diff options
Diffstat (limited to 'alc/mixer/mixer_c.cpp')
-rw-r--r-- | alc/mixer/mixer_c.cpp | 219 |
1 files changed, 219 insertions, 0 deletions
diff --git a/alc/mixer/mixer_c.cpp b/alc/mixer/mixer_c.cpp new file mode 100644 index 00000000..fad33746 --- /dev/null +++ b/alc/mixer/mixer_c.cpp @@ -0,0 +1,219 @@ +#include "config.h" + +#include <cassert> + +#include <limits> + +#include "alcmain.h" +#include "alu.h" + +#include "defs.h" +#include "hrtfbase.h" + + +namespace { + +inline float do_point(const InterpState&, const float *RESTRICT vals, const ALuint) +{ return vals[0]; } +inline float do_lerp(const InterpState&, const float *RESTRICT vals, const ALuint frac) +{ return lerp(vals[0], vals[1], static_cast<float>(frac)*(1.0f/FRACTIONONE)); } +inline float do_cubic(const InterpState&, const float *RESTRICT vals, const ALuint frac) +{ return cubic(vals[0], vals[1], vals[2], vals[3], static_cast<float>(frac)*(1.0f/FRACTIONONE)); } +inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const ALuint frac) +{ + const size_t m{istate.bsinc.m}; + + // Calculate the phase index and factor. +#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) + const ALuint pi{frac >> FRAC_PHASE_BITDIFF}; + const float pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * + (1.0f/(1<<FRAC_PHASE_BITDIFF))}; +#undef FRAC_PHASE_BITDIFF + + const float *fil{istate.bsinc.filter + m*pi*4}; + const float *phd{fil + m}; + const float *scd{phd + m}; + const float *spd{scd + m}; + + // Apply the scale and phase interpolated filter. + float r{0.0f}; + for(size_t j_f{0};j_f < m;j_f++) + r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f]; + return r; +} +inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const ALuint frac) +{ + const size_t m{istate.bsinc.m}; + + // Calculate the phase index and factor. +#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) + const ALuint pi{frac >> FRAC_PHASE_BITDIFF}; + const float pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * + (1.0f/(1<<FRAC_PHASE_BITDIFF))}; +#undef FRAC_PHASE_BITDIFF + + const float *fil{istate.bsinc.filter + m*pi*4}; + const float *phd{fil + m}; + + // Apply the phase interpolated filter. + float r{0.0f}; + for(size_t j_f{0};j_f < m;j_f++) + r += (fil[j_f] + pf*phd[j_f]) * vals[j_f]; + return r; +} + +using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const ALuint); +template<SamplerT Sampler> +const float *DoResample(const InterpState *state, const float *RESTRICT src, ALuint frac, + ALuint increment, const al::span<float> dst) +{ + const InterpState istate{*state}; + auto proc_sample = [&src,&frac,istate,increment]() -> float + { + const float ret{Sampler(istate, src, frac)}; + + frac += increment; + src += frac>>FRACTIONBITS; + frac &= FRACTIONMASK; + + return ret; + }; + std::generate(dst.begin(), dst.end(), proc_sample); + + return dst.begin(); +} + +inline void ApplyCoeffs(float2 *RESTRICT Values, const ALuint IrSize, const HrirArray &Coeffs, + const float left, const float right) +{ + ASSUME(IrSize >= 4); + for(ALuint c{0};c < IrSize;++c) + { + Values[c][0] += Coeffs[c][0] * left; + Values[c][1] += Coeffs[c][1] * right; + } +} + +} // namespace + +template<> +const ALfloat *Resample_<CopyTag,CTag>(const InterpState*, const ALfloat *RESTRICT src, ALuint, + ALuint, const al::span<float> dst) +{ +#if defined(HAVE_SSE) || defined(HAVE_NEON) + /* Avoid copying the source data if it's aligned like the destination. */ + if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst.data())&15)) + return src; +#endif + std::copy_n(src, dst.size(), dst.begin()); + return dst.begin(); +} + +template<> +const ALfloat *Resample_<PointTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALuint frac, ALuint increment, const al::span<float> dst) +{ return DoResample<do_point>(state, src, frac, increment, dst); } + +template<> +const ALfloat *Resample_<LerpTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALuint frac, ALuint increment, const al::span<float> dst) +{ return DoResample<do_lerp>(state, src, frac, increment, dst); } + +template<> +const ALfloat *Resample_<CubicTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALuint frac, ALuint increment, const al::span<float> dst) +{ return DoResample<do_cubic>(state, src-1, frac, increment, dst); } + +template<> +const ALfloat *Resample_<BSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALuint frac, ALuint increment, const al::span<float> dst) +{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); } + +template<> +const ALfloat *Resample_<FastBSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALuint frac, ALuint increment, const al::span<float> dst) +{ return DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); } + + +template<> +void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const ALuint IrSize, + MixHrtfFilter *hrtfparams, const size_t BufferSize) +{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } + +template<> +void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const ALuint IrSize, + const HrtfFilter *oldparams, MixHrtfFilter *newparams, const size_t BufferSize) +{ + MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams, + BufferSize); +} + +template<> +void MixDirectHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State, + const size_t BufferSize) +{ MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); } + + +template<> +void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer, + float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) +{ + const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f}; + const bool reached_target{InSamples.size() >= Counter}; + const auto min_end = reached_target ? InSamples.begin() + Counter : InSamples.end(); + for(FloatBufferLine &output : OutBuffer) + { + ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; + ALfloat gain{*CurrentGains}; + const ALfloat diff{*TargetGains - gain}; + + auto in_iter = InSamples.begin(); + if(std::fabs(diff) > std::numeric_limits<float>::epsilon()) + { + const ALfloat step{diff * delta}; + ALfloat step_count{0.0f}; + while(in_iter != min_end) + { + *(dst++) += *(in_iter++) * (gain + step*step_count); + step_count += 1.0f; + } + if(reached_target) + gain = *TargetGains; + else + gain += step*step_count; + *CurrentGains = gain; + } + ++CurrentGains; + ++TargetGains; + + if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + while(in_iter != InSamples.end()) + *(dst++) += *(in_iter++) * gain; + } +} + +/* Basically the inverse of the above. Rather than one input going to multiple + * outputs (each with its own gain), it's multiple inputs (each with its own + * gain) going to one output. This applies one row (vs one column) of a matrix + * transform. And as the matrices are more or less static once set up, no + * stepping is necessary. + */ +template<> +void MixRow_<CTag>(const al::span<float> OutBuffer, const al::span<const float> Gains, + const float *InSamples, const size_t InStride) +{ + for(const float gain : Gains) + { + const float *RESTRICT input{InSamples}; + InSamples += InStride; + + if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + + auto do_mix = [gain](const float cur, const float src) noexcept -> float + { return cur + src*gain; }; + std::transform(OutBuffer.begin(), OutBuffer.end(), input, OutBuffer.begin(), do_mix); + } +} |