diff options
author | Chris Robinson <[email protected]> | 2021-03-28 05:43:10 -0700 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2021-03-28 06:09:11 -0700 |
commit | 8ab5e5dba253d1609423b8e3625655d7b1937584 (patch) | |
tree | 587beaf03fa80d402fe8eef53db332d6e00d6bc8 /common/phase_shifter.h | |
parent | 819e0297fff72fab0745985db8640d2652437189 (diff) |
Move the UHJ phase shifter to a common header
Diffstat (limited to 'common/phase_shifter.h')
-rw-r--r-- | common/phase_shifter.h | 347 |
1 files changed, 347 insertions, 0 deletions
diff --git a/common/phase_shifter.h b/common/phase_shifter.h new file mode 100644 index 00000000..18ab34c7 --- /dev/null +++ b/common/phase_shifter.h @@ -0,0 +1,347 @@ +#ifndef PHASE_SHIFTER_H +#define PHASE_SHIFTER_H + +#ifdef HAVE_SSE_INTRINSICS +#include <xmmintrin.h> +#elif defined(HAVE_NEON) +#include <arm_neon.h> +#endif + +#include <array> +#include <stddef.h> + +#include "alcomplex.h" +#include "alspan.h" + + +/* Implements a wide-band +90 degree phase-shift. Note that this should be + * given one sample less of a delay (FilterSize/2 - 1) compared to the direct + * signal delay (FilterSize/2) to properly align. + */ +template<size_t FilterSize> +struct PhaseShifterT { + static_assert(FilterSize >= 16, "FilterSize needs to be at least 16"); + static_assert((FilterSize&(FilterSize-1)) == 0, "FilterSize needs to be power-of-two"); + + alignas(16) std::array<float,FilterSize/2> mCoeffs{}; + + /* Some notes on this filter construction. + * + * A wide-band phase-shift filter needs a delay to maintain linearity. A + * dirac impulse in the center of a time-domain buffer represents a filter + * passing all frequencies through as-is with a pure delay. Converting that + * to the frequency domain, adjusting the phase of each frequency bin by + * +90 degrees, then converting back to the time domain, results in a FIR + * filter that applies a +90 degree wide-band phase-shift. + * + * A particularly notable aspect of the time-domain filter response is that + * every other coefficient is 0. This allows doubling the effective size of + * the filter, by storing only the non-0 coefficients and double-stepping + * over the input to apply it. + * + * Additionally, the resulting filter is independent of the sample rate. + * The same filter can be applied regardless of the device's sample rate + * and achieve the same effect. + */ + PhaseShifterT() + { + using complex_d = std::complex<double>; + constexpr size_t fft_size{FilterSize}; + constexpr size_t half_size{fft_size / 2}; + + auto fftBuffer = std::make_unique<complex_d[]>(fft_size); + std::fill_n(fftBuffer.get(), fft_size, complex_d{}); + fftBuffer[half_size] = 1.0; + + forward_fft({fftBuffer.get(), fft_size}); + for(size_t i{0};i < half_size+1;++i) + fftBuffer[i] = complex_d{-fftBuffer[i].imag(), fftBuffer[i].real()}; + for(size_t i{half_size+1};i < fft_size;++i) + fftBuffer[i] = std::conj(fftBuffer[fft_size - i]); + inverse_fft({fftBuffer.get(), fft_size}); + + auto fftiter = fftBuffer.get() + half_size + (FilterSize/2 - 1); + for(float &coeff : mCoeffs) + { + coeff = static_cast<float>(fftiter->real() / double{fft_size}); + fftiter -= 2; + } + } + + void process(al::span<float> dst, const float *RESTRICT src) const; + void processAccum(al::span<float> dst, const float *RESTRICT src) const; +}; + +template<size_t S> +inline void PhaseShifterT<S>::process(al::span<float> dst, const float *RESTRICT src) const +{ +#ifdef HAVE_SSE_INTRINSICS + if(size_t todo{dst.size()>>1}) + { + auto *out = reinterpret_cast<__m64*>(dst.data()); + do { + __m128 r04{_mm_setzero_ps()}; + __m128 r14{_mm_setzero_ps()}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const __m128 coeffs{_mm_load_ps(&mCoeffs[j])}; + const __m128 s0{_mm_loadu_ps(&src[j*2])}; + const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])}; + + __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))}; + r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs)); + + s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1)); + r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs)); + } + src += 2; + + __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))}; + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + + _mm_storel_pi(out, r4); + ++out; + } while(--todo); + } + if((dst.size()&1)) + { + __m128 r4{_mm_setzero_ps()}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const __m128 coeffs{_mm_load_ps(&mCoeffs[j])}; + const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; + r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs)); + } + r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + + dst.back() = _mm_cvtss_f32(r4); + } + +#elif defined(HAVE_NEON) + + size_t pos{0}; + if(size_t todo{dst.size()>>1}) + { + /* There doesn't seem to be NEON intrinsics to do this kind of stipple + * shuffling, so there's two custom methods for it. + */ + auto shuffle_2020 = [](float32x4_t a, float32x4_t b) + { + float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 0))}; + ret = vsetq_lane_f32(vgetq_lane_f32(a, 2), ret, 1); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 0), ret, 2); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 2), ret, 3); + return ret; + }; + auto shuffle_3131 = [](float32x4_t a, float32x4_t b) + { + float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 1))}; + ret = vsetq_lane_f32(vgetq_lane_f32(a, 3), ret, 1); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 1), ret, 2); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 3), ret, 3); + return ret; + }; + auto unpacklo = [](float32x4_t a, float32x4_t b) + { + float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))}; + return vcombine_f32(result.val[0], result.val[1]); + }; + auto unpackhi = [](float32x4_t a, float32x4_t b) + { + float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))}; + return vcombine_f32(result.val[0], result.val[1]); + }; + do { + float32x4_t r04{vdupq_n_f32(0.0f)}; + float32x4_t r14{vdupq_n_f32(0.0f)}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])}; + const float32x4_t s0{vld1q_f32(&src[j*2])}; + const float32x4_t s1{vld1q_f32(&src[j*2 + 4])}; + + r04 = vmlaq_f32(r04, shuffle_2020(s0, s1), coeffs); + r14 = vmlaq_f32(r14, shuffle_3131(s0, s1), coeffs); + } + src += 2; + + float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))}; + float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))}; + + vst1_f32(&dst[pos], r2); + pos += 2; + } while(--todo); + } + if((dst.size()&1)) + { + auto load4 = [](float32_t a, float32_t b, float32_t c, float32_t d) + { + float32x4_t ret{vmovq_n_f32(a)}; + ret = vsetq_lane_f32(b, ret, 1); + ret = vsetq_lane_f32(c, ret, 2); + ret = vsetq_lane_f32(d, ret, 3); + return ret; + }; + float32x4_t r4{vdupq_n_f32(0.0f)}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])}; + const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; + r4 = vmlaq_f32(r4, s, coeffs); + } + r4 = vaddq_f32(r4, vrev64q_f32(r4)); + dst[pos] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); + } + +#else + + for(float &output : dst) + { + float ret{0.0f}; + for(size_t j{0};j < mCoeffs.size();++j) + ret += src[j*2] * mCoeffs[j]; + + output = ret; + ++src; + } +#endif +} + +template<size_t S> +inline void PhaseShifterT<S>::processAccum(al::span<float> dst, const float *RESTRICT src) const +{ +#ifdef HAVE_SSE_INTRINSICS + if(size_t todo{dst.size()>>1}) + { + auto *out = reinterpret_cast<__m64*>(dst.data()); + do { + __m128 r04{_mm_setzero_ps()}; + __m128 r14{_mm_setzero_ps()}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const __m128 coeffs{_mm_load_ps(&mCoeffs[j])}; + const __m128 s0{_mm_loadu_ps(&src[j*2])}; + const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])}; + + __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))}; + r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs)); + + s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1)); + r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs)); + } + src += 2; + + __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))}; + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + + _mm_storel_pi(out, _mm_add_ps(_mm_loadl_pi(_mm_undefined_ps(), out), r4)); + ++out; + } while(--todo); + } + if((dst.size()&1)) + { + __m128 r4{_mm_setzero_ps()}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const __m128 coeffs{_mm_load_ps(&mCoeffs[j])}; + /* NOTE: This could alternatively be done with two unaligned loads + * and a shuffle. Which would be better? + */ + const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; + r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs)); + } + r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + + dst.back() += _mm_cvtss_f32(r4); + } + +#elif defined(HAVE_NEON) + + size_t pos{0}; + if(size_t todo{dst.size()>>1}) + { + auto shuffle_2020 = [](float32x4_t a, float32x4_t b) + { + float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 0))}; + ret = vsetq_lane_f32(vgetq_lane_f32(a, 2), ret, 1); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 0), ret, 2); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 2), ret, 3); + return ret; + }; + auto shuffle_3131 = [](float32x4_t a, float32x4_t b) + { + float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 1))}; + ret = vsetq_lane_f32(vgetq_lane_f32(a, 3), ret, 1); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 1), ret, 2); + ret = vsetq_lane_f32(vgetq_lane_f32(b, 3), ret, 3); + return ret; + }; + auto unpacklo = [](float32x4_t a, float32x4_t b) + { + float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))}; + return vcombine_f32(result.val[0], result.val[1]); + }; + auto unpackhi = [](float32x4_t a, float32x4_t b) + { + float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))}; + return vcombine_f32(result.val[0], result.val[1]); + }; + do { + float32x4_t r04{vdupq_n_f32(0.0f)}; + float32x4_t r14{vdupq_n_f32(0.0f)}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])}; + const float32x4_t s0{vld1q_f32(&src[j*2])}; + const float32x4_t s1{vld1q_f32(&src[j*2 + 4])}; + + r04 = vmlaq_f32(r04, shuffle_2020(s0, s1), coeffs); + r14 = vmlaq_f32(r14, shuffle_3131(s0, s1), coeffs); + } + src += 2; + + float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))}; + float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))}; + + vst1_f32(&dst[pos], vadd_f32(vld1_f32(&dst[pos]), r2)); + pos += 2; + } while(--todo); + } + if((dst.size()&1)) + { + auto load4 = [](float32_t a, float32_t b, float32_t c, float32_t d) + { + float32x4_t ret{vmovq_n_f32(a)}; + ret = vsetq_lane_f32(b, ret, 1); + ret = vsetq_lane_f32(c, ret, 2); + ret = vsetq_lane_f32(d, ret, 3); + return ret; + }; + float32x4_t r4{vdupq_n_f32(0.0f)}; + for(size_t j{0};j < mCoeffs.size();j+=4) + { + const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])}; + const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; + r4 = vmlaq_f32(r4, s, coeffs); + } + r4 = vaddq_f32(r4, vrev64q_f32(r4)); + dst[pos] += vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); + } + +#else + + for(float &output : dst) + { + float ret{0.0f}; + for(size_t j{0};j < mCoeffs.size();++j) + ret += src[j*2] * mCoeffs[j]; + + output += ret; + ++src; + } +#endif +} + +#endif /* PHASE_SHIFTER_H */ |