#include "config.h" #include "AL/al.h" #include "AL/alc.h" #include "al/auxeffectslot.h" #include "alcmain.h" #include "alcomplex.h" #include "alcontext.h" #include "almalloc.h" #include "alspan.h" #include "effects/base.h" #include "logging.h" #include "polyphase_resampler.h" namespace { /* Convolution reverb is implemented using a segmented overlap-add method. The * impulse response is broken up into multiple segments of 512 samples, and * each segment has an FFT applied with a 1024-sample buffer (the latter half * left silent) to get its frequency-domain response. The resulting response * has its positive/non-mirrored frequencies saved (513 bins) in each segment. * * Input samples are similarly broken up into 512-sample segments, with an FFT * applied to each new incoming segment to get its 513 bins. A history of FFT'd * input segments is maintained, equal to the length of the impulse response. * * To apply the reverberation, each impulse response segment is convolved with * its paired input segment (using complex multiplies, far cheaper than FIRs), * accumulating into a 1024-bin FFT buffer. The input history is then shifted * to align with later impulse response segments for next time. * * An inverse FFT is then applied to the accumulated FFT buffer to get a 1024- * sample time-domain response for output, which is split in two halves. The * first half is the 512-sample output, and the second half is a 512-sample * (really, 511) delayed extension, which gets added to the output next time. * Convolving two time-domain responses of lengths N and M results in a time- * domain signal of length N+M-1, and this holds true regardless of the * convolution being applied in the frequency domain, so these "overflow" * samples need to be accounted for. * * Limitations: * There is currently a 512-sample delay on the output, as a result of needing * to collect that many input samples to do an FFT with. This can be fixed by * excluding the first impulse response segment from being FFT'd, and applying * it directly in the time domain. This will have higher CPU consumption, but * it won't have to wait before generating output. */ /* TODO: De-duplicate this load stuff (also in voice.cpp). */ constexpr int16_t muLawDecompressionTable[256] = { -32124,-31100,-30076,-29052,-28028,-27004,-25980,-24956, -23932,-22908,-21884,-20860,-19836,-18812,-17788,-16764, -15996,-15484,-14972,-14460,-13948,-13436,-12924,-12412, -11900,-11388,-10876,-10364, -9852, -9340, -8828, -8316, -7932, -7676, -7420, -7164, -6908, -6652, -6396, -6140, -5884, -5628, -5372, -5116, -4860, -4604, -4348, -4092, -3900, -3772, -3644, -3516, -3388, -3260, -3132, -3004, -2876, -2748, -2620, -2492, -2364, -2236, -2108, -1980, -1884, -1820, -1756, -1692, -1628, -1564, -1500, -1436, -1372, -1308, -1244, -1180, -1116, -1052, -988, -924, -876, -844, -812, -780, -748, -716, -684, -652, -620, -588, -556, -524, -492, -460, -428, -396, -372, -356, -340, -324, -308, -292, -276, -260, -244, -228, -212, -196, -180, -164, -148, -132, -120, -112, -104, -96, -88, -80, -72, -64, -56, -48, -40, -32, -24, -16, -8, 0, 32124, 31100, 30076, 29052, 28028, 27004, 25980, 24956, 23932, 22908, 21884, 20860, 19836, 18812, 17788, 16764, 15996, 15484, 14972, 14460, 13948, 13436, 12924, 12412, 11900, 11388, 10876, 10364, 9852, 9340, 8828, 8316, 7932, 7676, 7420, 7164, 6908, 6652, 6396, 6140, 5884, 5628, 5372, 5116, 4860, 4604, 4348, 4092, 3900, 3772, 3644, 3516, 3388, 3260, 3132, 3004, 2876, 2748, 2620, 2492, 2364, 2236, 2108, 1980, 1884, 1820, 1756, 1692, 1628, 1564, 1500, 1436, 1372, 1308, 1244, 1180, 1116, 1052, 988, 924, 876, 844, 812, 780, 748, 716, 684, 652, 620, 588, 556, 524, 492, 460, 428, 396, 372, 356, 340, 324, 308, 292, 276, 260, 244, 228, 212, 196, 180, 164, 148, 132, 120, 112, 104, 96, 88, 80, 72, 64, 56, 48, 40, 32, 24, 16, 8, 0 }; constexpr int16_t aLawDecompressionTable[256] = { -5504, -5248, -6016, -5760, -4480, -4224, -4992, -4736, -7552, -7296, -8064, -7808, -6528, -6272, -7040, -6784, -2752, -2624, -3008, -2880, -2240, -2112, -2496, -2368, -3776, -3648, -4032, -3904, -3264, -3136, -3520, -3392, -22016,-20992,-24064,-23040,-17920,-16896,-19968,-18944, -30208,-29184,-32256,-31232,-26112,-25088,-28160,-27136, -11008,-10496,-12032,-11520, -8960, -8448, -9984, -9472, -15104,-14592,-16128,-15616,-13056,-12544,-14080,-13568, -344, -328, -376, -360, -280, -264, -312, -296, -472, -456, -504, -488, -408, -392, -440, -424, -88, -72, -120, -104, -24, -8, -56, -40, -216, -200, -248, -232, -152, -136, -184, -168, -1376, -1312, -1504, -1440, -1120, -1056, -1248, -1184, -1888, -1824, -2016, -1952, -1632, -1568, -1760, -1696, -688, -656, -752, -720, -560, -528, -624, -592, -944, -912, -1008, -976, -816, -784, -880, -848, 5504, 5248, 6016, 5760, 4480, 4224, 4992, 4736, 7552, 7296, 8064, 7808, 6528, 6272, 7040, 6784, 2752, 2624, 3008, 2880, 2240, 2112, 2496, 2368, 3776, 3648, 4032, 3904, 3264, 3136, 3520, 3392, 22016, 20992, 24064, 23040, 17920, 16896, 19968, 18944, 30208, 29184, 32256, 31232, 26112, 25088, 28160, 27136, 11008, 10496, 12032, 11520, 8960, 8448, 9984, 9472, 15104, 14592, 16128, 15616, 13056, 12544, 14080, 13568, 344, 328, 376, 360, 280, 264, 312, 296, 472, 456, 504, 488, 408, 392, 440, 424, 88, 72, 120, 104, 24, 8, 56, 40, 216, 200, 248, 232, 152, 136, 184, 168, 1376, 1312, 1504, 1440, 1120, 1056, 1248, 1184, 1888, 1824, 2016, 1952, 1632, 1568, 1760, 1696, 688, 656, 752, 720, 560, 528, 624, 592, 944, 912, 1008, 976, 816, 784, 880, 848 }; template struct FmtTypeTraits { }; template<> struct FmtTypeTraits { using Type = uint8_t; static constexpr inline double to_double(const Type val) noexcept { return val*(1.0/128.0) - 1.0; } }; template<> struct FmtTypeTraits { using Type = int16_t; static constexpr inline double to_double(const Type val) noexcept { return val*(1.0/32768.0); } }; template<> struct FmtTypeTraits { using Type = float; static constexpr inline double to_double(const Type val) noexcept { return val; } }; template<> struct FmtTypeTraits { using Type = double; static constexpr inline double to_double(const Type val) noexcept { return val; } }; template<> struct FmtTypeTraits { using Type = uint8_t; static constexpr inline double to_double(const Type val) noexcept { return muLawDecompressionTable[val] * (1.0/32768.0); } }; template<> struct FmtTypeTraits { using Type = uint8_t; static constexpr inline double to_double(const Type val) noexcept { return aLawDecompressionTable[val] * (1.0/32768.0); } }; template inline void LoadSampleArray(double *RESTRICT dst, const al::byte *src, const size_t srcstep, const size_t samples) noexcept { using SampleType = typename FmtTypeTraits::Type; const SampleType *RESTRICT ssrc{reinterpret_cast(src)}; for(size_t i{0u};i < samples;i++) dst[i] = FmtTypeTraits::to_double(ssrc[i*srcstep]); } void LoadSamples(double *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype, const size_t samples) noexcept { #define HANDLE_FMT(T) case T: LoadSampleArray(dst, src, srcstep, samples); break switch(srctype) { HANDLE_FMT(FmtUByte); HANDLE_FMT(FmtShort); HANDLE_FMT(FmtFloat); HANDLE_FMT(FmtDouble); HANDLE_FMT(FmtMulaw); HANDLE_FMT(FmtAlaw); } #undef HANDLE_FMT } using complex_d = std::complex; constexpr size_t ConvolveUpdateSize{1024}; constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2}; #define MAX_FILTER_CHANNELS 2 struct ConvolutionFilter final : public EffectBufferBase { size_t mNumConvolveSegs{0}; complex_d *mInputHistory{}; complex_d *mConvolveFilter[MAX_FILTER_CHANNELS]{}; FmtChannels mChannels; std::unique_ptr mComplexData; DEF_NEWDEL(ConvolutionFilter) }; struct ConvolutionState final : public EffectState { ConvolutionFilter *mFilter{}; size_t mFifoPos{0}; alignas(16) std::array mOutput[MAX_FILTER_CHANNELS]{}; alignas(16) std::array mFftBuffer{}; ALuint mNumChannels; alignas(16) FloatBufferLine mTempBuffer[MAX_FILTER_CHANNELS]{}; struct { float Current[MAX_OUTPUT_CHANNELS]{}; float Target[MAX_OUTPUT_CHANNELS]{}; } mGains[MAX_FILTER_CHANNELS]; ConvolutionState() = default; ~ConvolutionState() override = default; void deviceUpdate(const ALCdevice *device) override; EffectBufferBase *createBuffer(const ALCdevice *device, const al::byte *sampleData, ALuint sampleRate, FmtType sampleType, FmtChannels channelType, ALuint numSamples) override; void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; DEF_NEWDEL(ConvolutionState) }; void ConvolutionState::deviceUpdate(const ALCdevice* /*device*/) { mFifoPos = 0; for(auto &buffer : mOutput) buffer.fill(0.0f); mFftBuffer.fill(complex_d{}); for(auto &buffer : mTempBuffer) buffer.fill(0.0); for(auto &e : mGains) { std::fill(std::begin(e.Current), std::end(e.Current), 0.0f); std::fill(std::begin(e.Target), std::end(e.Target), 0.0f); } } EffectBufferBase *ConvolutionState::createBuffer(const ALCdevice *device, const al::byte *sampleData, ALuint sampleRate, FmtType sampleType, FmtChannels channelType, ALuint numSamples) { /* FIXME: Support anything. */ if(channelType != FmtMono && channelType != FmtStereo) return nullptr; /* The impulse response needs to have the same sample rate as the input and * output. The bsinc24 resampler is decent, but there is high-frequency * attenation that some people may be able to pick up on. Since this is * very infrequent called, go ahead and use the polyphase resampler. */ PPhaseResampler resampler; if(device->Frequency != sampleRate) resampler.init(sampleRate, device->Frequency); const auto resampledCount = static_cast( (uint64_t{numSamples}*device->Frequency + (sampleRate-1)) / sampleRate); al::intrusive_ptr filter{new ConvolutionFilter{}}; auto bytesPerSample = BytesFromFmt(sampleType); auto numChannels = ChannelsFromFmt(channelType, 1); constexpr size_t m{ConvolveUpdateSize/2 + 1}; /* Calculate the number of segments needed to hold the impulse response and * the input history (rounded up), and allocate them. */ filter->mNumConvolveSegs = (numSamples+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples; const size_t complex_length{filter->mNumConvolveSegs * m * (numChannels+1)}; filter->mComplexData = std::make_unique(complex_length); std::fill_n(filter->mComplexData.get(), complex_length, complex_d{}); filter->mInputHistory = filter->mComplexData.get(); filter->mConvolveFilter[0] = filter->mInputHistory + filter->mNumConvolveSegs*m; for(size_t c{1};c < numChannels;++c) filter->mConvolveFilter[c] = filter->mConvolveFilter[c-1] + filter->mNumConvolveSegs*m; filter->mChannels = channelType; auto fftbuffer = std::make_unique>(); auto srcsamples = std::make_unique(maxz(numSamples, resampledCount)); for(size_t c{0};c < numChannels;++c) { /* Load the samples from the buffer, and resample to match the device. */ LoadSamples(srcsamples.get(), sampleData + bytesPerSample*c, numChannels, sampleType, numSamples); if(device->Frequency != sampleRate) resampler.process(numSamples, srcsamples.get(), resampledCount, srcsamples.get()); size_t done{0}; complex_d *filteriter = filter->mConvolveFilter[c]; for(size_t s{0};s < filter->mNumConvolveSegs;++s) { const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)}; auto iter = std::copy_n(&srcsamples[done], todo, fftbuffer->begin()); done += todo; std::fill(iter, fftbuffer->end(), complex_d{}); complex_fft(*fftbuffer, -1.0); filteriter = std::copy_n(fftbuffer->cbegin(), m, filteriter); } } return filter.release(); } void ConvolutionState::update(const ALCcontext* /*context*/, const ALeffectslot *slot, const EffectProps* /*props*/, const EffectTarget target) { mFilter = static_cast(slot->Params.mEffectBuffer); mNumChannels = ChannelsFromFmt(mFilter->mChannels, 1); /* The iFFT'd response is scaled up by the number of bins, so apply the * inverse to the output mixing gain. */ constexpr size_t m{ConvolveUpdateSize/2 + 1}; const float gain{slot->Params.Gain * (1.0f/m)}; if(mFilter->mChannels == FmtStereo) { /* TODO: Add a "direct channels" setting for this effect? */ const ALuint lidx{!target.RealOut ? INVALID_CHANNEL_INDEX : GetChannelIdxByName(*target.RealOut, FrontLeft)}; const ALuint ridx{!target.RealOut ? INVALID_CHANNEL_INDEX : GetChannelIdxByName(*target.RealOut, FrontRight)}; if(lidx != INVALID_CHANNEL_INDEX && ridx != INVALID_CHANNEL_INDEX) { mOutTarget = target.RealOut->Buffer; mGains[0].Target[lidx] = gain; mGains[1].Target[ridx] = gain; } else { const auto lcoeffs = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f); const auto rcoeffs = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f); mOutTarget = target.Main->Buffer; ComputePanGains(target.Main, lcoeffs.data(), gain, mGains[0].Target); ComputePanGains(target.Main, rcoeffs.data(), gain, mGains[1].Target); } } else if(mFilter->mChannels == FmtMono) { const auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f); mOutTarget = target.Main->Buffer; ComputePanGains(target.Main, coeffs.data(), gain, mGains[0].Target); } } void ConvolutionState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { /* No filter, no response. */ if(!mFilter) return; for(size_t base{0u};base < samplesToDo;) { const size_t todo{minz(ConvolveUpdateSamples-mFifoPos, samplesToDo-base)}; /* Retrieve the output samples from the FIFO and fill in the new input * samples. */ for(size_t c{0};c < mNumChannels;++c) { auto fifo_iter = mOutput[c].begin() + mFifoPos; std::transform(fifo_iter, fifo_iter+todo, mTempBuffer[c].begin()+base, [](double d) noexcept -> float { return static_cast(d); }); } std::copy_n(samplesIn[0].begin()+base, todo, mFftBuffer.begin()+mFifoPos); mFifoPos += todo; base += todo; /* Check whether FIFO buffer is filled with new samples. */ if(mFifoPos < ConvolveUpdateSamples) break; mFifoPos = 0; /* Calculate the frequency domain response and add the relevant * frequency bins to the input history. */ complex_fft(mFftBuffer, -1.0); constexpr size_t m{ConvolveUpdateSize/2 + 1}; std::copy_n(mFftBuffer.begin(), m, mFilter->mInputHistory); mFftBuffer.fill(complex_d{}); for(size_t c{0};c < mNumChannels;++c) { /* Convolve each input segment with its IR filter counterpart * (aligned in time). */ for(size_t s{0};s < mFilter->mNumConvolveSegs;++s) { const complex_d *RESTRICT input{&mFilter->mInputHistory[s*m]}; const complex_d *RESTRICT filter{&mFilter->mConvolveFilter[c][s*m]}; for(size_t i{0};i < m;++i) mFftBuffer[i] += input[i] * filter[i]; } /* Apply iFFT to get the 1024 (really 1023) samples for output. The * 512 output samples are combined with the last output's 511 * second-half samples (and this output's second half is * subsequently saved for next time). */ complex_fft(mFftBuffer, 1.0); for(size_t i{0};i < ConvolveUpdateSamples;++i) mOutput[c][i] = mFftBuffer[i].real() + mOutput[c][ConvolveUpdateSamples+i]; for(size_t i{0};i < ConvolveUpdateSamples;++i) mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real(); mFftBuffer.fill(complex_d{}); } /* Shift the input history. */ std::copy_backward(mFilter->mInputHistory, mFilter->mInputHistory + (mFilter->mNumConvolveSegs-1)*m, mFilter->mInputHistory + mFilter->mNumConvolveSegs*m); } /* Finally, mix to the output. */ for(size_t c{0};c < mNumChannels;++c) MixSamples({mTempBuffer[c].data(), samplesToDo}, samplesOut, mGains[c].Current, mGains[c].Target, samplesToDo, 0); } void ConvolutionEffect_setParami(EffectProps* /*props*/, ALenum param, int /*val*/) { switch(param) { default: throw effect_exception{AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x", param}; } } void ConvolutionEffect_setParamiv(EffectProps *props, ALenum param, const int *vals) { switch(param) { default: ConvolutionEffect_setParami(props, param, vals[0]); } } void ConvolutionEffect_setParamf(EffectProps* /*props*/, ALenum param, float /*val*/) { switch(param) { default: throw effect_exception{AL_INVALID_ENUM, "Invalid null effect float property 0x%04x", param}; } } void ConvolutionEffect_setParamfv(EffectProps *props, ALenum param, const float *vals) { switch(param) { default: ConvolutionEffect_setParamf(props, param, vals[0]); } } void ConvolutionEffect_getParami(const EffectProps* /*props*/, ALenum param, int* /*val*/) { switch(param) { default: throw effect_exception{AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x", param}; } } void ConvolutionEffect_getParamiv(const EffectProps *props, ALenum param, int *vals) { switch(param) { default: ConvolutionEffect_getParami(props, param, vals); } } void ConvolutionEffect_getParamf(const EffectProps* /*props*/, ALenum param, float* /*val*/) { switch(param) { default: throw effect_exception{AL_INVALID_ENUM, "Invalid null effect float property 0x%04x", param}; } } void ConvolutionEffect_getParamfv(const EffectProps *props, ALenum param, float *vals) { switch(param) { default: ConvolutionEffect_getParamf(props, param, vals); } } DEFINE_ALEFFECT_VTABLE(ConvolutionEffect); struct ConvolutionStateFactory final : public EffectStateFactory { EffectState *create() override; EffectProps getDefaultProps() const noexcept override; const EffectVtable *getEffectVtable() const noexcept override; }; /* Creates EffectState objects of the appropriate type. */ EffectState *ConvolutionStateFactory::create() { return new ConvolutionState{}; } /* Returns an ALeffectProps initialized with this effect type's default * property values. */ EffectProps ConvolutionStateFactory::getDefaultProps() const noexcept { EffectProps props{}; return props; } /* Returns a pointer to this effect type's global set/get vtable. */ const EffectVtable *ConvolutionStateFactory::getEffectVtable() const noexcept { return &ConvolutionEffect_vtable; } } // namespace EffectStateFactory *ConvolutionStateFactory_getFactory() { static ConvolutionStateFactory ConvolutionFactory{}; return &ConvolutionFactory; }