::transform(acnmap.begin(), acnmap.begin()+count, std::begin(device->Dry.AmbiMap),
            [&n3dscale](const uint8_t &acn) noexcept -> BFChannelConfig
            { return BFChannelConfig{1.0f/n3dscale[acn], acn}; });
        AllocChannels(device, count, 0);

        float nfc_delay{ConfigValueFloat(devname, "decoder", "nfc-ref-delay").value_or(0.0f)};
        if(nfc_delay > 0.0f)
            InitNearFieldCtrl(device, nfc_delay * SpeedOfSoundMetersPerSec, device->mAmbiOrder,
                true);
        return;
    }

    const bool dual_band{hqdec && !decoder.mCoeffsLF.empty()};
    al::vector<ChannelDec> chancoeffs, chancoeffslf;
    for(size_t i{0u};i < decoder.mChannels.size();++i)
    {
        const uint idx{GetChannelIdxByName(device->RealOut, decoder.mChannels[i])};
        if(idx == INVALID_CHANNEL_INDEX)
        {
            ERR("Failed to find %s channel in device\n",
                GetLabelFromChannel(decoder.mChannels[i]));
            continue;
        }

        chancoeffs.resize(maxz(chancoeffs.size(), idx+1u), ChannelDec{});
        al::span<float,MaxAmbiChannels> coeffs{chancoeffs[idx]};
        size_t ambichan{0};
        for(uint o{0};o < decoder.mOrder+1;++o)
        {
            const float order_gain{decoder.mOrderGain[o]};
            const size_t order_max{Ambi2DChannelsFromOrder(o)};
            for(;ambichan < order_max;++ambichan)
                coeffs[ambichan] = decoder.mCoeffs[i][ambichan] * order_gain;
        }
        if(!dual_band)
            continue;

        chancoeffslf.resize(maxz(chancoeffslf.size(), idx+1u), ChannelDec{});
        coeffs = chancoeffslf[idx];
        ambichan = 0;
        for(uint o{0};o < decoder.mOrder+1;++o)
        {
            const float order_gain{decoder.mOrderGainLF[o]};
            const size_t order_max{Ambi2DChannelsFromOrder(o)};
            for(;ambichan < order_max;++ambichan)
                coeffs[ambichan] = decoder.mCoeffsLF[i][ambichan] * order_gain;
        }
    }

    /* For non-DevFmtAmbi3D, set the ambisonic order. */
    device->mAmbiOrder = decoder.mOrder;

    /* Built-in speaker decoders are always 2D. */
    const size_t ambicount{Ambi2DChannelsFromOrder(decoder.mOrder)};
    std::transform(AmbiIndex::FromACN2D().begin(), AmbiIndex::FromACN2D().begin()+ambicount,
        std::begin(device->Dry.AmbiMap),
        [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; });
    AllocChannels(device, ambicount, device->channelsFromFmt());

    std::unique_ptr<FrontStablizer> stablizer;
    if(stablize)
    {
        /* Only enable the stablizer if the decoder does not output to the
         * front-center channel.
         */
        const auto cidx = device->RealOut.ChannelIndex[FrontCenter];
        bool hasfc{false};
        if(cidx < chancoeffs.size())
        {
            for(const auto &coeff : chancoeffs[cidx])
                hasfc |= coeff != 0.0f;
        }
        if(!hasfc && cidx < chancoeffslf.size())
        {
            for(const auto &coeff : chancoeffslf[cidx])
                hasfc |= coeff != 0.0f;
        }
        if(!hasfc)
        {
            stablizer = CreateStablizer(device->channelsFromFmt(), device->Frequency);
            TRACE("Front stablizer enabled\n");
        }
    }

    TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
        !dual_band ? "single" : "dual",
        (decoder.mOrder > 2) ? "third" :
        (decoder.mOrder > 1) ? "second" : "first",
        "");
    device->AmbiDecoder = BFormatDec::Create(ambicount, chancoeffs, chancoeffslf,
        std::move(stablizer));
}

void InitCustomPanning(ALCdevice *device, const bool hqdec, const bool stablize,
    const AmbDecConf *conf, const uint (&speakermap)[MAX_OUTPUT_CHANNELS])
{
    if(!hqdec && conf->FreqBands != 1)
        ERR("Basic renderer uses the high-frequency matrix as single-band (xover_freq = %.0fhz)\n",
            conf->XOverFreq);
    device->mXOverFreq = conf->XOverFreq;

    const uint order{(conf->ChanMask > Ambi2OrderMask) ? 3u :
        (conf->ChanMask > Ambi1OrderMask) ? 2u : 1u};
    device->mAmbiOrder = order;

    size_t count;
    if((conf->ChanMask&AmbiPeriphonicMask))
    {
        count = AmbiChannelsFromOrder(order);
        std::transform(AmbiIndex::FromACN().begin(), AmbiIndex::FromACN().begin()+count,
            std::begin(device->Dry.AmbiMap),
            [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
        );
    }
    else
    {
        count = Ambi2DChannelsFromOrder(order);
        std::transform(AmbiIndex::FromACN2D().begin(), AmbiIndex::FromACN2D().begin()+count,
            std::begin(device->Dry.AmbiMap),
            [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
        );
    }
    AllocChannels(device, count, device->channelsFromFmt());

    std::unique_ptr<FrontStablizer> stablizer;
    if(stablize)
    {
        /* Only enable the stablizer if the decoder does not output to the
         * front-center channel.
         */
        size_t cidx{0};
        for(;cidx < conf->NumSpeakers;++cidx)
        {
            if(speakermap[cidx] == FrontCenter)
                break;
        }
        bool hasfc{false};
        if(cidx < conf->NumSpeakers && conf->FreqBands != 1)
        {
            for(const auto &coeff : conf->LFMatrix[cidx])
                hasfc |= coeff != 0.0f;
        }
        if(!hasfc && cidx < conf->NumSpeakers)
        {
            for(const auto &coeff : conf->HFMatrix[cidx])
                hasfc |= coeff != 0.0f;
        }
        if(!hasfc)
        {
            stablizer = CreateStablizer(device->channelsFromFmt(), device->Frequency);
            TRACE("Front stablizer enabled\n");
        }
    }

    TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
        (!hqdec || conf->FreqBands == 1) ? "single" : "dual",
        (conf->ChanMask > Ambi2OrderMask) ? "third" :
        (conf->ChanMask > Ambi1OrderMask) ? "second" : "first",
        (conf->ChanMask&AmbiPeriphonicMask) ? " periphonic" : ""
    );
    device->AmbiDecoder = BFormatDec::Create(conf, hqdec, count, device->Frequency, speakermap,
        std::move(stablizer));

    auto accum_spkr_dist = std::bind(std::plus<float>{}, _1,
        std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2));
    const float accum_dist{std::accumulate(conf->Speakers.get(),
        conf->Speakers.get()+conf->NumSpeakers, 0.0f, accum_spkr_dist)};
    InitNearFieldCtrl(device, accum_dist / static_cast<float>(conf->NumSpeakers), order,
        !!(conf->ChanMask&AmbiPeriphonicMask));

    InitDistanceComp(device, conf, speakermap);
}

void InitHrtfPanning(ALCdevice *device)
{
    constexpr float Deg180{al::MathDefs<float>::Pi()};
    constexpr float Deg_90{Deg180 / 2.0f /* 90 degrees*/};
    constexpr float Deg_45{Deg_90 / 2.0f /* 45 degrees*/};
    constexpr float Deg135{Deg_45 * 3.0f /*135 degrees*/};
    constexpr float Deg_35{6.154797086e-01f /* 35~ 36 degrees*/};
    constexpr float Deg_69{1.205932499e+00f /* 69~ 70 degrees*/};
    constexpr float Deg111{1.935660155e+00f /*110~111 degrees*/};
    constexpr float Deg_21{3.648638281e-01f /* 20~ 21 degrees*/};
    static const AngularPoint AmbiPoints1O[]{
        { EvRadians{ Deg_35}, AzRadians{-Deg_45} },
        { EvRadians{ Deg_35}, AzRadians{-Deg135} },
        { EvRadians{ Deg_35}, AzRadians{ Deg_45} },
        { EvRadians{ Deg_35}, AzRadians{ Deg135} },
        { EvRadians{-Deg_35}, AzRadians{-Deg_45} },
        { EvRadians{-Deg_35}, AzRadians{-Deg135} },
        { EvRadians{-Deg_35}, AzRadians{ Deg_45} },
        { EvRadians{-Deg_35}, AzRadians{ Deg135} },
    }, AmbiPoints2O[]{
        { EvRadians{-Deg_35}, AzRadians{-Deg_45} },
        { EvRadians{-Deg_35}, AzRadians{-Deg135} },
        { EvRadians{ Deg_35}, AzRadians{-Deg135} },
        { EvRadians{ Deg_35}, AzRadians{ Deg135} },
        { EvRadians{ Deg_35}, AzRadians{ Deg_45} },
        { EvRadians{-Deg_35}, AzRadians{ Deg_45} },
        { EvRadians{-Deg_35}, AzRadians{ Deg135} },
        { EvRadians{ Deg_35}, AzRadians{-Deg_45} },
        { EvRadians{-Deg_69}, AzRadians{-Deg_90} },
        { EvRadians{ Deg_69}, AzRadians{ Deg_90} },
        { EvRadians{-Deg_69}, AzRadians{ Deg_90} },
        { EvRadians{ Deg_69}, AzRadians{-Deg_90} },
        { EvRadians{   0.0f}, AzRadians{-Deg_69} },
        { EvRadians{   0.0f}, AzRadians{-Deg111} },
        { EvRadians{   0.0f}, AzRadians{ Deg_69} },
        { EvRadians{   0.0f}, AzRadians{ Deg111} },
        { EvRadians{-Deg_21}, AzRadians{ Deg180} },
        { EvRadians{ Deg_21}, AzRadians{ Deg180} },
        { EvRadians{ Deg_21}, AzRadians{   0.0f} },
        { EvRadians{-Deg_21}, AzRadians{   0.0f} },
    };
    static const float AmbiMatrix1O[][MaxAmbiChannels]{
        { 1.250000000e-01f,  1.250000000e-01f,  1.250000000e-01f,  1.250000000e-01f },
        { 1.250000000e-01f,  1.250000000e-01f,  1.250000000e-01f, -1.250000000e-01f },
        { 1.250000000e-01f, -1.250000000e-01f,  1.250000000e-01f,  1.250000000e-01f },
        { 1.250000000e-01f, -1.250000000e-01f,  1.250000000e-01f, -1.250000000e-01f },
        { 1.250000000e-01f,  1.250000000e-01f, -1.250000000e-01f,  1.250000000e-01f },
        { 1.250000000e-01f,  1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f },
        { 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f,  1.250000000e-01f },
        { 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f },
    }, AmbiMatrix2O[][MaxAmbiChannels]{
        { 5.000000000e-02f,  5.000000000e-02f, -5.000000000e-02f,  5.000000000e-02f,  6.454972244e-02f, -6.454972244e-02f,  0.000000000e+00f, -6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f,  5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f,  0.000000000e+00f,  6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f,  5.000000000e-02f,  5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f,  6.454972244e-02f,  0.000000000e+00f, -6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f, -5.000000000e-02f,  5.000000000e-02f, -5.000000000e-02f,  6.454972244e-02f, -6.454972244e-02f,  0.000000000e+00f, -6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f, -5.000000000e-02f,  5.000000000e-02f,  5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f,  0.000000000e+00f,  6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f,  5.000000000e-02f, -6.454972244e-02f,  6.454972244e-02f,  0.000000000e+00f, -6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f,  6.454972244e-02f,  6.454972244e-02f,  0.000000000e+00f,  6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f,  5.000000000e-02f,  5.000000000e-02f,  5.000000000e-02f,  6.454972244e-02f,  6.454972244e-02f,  0.000000000e+00f,  6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f,  3.090169944e-02f, -8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -6.454972244e-02f,  9.045084972e-02f,  0.000000000e+00f, -1.232790000e-02f },
        { 5.000000000e-02f, -3.090169944e-02f,  8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -6.454972244e-02f,  9.045084972e-02f,  0.000000000e+00f, -1.232790000e-02f },
        { 5.000000000e-02f, -3.090169944e-02f, -8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f,  6.454972244e-02f,  9.045084972e-02f,  0.000000000e+00f, -1.232790000e-02f },
        { 5.000000000e-02f,  3.090169944e-02f,  8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f,  6.454972244e-02f,  9.045084972e-02f,  0.000000000e+00f, -1.232790000e-02f },
        { 5.000000000e-02f,  8.090169944e-02f,  0.000000000e+00f,  3.090169944e-02f,  6.454972244e-02f,  0.000000000e+00f, -5.590169944e-02f,  0.000000000e+00f, -7.216878365e-02f },
        { 5.000000000e-02f,  8.090169944e-02f,  0.000000000e+00f, -3.090169944e-02f, -6.454972244e-02f,  0.000000000e+00f, -5.590169944e-02f,  0.000000000e+00f, -7.216878365e-02f },
        { 5.000000000e-02f, -8.090169944e-02f,  0.000000000e+00f,  3.090169944e-02f, -6.454972244e-02f,  0.000000000e+00f, -5.590169944e-02f,  0.000000000e+00f, -7.216878365e-02f },
        { 5.000000000e-02f, -8.090169944e-02f,  0.000000000e+00f, -3.090169944e-02f,  6.454972244e-02f,  0.000000000e+00f, -5.590169944e-02f,  0.000000000e+00f, -7.216878365e-02f },
        { 5.000000000e-02f,  0.000000000e+00f, -3.090169944e-02f, -8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -3.454915028e-02f,  6.454972244e-02f,  8.449668365e-02f },
        { 5.000000000e-02f,  0.000000000e+00f,  3.090169944e-02f, -8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f,  8.449668365e-02f },
        { 5.000000000e-02f,  0.000000000e+00f,  3.090169944e-02f,  8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -3.454915028e-02f,  6.454972244e-02f,  8.449668365e-02f },
        { 5.000000000e-02f,  0.000000000e+00f, -3.090169944e-02f,  8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f,  8.449668365e-02f },
    };
    static const float AmbiOrderHFGain1O[MaxAmbiOrder+1]{
        2.000000000e+00f, 1.154700538e+00f
    }, AmbiOrderHFGain2O[MaxAmbiOrder+1]{
        /*AMP   1.000000000e+00f, 7.745966692e-01f, 4.000000000e-01f*/
        /*RMS*/ 9.128709292e-01f, 7.071067812e-01f, 3.651483717e-01f
        /*ENRGY 2.357022604e+00f, 1.825741858e+00f, 9.428090416e-01f*/
    };

    static_assert(al::size(AmbiPoints1O) == al::size(AmbiMatrix1O), "First-Order Ambisonic HRTF mismatch");
    static_assert(al::size(AmbiPoints2O) == al::size(AmbiMatrix2O), "Second-Order Ambisonic HRTF mismatch");

    /* Don't bother with HOA when using full HRTF rendering. Nothing needs it,
     * and it eases the CPU/memory load.
     */
    device->mRenderMode = RenderMode::Hrtf;
    uint ambi_order{1};
    if(auto modeopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "hrtf-mode"))
    {
        struct HrtfModeEntry {
            char name[8];
            RenderMode mode;
            uint order;
        };
        static const HrtfModeEntry hrtf_modes[]{
            { "full", RenderMode::Hrtf, 1 },
            { "ambi1", RenderMode::Normal, 1 },
            { "ambi2", RenderMode::Normal, 2 },
        };

        const char *mode{modeopt->c_str()};
        if(al::strcasecmp(mode, "basic") == 0 || al::strcasecmp(mode, "ambi3") == 0)
        {
            ERR("HRTF mode \"%s\" deprecated, substituting \"%s\"\n", mode, "ambi2");
            mode = "ambi2";
        }

        auto match_entry = [mode](const HrtfModeEntry &entry) -> bool
        { return al::strcasecmp(mode, entry.name) == 0; };
        auto iter = std::find_if(std::begin(hrtf_modes), std::end(hrtf_modes), match_entry);
        if(iter == std::end(hrtf_modes))
            ERR("Unexpected hrtf-mode: %s\n", mode);
        else
        {
            device->mRenderMode = iter->mode;
            ambi_order = iter->order;
        }
    }
    TRACE("%u%s order %sHRTF rendering enabled, using \"%s\"\n", ambi_order,
        (((ambi_order%100)/10) == 1) ? "th" :
        ((ambi_order%10) == 1) ? "st" :
        ((ambi_order%10) == 2) ? "nd" :
        ((ambi_order%10) == 3) ? "rd" : "th",
        (device->mRenderMode == RenderMode::Hrtf) ? "+ Full " : "",
        device->mHrtfName.c_str());

    al::span<const AngularPoint> AmbiPoints{AmbiPoints1O};
    const float (*AmbiMatrix)[MaxAmbiChannels]{AmbiMatrix1O};
    al::span<const float,MaxAmbiOrder+1> AmbiOrderHFGain{AmbiOrderHFGain1O};
    if(ambi_order >= 2)
    {
        AmbiPoints = AmbiPoints2O;
        AmbiMatrix = AmbiMatrix2O;
        AmbiOrderHFGain = AmbiOrderHFGain2O;
    }
    device->mAmbiOrder = ambi_order;

    const size_t count{AmbiChannelsFromOrder(ambi_order)};
    std::transform(AmbiIndex::FromACN().begin(), AmbiIndex::FromACN().begin()+count,
        std::begin(device->Dry.AmbiMap),
        [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
    );
    AllocChannels(device, count, device->channelsFromFmt());

    HrtfStore *Hrtf{device->mHrtf.get()};
    auto hrtfstate = DirectHrtfState::Create(count);
    hrtfstate->build(Hrtf, device->mIrSize, AmbiPoints, AmbiMatrix, device->mXOverFreq,
        AmbiOrderHFGain);
    device->mHrtfState = std::move(hrtfstate);

    InitNearFieldCtrl(device, Hrtf->field[0].distance, ambi_order, true);
}

void InitUhjPanning(ALCdevice *device)
{
    /* UHJ is always 2D first-order. */
    constexpr size_t count{Ambi2DChannelsFromOrder(1)};

    device->mAmbiOrder = 1;

    auto acnmap_begin = AmbiIndex::FromFuMa().begin();
    std::transform(acnmap_begin, acnmap_begin + count, std::begin(device->Dry.AmbiMap),
        [](const uint8_t &acn) noexcept -> BFChannelConfig
        { return BFChannelConfig{1.0f/AmbiScale::FromFuMa()[acn], acn}; });
    AllocChannels(device, count, device->channelsFromFmt());
}

} // namespace

void aluInitRenderer(ALCdevice *device, int hrtf_id, HrtfRequestMode hrtf_appreq,
    HrtfRequestMode hrtf_userreq)
{
    const char *devname{device->DeviceName.c_str()};

    /* Hold the HRTF the device last used, in case it's used again. */
    HrtfStorePtr old_hrtf{std::move(device->mHrtf)};

    device->mHrtfState = nullptr;
    device->mHrtf = nullptr;
    device->mIrSize = 0;
    device->mHrtfName.clear();
    device->mXOverFreq = 400.0f;
    device->mRenderMode = RenderMode::Normal;

    if(device->FmtChans != DevFmtStereo)
    {
        old_hrtf = nullptr;
        if(hrtf_appreq == Hrtf_Enable)
            device->mHrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;

        const char *layout{nullptr};
        switch(device->FmtChans)
        {
            case DevFmtQuad: layout = "quad"; break;
            case DevFmtX51: /* fall-through */
            case DevFmtX51Rear: layout = "surround51"; break;
            case DevFmtX61: layout = "surround61"; break;
            case DevFmtX71: layout = "surround71"; break;
            /* Mono, Stereo, and Ambisonics output don't use custom decoders. */
            case DevFmtMono:
            case DevFmtStereo:
            case DevFmtAmbi3D:
                break;
        }

        uint speakermap[MAX_OUTPUT_CHANNELS];
        AmbDecConf *pconf{nullptr};
        AmbDecConf conf{};
        if(layout)
        {
            if(auto decopt = ConfigValueStr(devname, "decoder", layout))
            {
                if(auto err = conf.load(decopt->c_str()))
                {
                    ERR("Failed to load layout file %s\n", decopt->c_str());
                    ERR("  %s\n", err->c_str());
                }
                else if(conf.NumSpeakers > MAX_OUTPUT_CHANNELS)
                    ERR("Unsupported decoder speaker count %zu (max %d)\n", conf.NumSpeakers,
                        MAX_OUTPUT_CHANNELS);
                else if(conf.ChanMask > Ambi3OrderMask)
                    ERR("Unsupported decoder channel mask 0x%04x (max 0x%x)\n", conf.ChanMask,
                        Ambi3OrderMask);
                else if(MakeSpeakerMap(device, &conf, speakermap))
                    pconf = &conf;
            }
        }

        /* Enable the stablizer only for formats that have front-left, front-
         * right, and front-center outputs.
         */
        const bool stablize{device->RealOut.ChannelIndex[FrontCenter] != INVALID_CHANNEL_INDEX
            && device->RealOut.ChannelIndex[FrontLeft] != INVALID_CHANNEL_INDEX
            && device->RealOut.ChannelIndex[FrontRight] != INVALID_CHANNEL_INDEX
            && GetConfigValueBool(devname, nullptr, "front-stablizer", 0) != 0};
        const bool hqdec{GetConfigValueBool(devname, "decoder", "hq-mode", 1) != 0};
        if(!pconf)
            InitPanning(device, hqdec, stablize);
        else
            InitCustomPanning(device, hqdec, stablize, pconf, speakermap);
        if(auto *ambidec{device->AmbiDecoder.get()})
        {
            device->PostProcess = ambidec->hasStablizer() ? &ALCdevice::ProcessAmbiDecStablized
                : &ALCdevice::ProcessAmbiDec;
        }
        return;
    }

    bool headphones{device->IsHeadphones};
    if(device->Type != DeviceType::Loopback)
    {
        if(auto modeopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-mode"))
        {
            const char *mode{modeopt->c_str()};
            if(al::strcasecmp(mode, "headphones") == 0)
                headphones = true;
            else if(al::strcasecmp(mode, "speakers") == 0)
                headphones = false;
            else if(al::strcasecmp(mode, "auto") != 0)
                ERR("Unexpected stereo-mode: %s\n", mode);
        }
    }

    if(hrtf_userreq == Hrtf_Default)
    {
        bool usehrtf = (headphones && hrtf_appreq != Hrtf_Disable) ||
                       (hrtf_appreq == Hrtf_Enable);
        if(!usehrtf) goto no_hrtf;

        device->mHrtfStatus = ALC_HRTF_ENABLED_SOFT;
        if(headphones && hrtf_appreq != Hrtf_Disable)
            device->mHrtfStatus = ALC_HRTF_HEADPHONES_DETECTED_SOFT;
    }
    else
    {
        if(hrtf_userreq != Hrtf_Enable)
        {
            if(hrtf_appreq == Hrtf_Enable)
                device->mHrtfStatus = ALC_HRTF_DENIED_SOFT;
            goto no_hrtf;
        }
        device->mHrtfStatus = ALC_HRTF_REQUIRED_SOFT;
    }

    if(device->mHrtfList.empty())
        device->enumerateHrtfs();

    if(hrtf_id >= 0 && static_cast<uint>(hrtf_id) < device->mHrtfList.size())
    {
        const std::string &hrtfname = device->mHrtfList[static_cast<uint>(hrtf_id)];
        if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->Frequency)})
        {
            device->mHrtf = std::move(hrtf);
            device->mHrtfName = hrtfname;
        }
    }

    if(!device->mHrtf)
    {
        for(const auto &hrtfname : device->mHrtfList)
        {
            if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->Frequency)})
            {
                device->mHrtf = std::move(hrtf);
                device->mHrtfName = hrtfname;
                break;
            }
        }
    }

    if(device->mHrtf)
    {
        old_hrtf = nullptr;

        HrtfStore *hrtf{device->mHrtf.get()};
        device->mIrSize = hrtf->irSize;
        if(auto hrtfsizeopt = ConfigValueUInt(devname, nullptr, "hrtf-size"))
        {
            if(*hrtfsizeopt > 0 && *hrtfsizeopt < device->mIrSize)
                device->mIrSize = maxu(*hrtfsizeopt, MinIrLength);
        }

        InitHrtfPanning(device);
        device->PostProcess = &ALCdevice::ProcessHrtf;
        return;
    }
    device->mHrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;

no_hrtf:
    old_hrtf = nullptr;

    device->mRenderMode = RenderMode::Pairwise;

    if(device->Type != DeviceType::Loopback)
    {
        if(auto cflevopt = ConfigValueInt(device->DeviceName.c_str(), nullptr, "cf_level"))
        {
            if(*cflevopt > 0 && *cflevopt <= 6)
            {
                device->Bs2b = std::make_unique<bs2b>();
                bs2b_set_params(device->Bs2b.get(), *cflevopt,
                    static_cast<int>(device->Frequency));
                TRACE("BS2B enabled\n");
                InitPanning(device);
                device->PostProcess = &ALCdevice::ProcessBs2b;
                return;
            }
        }
    }

    if(auto encopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-encoding"))
    {
        const char *mode{encopt->c_str()};
        if(al::strcasecmp(mode, "uhj") == 0)
            device->mRenderMode = RenderMode::Normal;
        else if(al::strcasecmp(mode, "panpot") != 0)
            ERR("Unexpected stereo-encoding: %s\n", mode);
    }
    if(device->mRenderMode == RenderMode::Normal)
    {
        device->mUhjEncoder = std::make_unique<UhjEncoder>();
        TRACE("UHJ enabled\n");
        InitUhjPanning(device);
        device->PostProcess = &ALCdevice::ProcessUhj;
        return;
    }

    TRACE("Stereo rendering\n");
    InitPanning(device);
    device->PostProcess = &ALCdevice::ProcessAmbiDec;
}


void aluInitEffectPanning(EffectSlot *slot, ALCcontext *context)
{
    ALCdevice *device{context->mDevice.get()};
    const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};

    auto wetbuffer_iter = context->mWetBuffers.end();
    if(slot->mWetBuffer)
    {
        /* If the effect slot already has a wet buffer attached, allocate a new
         * one in its place.
         */
        wetbuffer_iter = context->mWetBuffers.begin();
        for(;wetbuffer_iter != context->mWetBuffers.end();++wetbuffer_iter)
        {
            if(wetbuffer_iter->get() == slot->mWetBuffer)
            {
                slot->mWetBuffer = nullptr;
                slot->Wet.Buffer = {};

                *wetbuffer_iter = WetBufferPtr{new(FamCount(count)) WetBuffer{count}};

                break;
            }
        }
    }
    if(wetbuffer_iter == context->mWetBuffers.end())
    {
        /* Otherwise, search for an unused wet buffer. */
        wetbuffer_iter = context->mWetBuffers.begin();
        for(;wetbuffer_iter != context->mWetBuffers.end();++wetbuffer_iter)
        {
            if(!(*wetbuffer_iter)->mInUse)
                break;
        }
        if(wetbuffer_iter == context->mWetBuffers.end())
        {
            /* Otherwise, allocate a new one to use. */
            context->mWetBuffers.emplace_back(WetBufferPtr{new(FamCount(count)) WetBuffer{count}});
            wetbuffer_iter = context->mWetBuffers.end()-1;
        }
    }
    WetBuffer *wetbuffer{slot->mWetBuffer = wetbuffer_iter->get()};
    wetbuffer->mInUse = true;

    auto acnmap_begin = AmbiIndex::FromACN().begin();
    auto iter = std::transform(acnmap_begin, acnmap_begin + count, slot->Wet.AmbiMap.begin(),
        [](const uint8_t &acn) noexcept -> BFChannelConfig
        { return BFChannelConfig{1.0f, acn}; });
    std::fill(iter, slot->Wet.AmbiMap.end(), BFChannelConfig{});
    slot->Wet.Buffer = wetbuffer->mBuffer;
}


std::array<float,MaxAmbiChannels> CalcAmbiCoeffs(const float y, const float z, const float x,
    const float spread)
{
    std::array<float,MaxAmbiChannels> coeffs;

    /* Zeroth-order */
    coeffs[0]  = 1.0f; /* ACN 0 = 1 */
    /* First-order */
    coeffs[1]  = 1.732050808f * y; /* ACN 1 = sqrt(3) * Y */
    coeffs[2]  = 1.732050808f * z; /* ACN 2 = sqrt(3) * Z */
    coeffs[3]  = 1.732050808f * x; /* ACN 3 = sqrt(3) * X */
    /* Second-order */
    const float xx{x*x}, yy{y*y}, zz{z*z}, xy{x*y}, yz{y*z}, xz{x*z};
    coeffs[4]  = 3.872983346f * xy;               /* ACN 4 = sqrt(15) * X * Y */
    coeffs[5]  = 3.872983346f * yz;               /* ACN 5 = sqrt(15) * Y * Z */
    coeffs[6]  = 1.118033989f * (3.0f*zz - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */
    coeffs[7]  = 3.872983346f * xz;               /* ACN 7 = sqrt(15) * X * Z */
    coeffs[8]  = 1.936491673f * (xx - yy);        /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */
    /* Third-order */
    coeffs[9]  =  2.091650066f * (y*(3.0f*xx - yy));   /* ACN  9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */
    coeffs[10] = 10.246950766f * (z*xy);               /* ACN 10 = sqrt(105) * Z * X * Y */
    coeffs[11] =  1.620185175f * (y*(5.0f*zz - 1.0f)); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */
    coeffs[12] =  1.322875656f * (z*(5.0f*zz - 3.0f)); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */
    coeffs[13] =  1.620185175f * (x*(5.0f*zz - 1.0f)); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */
    coeffs[14] =  5.123475383f * (z*(xx - yy));        /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */
    coeffs[15] =  2.091650066f * (x*(xx - 3.0f*yy));   /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */
    /* Fourth-order */
    /* ACN 16 = sqrt(35)*3/2 * X * Y * (X*X - Y*Y) */
    /* ACN 17 = sqrt(35/2)*3/2 * (3*X*X - Y*Y) * Y * Z */
    /* ACN 18 = sqrt(5)*3/2 * X * Y * (7*Z*Z - 1) */
    /* ACN 19 = sqrt(5/2)*3/2 * Y * Z * (7*Z*Z - 3)  */
    /* ACN 20 = 3/8 * (35*Z*Z*Z*Z - 30*Z*Z + 3) */
    /* ACN 21 = sqrt(5/2)*3/2 * X * Z * (7*Z*Z - 3) */
    /* ACN 22 = sqrt(5)*3/4 * (X*X - Y*Y) * (7*Z*Z - 1) */
    /* ACN 23 = sqrt(35/2)*3/2 * (X*X - 3*Y*Y) * X * Z */
    /* ACN 24 = sqrt(35)*3/8 * (X*X*X*X - 6*X*X*Y*Y + Y*Y*Y*Y) */

    if(spread > 0.0f)
    {
        /* Implement the spread by using a spherical source that subtends the
         * angle spread. See:
         * http://www.ppsloan.org/publications/StupidSH36.pdf - Appendix A3
         *
         * When adjusted for N3D normalization instead of SN3D, these
         * calculations are:
         *
         * ZH0 = -sqrt(pi) * (-1+ca);
         * ZH1 =  0.5*sqrt(pi) * sa*sa;
         * ZH2 = -0.5*sqrt(pi) * ca*(-1+ca)*(ca+1);
         * ZH3 = -0.125*sqrt(pi) * (-1+ca)*(ca+1)*(5*ca*ca - 1);
         * ZH4 = -0.125*sqrt(pi) * ca*(-1+ca)*(ca+1)*(7*ca*ca - 3);
         * ZH5 = -0.0625*sqrt(pi) * (-1+ca)*(ca+1)*(21*ca*ca*ca*ca - 14*ca*ca + 1);
         *
         * The gain of the source is compensated for size, so that the
         * loudness doesn't depend on the spread. Thus:
         *
         * ZH0 = 1.0f;
         * ZH1 = 0.5f * (ca+1.0f);
         * ZH2 = 0.5f * (ca+1.0f)*ca;
         * ZH3 = 0.125f * (ca+1.0f)*(5.0f*ca*ca - 1.0f);
         * ZH4 = 0.125f * (ca+1.0f)*(7.0f*ca*ca - 3.0f)*ca;
         * ZH5 = 0.0625f * (ca+1.0f)*(21.0f*ca*ca*ca*ca - 14.0f*ca*ca + 1.0f);
         */
        const float ca{std::cos(spread * 0.5f)};
        /* Increase the source volume by up to +3dB for a full spread. */
        const float scale{std::sqrt(1.0f + spread/al::MathDefs<float>::Tau())};

        const float ZH0_norm{scale};
        const float ZH1_norm{scale * 0.5f * (ca+1.f)};
        const float ZH2_norm{scale * 0.5f * (ca+1.f)*ca};
        const float ZH3_norm{scale * 0.125f * (ca+1.f)*(5.f*ca*ca-1.f)};

        /* Zeroth-order */
        coeffs[0]  *= ZH0_norm;
        /* First-order */
        coeffs[1]  *= ZH1_norm;
        coeffs[2]  *= ZH1_norm;
        coeffs[3]  *= ZH1_norm;
        /* Second-order */
        coeffs[4]  *= ZH2_norm;
        coeffs[5]  *= ZH2_norm;
        coeffs[6]  *= ZH2_norm;
        coeffs[7]  *= ZH2_norm;
        coeffs[8]  *= ZH2_norm;
        /* Third-order */
        coeffs[9]  *= ZH3_norm;
        coeffs[10] *= ZH3_norm;
        coeffs[11] *= ZH3_norm;
        coeffs[12] *= ZH3_norm;
        coeffs[13] *= ZH3_norm;
        coeffs[14] *= ZH3_norm;
        coeffs[15] *= ZH3_norm;
    }

    return coeffs;
}

void ComputePanGains(const MixParams *mix, const float*RESTRICT coeffs, const float ingain,
    const al::span<float,MAX_OUTPUT_CHANNELS> gains)
{
    auto ambimap = mix->AmbiMap.cbegin();

    auto iter = std::transform(ambimap, ambimap+mix->Buffer.size(), gains.begin(),
        [coeffs,ingain](const BFChannelConfig &chanmap) noexcept -> float
        { return chanmap.Scale * coeffs[chanmap.Index] * ingain; }
    );
    std::fill(iter, gains.end(), 0.0f);
}