diff options
Diffstat (limited to 'src/jogl/classes/com/jogamp/opengl/math')
15 files changed, 4350 insertions, 2169 deletions
diff --git a/src/jogl/classes/com/jogamp/opengl/math/FloatUtil.java b/src/jogl/classes/com/jogamp/opengl/math/FloatUtil.java index 73244cb13..004562767 100644 --- a/src/jogl/classes/com/jogamp/opengl/math/FloatUtil.java +++ b/src/jogl/classes/com/jogamp/opengl/math/FloatUtil.java @@ -1,5 +1,5 @@ /** - * Copyright 2010 JogAmp Community. All rights reserved. + * Copyright 2010-2023 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: @@ -35,8 +35,6 @@ import com.jogamp.opengl.GLException; import jogamp.opengl.Debug; import com.jogamp.common.os.Platform; -import com.jogamp.opengl.math.geom.AABBox; -import com.jogamp.opengl.math.geom.Frustum; /** * Basic Float math utility functions. @@ -44,20 +42,26 @@ import com.jogamp.opengl.math.geom.Frustum; * Implementation assumes linear matrix layout in column-major order * matching OpenGL's implementation, illustration: * <pre> - Row-Major Column-Major (OpenGL): + Row-Major Column-Major (OpenGL): - | 0 1 2 3 | | 0 4 8 12 | - | | | | - | 4 5 6 7 | | 1 5 9 13 | - M = | | M = | | - | 8 9 10 11 | | 2 6 10 14 | - | | | | - | 12 13 14 15 | | 3 7 11 15 | + | 0 1 2 tx | + | | + | 4 5 6 ty | + M = | | + | 8 9 10 tz | + | | + | 12 13 14 15 | - C R C R + R C R C m[0*4+3] = tx; m[0+4*3] = tx; m[1*4+3] = ty; m[1+4*3] = ty; m[2*4+3] = tz; m[2+4*3] = tz; + + RC (std subscript order) RC (std subscript order) + m03 = tx; m03 = tx; + m13 = ty; m13 = ty; + m23 = tz; m23 = tz; + * </pre> * </p> * <p> @@ -71,7 +75,7 @@ import com.jogamp.opengl.math.geom.Frustum; * Implementation utilizes unrolling of small vertices and matrices wherever possible * while trying to access memory in a linear fashion for performance reasons, see: * <ul> - * <li><a href="https://code.google.com/p/java-matrix-benchmark/">java-matrix-benchmark</a></li> + * <li><a href="https://lessthanoptimal.github.io/Java-Matrix-Benchmark/">java-matrix-benchmark</a></li> * <li><a href="https://github.com/lessthanoptimal/ejml">EJML Efficient Java Matrix Library</a></li> * </ul> * </p> @@ -81,40 +85,12 @@ public final class FloatUtil { // // Matrix Ops + // Only a subset will remain here, try using Matrix4f and perhaps PMVMatrix, SyncMatrix4f16 or SyncMatrices4f16 // /** * Make matrix an identity matrix * @param m 4x4 matrix in column-major order (also result) - * @param m_offset offset in given array <i>m</i>, i.e. start of the 4x4 matrix - * @return given matrix for chaining - */ - public static float[] makeIdentity(final float[] m, final int m_offset) { - m[m_offset+0+4*0] = 1f; - m[m_offset+1+4*0] = 0f; - m[m_offset+2+4*0] = 0f; - m[m_offset+3+4*0] = 0f; - - m[m_offset+0+4*1] = 0f; - m[m_offset+1+4*1] = 1f; - m[m_offset+2+4*1] = 0f; - m[m_offset+3+4*1] = 0f; - - m[m_offset+0+4*2] = 0f; - m[m_offset+1+4*2] = 0f; - m[m_offset+2+4*2] = 1f; - m[m_offset+3+4*2] = 0f; - - m[m_offset+0+4*3] = 0f; - m[m_offset+1+4*3] = 0f; - m[m_offset+2+4*3] = 0f; - m[m_offset+3+4*3] = 1f; - return m; - } - - /** - * Make matrix an identity matrix - * @param m 4x4 matrix in column-major order (also result) * @return given matrix for chaining */ public static float[] makeIdentity(final float[] m) { @@ -153,43 +129,6 @@ public final class FloatUtil { * All matrix fields are only set if <code>initM</code> is <code>true</code>. * </p> * @param m 4x4 matrix in column-major order (also result) - * @param m_offset offset in given array <i>m</i>, i.e. start of the 4x4 matrix - * @param initM if true, given matrix will be initialized w/ identity matrix, - * otherwise only the diagonal and last-row is set. - * The latter can be utilized to share a once {@link #makeIdentity(float[], int) identity set} matrix - * for {@link #makeScale(float[], int, boolean, float, float, float) scaling} - * and {@link #makeTranslation(float[], int, boolean, float, float, float) translation}, - * while leaving the other fields untouched for performance reasons. - * @return given matrix for chaining - */ - public static float[] makeTranslation(final float[] m, final int m_offset, final boolean initM, final float tx, final float ty, final float tz) { - if( initM ) { - makeIdentity(m, m_offset); - } else { - m[m_offset+0+4*0] = 1; - m[m_offset+1+4*1] = 1; - m[m_offset+2+4*2] = 1; - m[m_offset+3+4*3] = 1; - } - m[m_offset+0+4*3] = tx; - m[m_offset+1+4*3] = ty; - m[m_offset+2+4*3] = tz; - return m; - } - - /** - * Make a translation matrix in column-major order from the given axis deltas - * <pre> - Translation matrix (Column Order): - 1 0 0 0 - 0 1 0 0 - 0 0 1 0 - x y z 1 - * </pre> - * <p> - * All matrix fields are only set if <code>initM</code> is <code>true</code>. - * </p> - * @param m 4x4 matrix in column-major order (also result) * @param initM if true, given matrix will be initialized w/ identity matrix, * otherwise only the diagonal and last-row is set. * The latter can be utilized to share a once {@link #makeIdentity(float[], int) identity set} matrix @@ -226,43 +165,6 @@ public final class FloatUtil { * All matrix fields are only set if <code>initM</code> is <code>true</code>. * </p> * @param m 4x4 matrix in column-major order (also result) - * @param m_offset offset in given array <i>m</i>, i.e. start of the 4x4 matrix - * @param initM if true, given matrix will be initialized w/ identity matrix, - * otherwise only the diagonal and last-row is set. - * The latter can be utilized to share a once {@link #makeIdentity(float[], int) identity set} matrix - * for {@link #makeScale(float[], int, boolean, float, float, float) scaling} - * and {@link #makeTranslation(float[], int, boolean, float, float, float) translation}, - * while leaving the other fields untouched for performance reasons. - * @return given matrix for chaining - */ - public static float[] makeScale(final float[] m, final int m_offset, final boolean initM, final float sx, final float sy, final float sz) { - if( initM ) { - makeIdentity(m, m_offset); - } else { - m[m_offset+0+4*3] = 0; - m[m_offset+1+4*3] = 0; - m[m_offset+2+4*3] = 0; - m[m_offset+3+4*3] = 1; - } - m[m_offset+0+4*0] = sx; - m[m_offset+1+4*1] = sy; - m[m_offset+2+4*2] = sz; - return m; - } - - /** - * Make a scale matrix in column-major order from the given axis factors - * <pre> - Scale matrix (Any Order): - x 0 0 0 - 0 y 0 0 - 0 0 z 0 - 0 0 0 1 - * </pre> - * <p> - * All matrix fields are only set if <code>initM</code> is <code>true</code>. - * </p> - * @param m 4x4 matrix in column-major order (also result) * @param initM if true, given matrix will be initialized w/ identity matrix, * otherwise only the diagonal and last-row is set. * The latter can be utilized to share a once {@link #makeIdentity(float[], int) identity set} matrix @@ -287,189 +189,6 @@ public final class FloatUtil { } /** - * Make a rotation matrix from the given axis and angle in radians. - * <pre> - Rotation matrix (Column Order): - xx(1-c)+c xy(1-c)+zs xz(1-c)-ys 0 - xy(1-c)-zs yy(1-c)+c yz(1-c)+xs 0 - xz(1-c)+ys yz(1-c)-xs zz(1-c)+c 0 - 0 0 0 1 - * </pre> - * <p> - * All matrix fields are set. - * </p> - * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a> - * @param m 4x4 matrix in column-major order (also result) - * @param m_offset offset in given array <i>m</i>, i.e. start of the 4x4 matrix - * @return given matrix for chaining - */ - public static float[] makeRotationAxis(final float[] m, final int m_offset, final float angrad, float x, float y, float z, final float[] tmpVec3f) { - final float c = cos(angrad); - final float ic= 1.0f - c; - final float s = sin(angrad); - - tmpVec3f[0]=x; tmpVec3f[1]=y; tmpVec3f[2]=z; - VectorUtil.normalizeVec3(tmpVec3f); - x = tmpVec3f[0]; y = tmpVec3f[1]; z = tmpVec3f[2]; - - final float xy = x*y; - final float xz = x*z; - final float xs = x*s; - final float ys = y*s; - final float yz = y*z; - final float zs = z*s; - m[0+0*4+m_offset] = x*x*ic+c; - m[1+0*4+m_offset] = xy*ic+zs; - m[2+0*4+m_offset] = xz*ic-ys; - m[3+0*4+m_offset] = 0; - - m[0+1*4+m_offset] = xy*ic-zs; - m[1+1*4+m_offset] = y*y*ic+c; - m[2+1*4+m_offset] = yz*ic+xs; - m[3+1*4+m_offset] = 0; - - m[0+2*4+m_offset] = xz*ic+ys; - m[1+2*4+m_offset] = yz*ic-xs; - m[2+2*4+m_offset] = z*z*ic+c; - m[3+2*4+m_offset] = 0; - - m[0+3*4+m_offset] = 0f; - m[1+3*4+m_offset] = 0f; - m[2+3*4+m_offset] = 0f; - m[3+3*4+m_offset] = 1f; - - return m; - } - - /** - * Make a concatenated rotation matrix in column-major order from the given Euler rotation angles in radians. - * <p> - * The rotations are applied in the given order: - * <ul> - * <li>y - heading</li> - * <li>z - attitude</li> - * <li>x - bank</li> - * </ul> - * </p> - * <p> - * All matrix fields are set. - * </p> - * @param m 4x4 matrix in column-major order (also result) - * @param m_offset offset in given array <i>m</i>, i.e. start of the 4x4 matrix - * @param bankX the Euler pitch angle in radians. (rotation about the X axis) - * @param headingY the Euler yaw angle in radians. (rotation about the Y axis) - * @param attitudeZ the Euler roll angle in radians. (rotation about the Z axis) - * @return given matrix for chaining - * <p> - * Implementation does not use Quaternion and hence is exposed to - * <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q34">Gimbal-Lock</a> - * </p> - * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q36">Matrix-FAQ Q36</a> - * @see <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToMatrix/index.htm">euclideanspace.com-eulerToMatrix</a> - */ - public static float[] makeRotationEuler(final float[] m, final int m_offset, final float bankX, final float headingY, final float attitudeZ) { - // Assuming the angles are in radians. - final float ch = cos(headingY); - final float sh = sin(headingY); - final float ca = cos(attitudeZ); - final float sa = sin(attitudeZ); - final float cb = cos(bankX); - final float sb = sin(bankX); - - m[0+0*4+m_offset] = ch*ca; - m[1+0*4+m_offset] = sa; - m[2+0*4+m_offset] = -sh*ca; - m[3+0*4+m_offset] = 0; - - m[0+1*4+m_offset] = sh*sb - ch*sa*cb; - m[1+1*4+m_offset] = ca*cb; - m[2+1*4+m_offset] = sh*sa*cb + ch*sb; - m[3+1*4+m_offset] = 0; - - m[0+2*4+m_offset] = ch*sa*sb + sh*cb; - m[1+2*4+m_offset] = -ca*sb; - m[2+2*4+m_offset] = -sh*sa*sb + ch*cb; - m[3+2*4+m_offset] = 0; - - m[0+3*4+m_offset] = 0; - m[1+3*4+m_offset] = 0; - m[2+3*4+m_offset] = 0; - m[3+3*4+m_offset] = 1; - - return m; - } - - /** - * Make given matrix the orthogonal matrix based on given parameters. - * <pre> - Ortho matrix (Column Order): - 2/dx 0 0 0 - 0 2/dy 0 0 - 0 0 2/dz 0 - tx ty tz 1 - * </pre> - * <p> - * All matrix fields are only set if <code>initM</code> is <code>true</code>. - * </p> - * @param m 4x4 matrix in column-major order (also result) - * @param m_offset offset in given array <i>m</i>, i.e. start of the 4x4 matrix - * @param initM if true, given matrix will be initialized w/ identity matrix, - * otherwise only the orthogonal fields are set. - * @param left - * @param right - * @param bottom - * @param top - * @param zNear - * @param zFar - * @return given matrix for chaining - */ - public static float[] makeOrtho(final float[] m, final int m_offset, final boolean initM, - final float left, final float right, - final float bottom, final float top, - final float zNear, final float zFar) { - if( initM ) { - // m[m_offset+0+4*0] = 1f; - m[m_offset+1+4*0] = 0f; - m[m_offset+2+4*0] = 0f; - m[m_offset+3+4*0] = 0f; - - m[m_offset+0+4*1] = 0f; - // m[m_offset+1+4*1] = 1f; - m[m_offset+2+4*1] = 0f; - m[m_offset+3+4*1] = 0f; - - m[m_offset+0+4*2] = 0f; - m[m_offset+1+4*2] = 0f; - // m[m_offset+2+4*2] = 1f; - m[m_offset+3+4*2] = 0f; - - // m[m_offset+0+4*3] = 0f; - // m[m_offset+1+4*3] = 0f; - // m[m_offset+2+4*3] = 0f; - // m[m_offset+3+4*3] = 1f; - } - final float dx=right-left; - final float dy=top-bottom; - final float dz=zFar-zNear; - final float tx=-1.0f*(right+left)/dx; - final float ty=-1.0f*(top+bottom)/dy; - final float tz=-1.0f*(zFar+zNear)/dz; - - m[m_offset+0+4*0] = 2.0f/dx; - - m[m_offset+1+4*1] = 2.0f/dy; - - m[m_offset+2+4*2] = -2.0f/dz; - - m[m_offset+0+4*3] = tx; - m[m_offset+1+4*3] = ty; - m[m_offset+2+4*3] = tz; - m[m_offset+3+4*3] = 1f; - - return m; - } - - /** * Make given matrix the frustum matrix based on given parameters. * <pre> Frustum matrix (Column Order): @@ -580,35 +299,6 @@ public final class FloatUtil { } /** - * Make given matrix the perspective {@link #makeFrustum(float[], int, boolean, float, float, float, float, float, float) frustum} - * matrix based on given parameters. - * <p> - * All matrix fields are only set if <code>initM</code> is <code>true</code>. - * </p> - * - * @param m 4x4 matrix in column-major order (also result) - * @param m_offset offset in given array <i>m</i>, i.e. start of the 4x4 matrix - * @param initM if true, given matrix will be initialized w/ identity matrix, - * otherwise only the frustum fields are set. - * @param fovhv {@link FovHVHalves} field of view in both directions, may not be centered, either in radians or tangent - * @param zNear - * @param zFar - * @return given matrix for chaining - * @throws GLException if {@code zNear <= 0} or {@code zFar <= zNear} - * @see #makeFrustum(float[], int, boolean, float, float, float, float, float, float) - * @see Frustum#updateByFovDesc(float[], int, boolean, Frustum.FovDesc) - */ - public static float[] makePerspective(final float[] m, final int m_offset, final boolean initM, - final FovHVHalves fovhv, final float zNear, final float zFar) throws GLException { - final FovHVHalves fovhvTan = fovhv.toTangents(); // use tangent of half-fov ! - final float top = fovhvTan.top * zNear; - final float bottom = -1.0f * fovhvTan.bottom * zNear; - final float left = -1.0f * fovhvTan.left * zNear; - final float right = fovhvTan.right * zNear; - return makeFrustum(m, m_offset, initM, left, right, bottom, top, zNear, zFar); - } - - /** * Make given matrix the <i>look-at</i> matrix based on given parameters. * <p> * Consist out of two matrix multiplications: @@ -722,7 +412,7 @@ public final class FloatUtil { * @param mat4Tmp temp float[16] storage * @return given matrix <code>m</code> for chaining or <code>null</code> if either delta value is <= zero. */ - public static float[] makePick(final float[] m, final int m_offset, + public static float[] makePick(final float[] m, final float x, final float y, final float deltaX, final float deltaY, final int[] viewport, final int viewport_offset, @@ -732,13 +422,13 @@ public final class FloatUtil { } /* Translate and scale the picked region to the entire window */ - makeTranslation(m, m_offset, true, + makeTranslation(m, true, (viewport[2+viewport_offset] - 2 * (x - viewport[0+viewport_offset])) / deltaX, (viewport[3+viewport_offset] - 2 * (y - viewport[1+viewport_offset])) / deltaY, 0); makeScale(mat4Tmp, true, viewport[2+viewport_offset] / deltaX, viewport[3+viewport_offset] / deltaY, 1.0f); - multMatrix(m, m_offset, mat4Tmp, 0); + multMatrix(m, mat4Tmp); return m; } @@ -746,42 +436,6 @@ public final class FloatUtil { * Transpose the given matrix. * * @param msrc 4x4 matrix in column-major order, the source - * @param msrc_offset offset in given array <i>msrc</i>, i.e. start of the 4x4 matrix - * @param mres 4x4 matrix in column-major order, the result - * @param mres_offset offset in given array <i>mres</i>, i.e. start of the 4x4 matrix - * @return given result matrix <i>mres</i> for chaining - */ - public static float[] transposeMatrix(final float[] msrc, final int msrc_offset, final float[] mres, final int mres_offset) { - mres[mres_offset+0] = msrc[msrc_offset+0*4]; - mres[mres_offset+1] = msrc[msrc_offset+1*4]; - mres[mres_offset+2] = msrc[msrc_offset+2*4]; - mres[mres_offset+3] = msrc[msrc_offset+3*4]; - - final int i4_1 = 1*4; - mres[mres_offset+0+i4_1] = msrc[msrc_offset+1+0*4]; - mres[mres_offset+1+i4_1] = msrc[msrc_offset+1+1*4]; - mres[mres_offset+2+i4_1] = msrc[msrc_offset+1+2*4]; - mres[mres_offset+3+i4_1] = msrc[msrc_offset+1+3*4]; - - final int i4_2 = 2*4; - mres[mres_offset+0+i4_2] = msrc[msrc_offset+2+0*4]; - mres[mres_offset+1+i4_2] = msrc[msrc_offset+2+1*4]; - mres[mres_offset+2+i4_2] = msrc[msrc_offset+2+2*4]; - mres[mres_offset+3+i4_2] = msrc[msrc_offset+2+3*4]; - - final int i4_3 = 3*4; - mres[mres_offset+0+i4_3] = msrc[msrc_offset+3+0*4]; - mres[mres_offset+1+i4_3] = msrc[msrc_offset+3+1*4]; - mres[mres_offset+2+i4_3] = msrc[msrc_offset+3+2*4]; - mres[mres_offset+3+i4_3] = msrc[msrc_offset+3+3*4]; - - return mres; - } - - /** - * Transpose the given matrix. - * - * @param msrc 4x4 matrix in column-major order, the source * @param mres 4x4 matrix in column-major order, the result * @return given result matrix <i>mres</i> for chaining */ @@ -815,40 +469,6 @@ public final class FloatUtil { /** * Returns the determinant of the given matrix * @param m 4x4 matrix in column-major order, the source - * @param m_offset offset in given array <i>m</i>, i.e. start of the 4x4 matrix - * @return the matrix determinant - */ - public static float matrixDeterminant(final float[] m, final int m_offset) { - float a11 = m[ 1+4*1 + m_offset ]; - float a21 = m[ 2+4*1 + m_offset ]; - float a31 = m[ 3+4*1 + m_offset ]; - float a12 = m[ 1+4*2 + m_offset ]; - float a22 = m[ 2+4*2 + m_offset ]; - float a32 = m[ 3+4*2 + m_offset ]; - float a13 = m[ 1+4*3 + m_offset ]; - float a23 = m[ 2+4*3 + m_offset ]; - float a33 = m[ 3+4*3 + m_offset ]; - - float ret = 0; - ret += m[ 0 + m_offset ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31)); - a11 = m[ 1+4*0 + m_offset ]; - a21 = m[ 2+4*0 + m_offset ]; - a31 = m[ 3+4*0 + m_offset ]; - ret -= m[ 0+4*1 + m_offset ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31)); - a12 = m[ 1+4*1 + m_offset ]; - a22 = m[ 2+4*1 + m_offset ]; - a32 = m[ 3+4*1 + m_offset ]; - ret += m[ 0+4*2 + m_offset ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31)); - a13 = m[ 1+4*2 + m_offset ]; - a23 = m[ 2+4*2 + m_offset ]; - a33 = m[ 3+4*2 + m_offset ]; - ret -= m[ 0+4*3 + m_offset ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31)); - return ret; - } - - /** - * Returns the determinant of the given matrix - * @param m 4x4 matrix in column-major order, the source * @return the matrix determinant */ public static float matrixDeterminant(final float[] m) { @@ -878,94 +498,6 @@ public final class FloatUtil { ret -= m[ 0+4*3 ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31)); return ret; } - - /** - * Invert the given matrix. - * <p> - * Returns <code>null</code> if inversion is not possible, - * e.g. matrix is singular due to a bad matrix. - * </p> - * - * @param msrc 4x4 matrix in column-major order, the source - * @param msrc_offset offset in given array <i>msrc</i>, i.e. start of the 4x4 matrix - * @param mres 4x4 matrix in column-major order, the result - may be <code>msrc</code> (in-place) - * @param mres_offset offset in given array <i>mres</i>, i.e. start of the 4x4 matrix - may be <code>msrc_offset</code> (in-place) - * @return given result matrix <i>mres</i> for chaining if successful, otherwise <code>null</code>. See above. - */ - public static float[] invertMatrix(final float[] msrc, final int msrc_offset, final float[] mres, final int mres_offset) { - final float scale; - { - float max = Math.abs(msrc[0]); - - for( int i = 1; i < 16; i++ ) { - final float a = Math.abs(msrc[i]); - if( a > max ) max = a; - } - if( 0 == max ) { - return null; - } - scale = 1.0f/max; - } - - final float a11 = msrc[0+4*0+msrc_offset]*scale; - final float a21 = msrc[1+4*0+msrc_offset]*scale; - final float a31 = msrc[2+4*0+msrc_offset]*scale; - final float a41 = msrc[3+4*0+msrc_offset]*scale; - final float a12 = msrc[0+4*1+msrc_offset]*scale; - final float a22 = msrc[1+4*1+msrc_offset]*scale; - final float a32 = msrc[2+4*1+msrc_offset]*scale; - final float a42 = msrc[3+4*1+msrc_offset]*scale; - final float a13 = msrc[0+4*2+msrc_offset]*scale; - final float a23 = msrc[1+4*2+msrc_offset]*scale; - final float a33 = msrc[2+4*2+msrc_offset]*scale; - final float a43 = msrc[3+4*2+msrc_offset]*scale; - final float a14 = msrc[0+4*3+msrc_offset]*scale; - final float a24 = msrc[1+4*3+msrc_offset]*scale; - final float a34 = msrc[2+4*3+msrc_offset]*scale; - final float a44 = msrc[3+4*3+msrc_offset]*scale; - - final float m11 = + a22*(a33*a44 - a34*a43) - a23*(a32*a44 - a34*a42) + a24*(a32*a43 - a33*a42); - final float m12 = -( + a21*(a33*a44 - a34*a43) - a23*(a31*a44 - a34*a41) + a24*(a31*a43 - a33*a41)); - final float m13 = + a21*(a32*a44 - a34*a42) - a22*(a31*a44 - a34*a41) + a24*(a31*a42 - a32*a41); - final float m14 = -( + a21*(a32*a43 - a33*a42) - a22*(a31*a43 - a33*a41) + a23*(a31*a42 - a32*a41)); - final float m21 = -( + a12*(a33*a44 - a34*a43) - a13*(a32*a44 - a34*a42) + a14*(a32*a43 - a33*a42)); - final float m22 = + a11*(a33*a44 - a34*a43) - a13*(a31*a44 - a34*a41) + a14*(a31*a43 - a33*a41); - final float m23 = -( + a11*(a32*a44 - a34*a42) - a12*(a31*a44 - a34*a41) + a14*(a31*a42 - a32*a41)); - final float m24 = + a11*(a32*a43 - a33*a42) - a12*(a31*a43 - a33*a41) + a13*(a31*a42 - a32*a41); - final float m31 = + a12*(a23*a44 - a24*a43) - a13*(a22*a44 - a24*a42) + a14*(a22*a43 - a23*a42); - final float m32 = -( + a11*(a23*a44 - a24*a43) - a13*(a21*a44 - a24*a41) + a14*(a21*a43 - a23*a41)); - final float m33 = + a11*(a22*a44 - a24*a42) - a12*(a21*a44 - a24*a41) + a14*(a21*a42 - a22*a41); - final float m34 = -( + a11*(a22*a43 - a23*a42) - a12*(a21*a43 - a23*a41) + a13*(a21*a42 - a22*a41)); - final float m41 = -( + a12*(a23*a34 - a24*a33) - a13*(a22*a34 - a24*a32) + a14*(a22*a33 - a23*a32)); - final float m42 = + a11*(a23*a34 - a24*a33) - a13*(a21*a34 - a24*a31) + a14*(a21*a33 - a23*a31); - final float m43 = -( + a11*(a22*a34 - a24*a32) - a12*(a21*a34 - a24*a31) + a14*(a21*a32 - a22*a31)); - final float m44 = + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31); - - final float det = (a11*m11 + a12*m12 + a13*m13 + a14*m14)/scale; - - if( 0 == det ) { - return null; - } - - mres[0+4*0+mres_offset] = m11 / det; - mres[1+4*0+mres_offset] = m12 / det; - mres[2+4*0+mres_offset] = m13 / det; - mres[3+4*0+mres_offset] = m14 / det; - mres[0+4*1+mres_offset] = m21 / det; - mres[1+4*1+mres_offset] = m22 / det; - mres[2+4*1+mres_offset] = m23 / det; - mres[3+4*1+mres_offset] = m24 / det; - mres[0+4*2+mres_offset] = m31 / det; - mres[1+4*2+mres_offset] = m32 / det; - mres[2+4*2+mres_offset] = m33 / det; - mres[3+4*2+mres_offset] = m34 / det; - mres[0+4*3+mres_offset] = m41 / det; - mres[1+4*3+mres_offset] = m42 / det; - mres[2+4*3+mres_offset] = m43 / det; - mres[3+4*3+mres_offset] = m44 / det; - return mres; - } - /** * Invert the given matrix. * <p> @@ -1027,27 +559,27 @@ public final class FloatUtil { final float m44 = + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31); final float det = (a11*m11 + a12*m12 + a13*m13 + a14*m14)/scale; - if( 0 == det ) { return null; } - - mres[0+4*0] = m11 / det; - mres[1+4*0] = m12 / det; - mres[2+4*0] = m13 / det; - mres[3+4*0] = m14 / det; - mres[0+4*1] = m21 / det; - mres[1+4*1] = m22 / det; - mres[2+4*1] = m23 / det; - mres[3+4*1] = m24 / det; - mres[0+4*2] = m31 / det; - mres[1+4*2] = m32 / det; - mres[2+4*2] = m33 / det; - mres[3+4*2] = m34 / det; - mres[0+4*3] = m41 / det; - mres[1+4*3] = m42 / det; - mres[2+4*3] = m43 / det; - mres[3+4*3] = m44 / det; + final float invdet = 1.0f / det; + + mres[0+4*0] = m11 * invdet; + mres[1+4*0] = m12 * invdet; + mres[2+4*0] = m13 * invdet; + mres[3+4*0] = m14 * invdet; + mres[0+4*1] = m21 * invdet; + mres[1+4*1] = m22 * invdet; + mres[2+4*1] = m23 * invdet; + mres[3+4*1] = m24 * invdet; + mres[0+4*2] = m31 * invdet; + mres[1+4*2] = m32 * invdet; + mres[2+4*2] = m33 * invdet; + mres[3+4*2] = m34 * invdet; + mres[0+4*3] = m41 * invdet; + mres[1+4*3] = m42 * invdet; + mres[2+4*3] = m43 * invdet; + mres[3+4*3] = m44 * invdet; return mres; } @@ -1072,12 +604,12 @@ public final class FloatUtil { * @param vec4Tmp2 4 component vector for temp storage * @return true if successful, otherwise false (z is 1) */ - public static boolean mapObjToWinCoords(final float objx, final float objy, final float objz, - final float[] modelMatrix, final int modelMatrix_offset, - final float[] projMatrix, final int projMatrix_offset, - final int[] viewport, final int viewport_offset, - final float[] win_pos, final int win_pos_offset, - final float[/*4*/] vec4Tmp1, final float[/*4*/] vec4Tmp2) { + public static boolean mapObjToWin(final float objx, final float objy, final float objz, + final float[] modelMatrix, final int modelMatrix_offset, + final float[] projMatrix, final int projMatrix_offset, + final int[] viewport, final int viewport_offset, + final float[] win_pos, final int win_pos_offset, + final float[/*4*/] vec4Tmp1, final float[/*4*/] vec4Tmp2) { vec4Tmp1[0] = objx; vec4Tmp1[1] = objy; vec4Tmp1[2] = objz; @@ -1110,56 +642,6 @@ public final class FloatUtil { } /** - * Map object coordinates to window coordinates. - * <p> - * Traditional <code>gluProject</code> implementation. - * </p> - * - * @param objx - * @param objy - * @param objz - * @param mat4PMv [projection] x [modelview] matrix, i.e. P x Mv - * @param viewport 4 component viewport vector - * @param viewport_offset - * @param win_pos 3 component window coordinate, the result - * @param win_pos_offset - * @param vec4Tmp1 4 component vector for temp storage - * @param vec4Tmp2 4 component vector for temp storage - * @return true if successful, otherwise false (z is 1) - */ - public static boolean mapObjToWinCoords(final float objx, final float objy, final float objz, - final float[/*16*/] mat4PMv, - final int[] viewport, final int viewport_offset, - final float[] win_pos, final int win_pos_offset, - final float[/*4*/] vec4Tmp1, final float[/*4*/] vec4Tmp2) { - vec4Tmp2[0] = objx; - vec4Tmp2[1] = objy; - vec4Tmp2[2] = objz; - vec4Tmp2[3] = 1.0f; - - // vec4Tmp1 = P * Mv * o - multMatrixVec(mat4PMv, vec4Tmp2, vec4Tmp1); - - if (vec4Tmp1[3] == 0.0f) { - return false; - } - - vec4Tmp1[3] = (1.0f / vec4Tmp1[3]) * 0.5f; - - // Map x, y and z to range 0-1 - vec4Tmp1[0] = vec4Tmp1[0] * vec4Tmp1[3] + 0.5f; - vec4Tmp1[1] = vec4Tmp1[1] * vec4Tmp1[3] + 0.5f; - vec4Tmp1[2] = vec4Tmp1[2] * vec4Tmp1[3] + 0.5f; - - // Map x,y to viewport - win_pos[0+win_pos_offset] = vec4Tmp1[0] * viewport[2+viewport_offset] + viewport[0+viewport_offset]; - win_pos[1+win_pos_offset] = vec4Tmp1[1] * viewport[3+viewport_offset] + viewport[1+viewport_offset]; - win_pos[2+win_pos_offset] = vec4Tmp1[2]; - - return true; - } - - /** * Map window coordinates to object coordinates. * <p> * Traditional <code>gluUnProject</code> implementation. @@ -1180,12 +662,12 @@ public final class FloatUtil { * @param mat4Tmp2 16 component matrix for temp storage * @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z) */ - public static boolean mapWinToObjCoords(final float winx, final float winy, final float winz, - final float[] modelMatrix, final int modelMatrix_offset, - final float[] projMatrix, final int projMatrix_offset, - final int[] viewport, final int viewport_offset, - final float[] obj_pos, final int obj_pos_offset, - final float[/*16*/] mat4Tmp1, final float[/*16*/] mat4Tmp2) { + public static boolean mapWinToObj(final float winx, final float winy, final float winz, + final float[] modelMatrix, final int modelMatrix_offset, + final float[] projMatrix, final int projMatrix_offset, + final int[] viewport, final int viewport_offset, + final float[] obj_pos, final int obj_pos_offset, + final float[/*16*/] mat4Tmp1, final float[/*16*/] mat4Tmp2) { // mat4Tmp1 = P x Mv multMatrix(projMatrix, projMatrix_offset, modelMatrix, modelMatrix_offset, mat4Tmp1, 0); @@ -1227,137 +709,6 @@ public final class FloatUtil { /** * Map window coordinates to object coordinates. * <p> - * Traditional <code>gluUnProject</code> implementation. - * </p> - * - * @param winx - * @param winy - * @param winz - * @param mat4PMvI inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv) - * @param viewport 4 component viewport vector - * @param viewport_offset - * @param obj_pos 3 component object coordinate, the result - * @param obj_pos_offset - * @param vec4Tmp1 4 component vector for temp storage - * @param vec4Tmp2 4 component vector for temp storage - * @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z) - */ - public static boolean mapWinToObjCoords(final float winx, final float winy, final float winz, - final float[/*16*/] mat4PMvI, - final int[] viewport, final int viewport_offset, - final float[] obj_pos, final int obj_pos_offset, - final float[/*4*/] vec4Tmp1, final float[/*4*/] vec4Tmp2) { - vec4Tmp1[0] = winx; - vec4Tmp1[1] = winy; - vec4Tmp1[2] = winz; - vec4Tmp1[3] = 1.0f; - - // Map x and y from window coordinates - vec4Tmp1[0] = (vec4Tmp1[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset]; - vec4Tmp1[1] = (vec4Tmp1[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset]; - - // Map to range -1 to 1 - vec4Tmp1[0] = vec4Tmp1[0] * 2 - 1; - vec4Tmp1[1] = vec4Tmp1[1] * 2 - 1; - vec4Tmp1[2] = vec4Tmp1[2] * 2 - 1; - - // object raw coords = Inv(P x Mv) * winPos -> mat4Tmp2 - multMatrixVec(mat4PMvI, vec4Tmp1, vec4Tmp2); - - if (vec4Tmp2[3] == 0.0) { - return false; - } - - vec4Tmp2[3] = 1.0f / vec4Tmp2[3]; - - obj_pos[0+obj_pos_offset] = vec4Tmp2[0] * vec4Tmp2[3]; - obj_pos[1+obj_pos_offset] = vec4Tmp2[1] * vec4Tmp2[3]; - obj_pos[2+obj_pos_offset] = vec4Tmp2[2] * vec4Tmp2[3]; - - return true; - } - - /** - * Map two window coordinates to two object coordinates, - * distinguished by their z component. - * - * @param winx - * @param winy - * @param winz1 - * @param winz2 - * @param mat4PMvI inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv) - * @param viewport 4 component viewport vector - * @param viewport_offset - * @param obj1_pos 3 component object coordinate, the result for winz1 - * @param obj1_pos_offset - * @param obj2_pos 3 component object coordinate, the result for winz2 - * @param obj2_pos_offset - * @param vec4Tmp1 4 component vector for temp storage - * @param vec4Tmp2 4 component vector for temp storage - * @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z) - */ - public static boolean mapWinToObjCoords(final float winx, final float winy, final float winz1, final float winz2, - final float[/*16*/] mat4PMvI, - final int[] viewport, final int viewport_offset, - final float[] obj1_pos, final int obj1_pos_offset, - final float[] obj2_pos, final int obj2_pos_offset, - final float[/*4*/] vec4Tmp1, final float[/*4*/] vec4Tmp2) { - vec4Tmp1[0] = winx; - vec4Tmp1[1] = winy; - vec4Tmp1[3] = 1.0f; - - // Map x and y from window coordinates - vec4Tmp1[0] = (vec4Tmp1[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset]; - vec4Tmp1[1] = (vec4Tmp1[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset]; - - // Map to range -1 to 1 - vec4Tmp1[0] = vec4Tmp1[0] * 2 - 1; - vec4Tmp1[1] = vec4Tmp1[1] * 2 - 1; - - // - // winz1 - // - vec4Tmp1[2] = winz1; - vec4Tmp1[2] = vec4Tmp1[2] * 2 - 1; - - // object raw coords = Inv(P x Mv) * winPos -> mat4Tmp2 - multMatrixVec(mat4PMvI, vec4Tmp1, vec4Tmp2); - - if (vec4Tmp2[3] == 0.0) { - return false; - } - - vec4Tmp2[3] = 1.0f / vec4Tmp2[3]; - - obj1_pos[0+obj1_pos_offset] = vec4Tmp2[0] * vec4Tmp2[3]; - obj1_pos[1+obj1_pos_offset] = vec4Tmp2[1] * vec4Tmp2[3]; - obj1_pos[2+obj1_pos_offset] = vec4Tmp2[2] * vec4Tmp2[3]; - - // - // winz2 - // - vec4Tmp1[2] = winz2; - vec4Tmp1[2] = vec4Tmp1[2] * 2 - 1; - - // object raw coords = Inv(P x Mv) * winPos -> mat4Tmp2 - multMatrixVec(mat4PMvI, vec4Tmp1, vec4Tmp2); - - if (vec4Tmp2[3] == 0.0) { - return false; - } - - vec4Tmp2[3] = 1.0f / vec4Tmp2[3]; - - obj2_pos[0+obj2_pos_offset] = vec4Tmp2[0] * vec4Tmp2[3]; - obj2_pos[1+obj2_pos_offset] = vec4Tmp2[1] * vec4Tmp2[3]; - obj2_pos[2+obj2_pos_offset] = vec4Tmp2[2] * vec4Tmp2[3]; - - return true; - } - - /** - * Map window coordinates to object coordinates. - * <p> * Traditional <code>gluUnProject4</code> implementation. * </p> * @@ -1379,13 +730,13 @@ public final class FloatUtil { * @param mat4Tmp2 16 component matrix for temp storage * @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z) */ - public static boolean mapWinToObjCoords(final float winx, final float winy, final float winz, final float clipw, - final float[] modelMatrix, final int modelMatrix_offset, - final float[] projMatrix, final int projMatrix_offset, - final int[] viewport, final int viewport_offset, - final float near, final float far, - final float[] obj_pos, final int obj_pos_offset, - final float[/*16*/] mat4Tmp1, final float[/*16*/] mat4Tmp2) { + public static boolean mapWinToObj4(final float winx, final float winy, final float winz, final float clipw, + final float[] modelMatrix, final int modelMatrix_offset, + final float[] projMatrix, final int projMatrix_offset, + final int[] viewport, final int viewport_offset, + final float near, final float far, + final float[] obj_pos, final int obj_pos_offset, + final float[/*16*/] mat4Tmp1, final float[/*16*/] mat4Tmp2) { // mat4Tmp1 = P x Mv multMatrix(projMatrix, projMatrix_offset, modelMatrix, modelMatrix_offset, mat4Tmp1, 0); @@ -1397,7 +748,7 @@ public final class FloatUtil { mat4Tmp2[0] = winx; mat4Tmp2[1] = winy; mat4Tmp2[2] = winz; - mat4Tmp2[3] = 1.0f; + mat4Tmp2[3] = clipw; // Map x and y from window coordinates mat4Tmp2[0] = (mat4Tmp2[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset]; @@ -1417,8 +768,6 @@ public final class FloatUtil { return false; } - mat4Tmp2[3+raw_off] = 1.0f / mat4Tmp2[3+raw_off]; - obj_pos[0+obj_pos_offset] = mat4Tmp2[0+raw_off]; obj_pos[1+obj_pos_offset] = mat4Tmp2[1+raw_off]; obj_pos[2+obj_pos_offset] = mat4Tmp2[2+raw_off]; @@ -1427,67 +776,13 @@ public final class FloatUtil { return true; } - - /** - * Map two window coordinates w/ shared X/Y and distinctive Z - * to a {@link Ray}. The resulting {@link Ray} maybe used for <i>picking</i> - * using a {@link AABBox#getRayIntersection(Ray, float[]) bounding box}. - * <p> - * Notes for picking <i>winz0</i> and <i>winz1</i>: - * <ul> - * <li>see {@link #getZBufferEpsilon(int, float, float)}</li> - * <li>see {@link #getZBufferValue(int, float, float, float)}</li> - * <li>see {@link #getOrthoWinZ(float, float, float)}</li> - * </ul> - * </p> - * @param winx - * @param winy - * @param winz0 - * @param winz1 - * @param modelMatrix 4x4 modelview matrix - * @param modelMatrix_offset - * @param projMatrix 4x4 projection matrix - * @param projMatrix_offset - * @param viewport 4 component viewport vector - * @param viewport_offset - * @param ray storage for the resulting {@link Ray} - * @param mat4Tmp1 16 component matrix for temp storage - * @param mat4Tmp2 16 component matrix for temp storage - * @param vec4Tmp2 4 component vector for temp storage - * @return true if successful, otherwise false (failed to invert matrix, or becomes z is infinity) - */ - public static boolean mapWinToRay(final float winx, final float winy, final float winz0, final float winz1, - final float[] modelMatrix, final int modelMatrix_offset, - final float[] projMatrix, final int projMatrix_offset, - final int[] viewport, final int viewport_offset, - final Ray ray, - final float[/*16*/] mat4Tmp1, final float[/*16*/] mat4Tmp2, final float[/*4*/] vec4Tmp2) { - // mat4Tmp1 = P x Mv - multMatrix(projMatrix, projMatrix_offset, modelMatrix, modelMatrix_offset, mat4Tmp1, 0); - - // mat4Tmp1 = Inv(P x Mv) - if ( null == invertMatrix(mat4Tmp1, mat4Tmp1) ) { - return false; - } - if( mapWinToObjCoords(winx, winy, winz0, winz1, mat4Tmp1, - viewport, viewport_offset, - ray.orig, 0, ray.dir, 0, - mat4Tmp2, vec4Tmp2) ) { - VectorUtil.normalizeVec3( VectorUtil.subVec3(ray.dir, ray.dir, ray.orig) ); - return true; - } else { - return false; - } - } - /** * Multiply matrix: [d] = [a] x [b] * @param a 4x4 matrix in column-major order * @param b 4x4 matrix in column-major order * @param d result a*b in column-major order - * @return given result matrix <i>d</i> for chaining */ - public static float[] multMatrix(final float[] a, final int a_off, final float[] b, final int b_off, final float[] d, final int d_off) { + public static void multMatrix(final float[] a, final int a_off, final float[] b, final int b_off, final float[] d, final int d_off) { final float b00 = b[b_off+0+0*4]; final float b10 = b[b_off+1+0*4]; final float b20 = b[b_off+2+0*4]; @@ -1540,8 +835,6 @@ public final class FloatUtil { d[d_off+3+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ; d[d_off+3+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ; d[d_off+3+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ; - - return d; } /** @@ -1612,9 +905,8 @@ public final class FloatUtil { * Multiply matrix: [a] = [a] x [b] * @param a 4x4 matrix in column-major order (also result) * @param b 4x4 matrix in column-major order - * @return given result matrix <i>a</i> for chaining */ - public static float[] multMatrix(final float[] a, final int a_off, final float[] b, final int b_off) { + public static void multMatrix(final float[] a, final int a_off, final float[] b, final int b_off) { final float b00 = b[b_off+0+0*4]; final float b10 = b[b_off+1+0*4]; final float b20 = b[b_off+2+0*4]; @@ -1667,8 +959,6 @@ public final class FloatUtil { a[a_off+3+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ; a[a_off+3+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ; a[a_off+3+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ; - - return a; } /** @@ -1778,11 +1068,10 @@ public final class FloatUtil { * @param m_in_off * @param v_in 4-component column-vector * @param v_out m_in * v_in - * @return given result vector <i>v_out</i> for chaining */ - public static float[] multMatrixVec(final float[] m_in, final int m_in_off, - final float[] v_in, final int v_in_off, - final float[] v_out, final int v_out_off) { + public static void multMatrixVec(final float[] m_in, final int m_in_off, + final float[] v_in, final int v_in_off, + final float[] v_out, final int v_out_off) { // (one matrix row in column-major order) X (column vector) v_out[0 + v_out_off] = v_in[0+v_in_off] * m_in[0*4+m_in_off ] + v_in[1+v_in_off] * m_in[1*4+m_in_off ] + v_in[2+v_in_off] * m_in[2*4+m_in_off ] + v_in[3+v_in_off] * m_in[3*4+m_in_off ]; @@ -1798,8 +1087,31 @@ public final class FloatUtil { final int m_in_off_3 = 3+m_in_off; v_out[3 + v_out_off] = v_in[0+v_in_off] * m_in[0*4+m_in_off_3] + v_in[1+v_in_off] * m_in[1*4+m_in_off_3] + v_in[2+v_in_off] * m_in[2*4+m_in_off_3] + v_in[3+v_in_off] * m_in[3*4+m_in_off_3]; + } - return v_out; + /** + * @param m_in 4x4 matrix in column-major order + * @param m_in_off + * @param v_in 4-component column-vector + * @param v_out m_in * v_in + */ + public static void multMatrixVec(final float[] m_in, final int m_in_off, + final float[] v_in, final float[] v_out) { + // (one matrix row in column-major order) X (column vector) + v_out[0] = v_in[0] * m_in[0*4+m_in_off ] + v_in[1] * m_in[1*4+m_in_off ] + + v_in[2] * m_in[2*4+m_in_off ] + v_in[3] * m_in[3*4+m_in_off ]; + + final int m_in_off_1 = 1+m_in_off; + v_out[1] = v_in[0] * m_in[0*4+m_in_off_1] + v_in[1] * m_in[1*4+m_in_off_1] + + v_in[2] * m_in[2*4+m_in_off_1] + v_in[3] * m_in[3*4+m_in_off_1]; + + final int m_in_off_2 = 2+m_in_off; + v_out[2] = v_in[0] * m_in[0*4+m_in_off_2] + v_in[1] * m_in[1*4+m_in_off_2] + + v_in[2] * m_in[2*4+m_in_off_2] + v_in[3] * m_in[3*4+m_in_off_2]; + + final int m_in_off_3 = 3+m_in_off; + v_out[3] = v_in[0] * m_in[0*4+m_in_off_3] + v_in[1] * m_in[1*4+m_in_off_3] + + v_in[2] * m_in[2*4+m_in_off_3] + v_in[3] * m_in[3*4+m_in_off_3]; } /** @@ -1845,46 +1157,29 @@ public final class FloatUtil { } /** - * Copy the named column of the given column-major matrix to v_out. - * <p> - * v_out may be 3 or 4 components long, hence the 4th row may not be stored. - * </p> - * @param m_in input column-major matrix - * @param m_in_off offset to input matrix - * @param column named column to copy - * @param v_out the column-vector storage, at least 3 components long - * @param v_out_off offset to storage + * Affine 3f-vector transformation by 4x4 matrix + * + * 4x4 matrix multiplication with 3-component vector, + * using {@code 1} for for {@code v_in[3]} and dropping {@code v_out[3]}, + * which shall be {@code 1}. + * + * @param m_in 4x4 matrix in column-major order + * @param m_in_off + * @param v_in 3-component column-vector + * @param v_out m_in * v_in, 3-component column-vector * @return given result vector <i>v_out</i> for chaining */ - public static float[] copyMatrixColumn(final float[] m_in, final int m_in_off, final int column, final float[] v_out, final int v_out_off) { - v_out[0+v_out_off]=m_in[0+column*4+m_in_off]; - v_out[1+v_out_off]=m_in[1+column*4+m_in_off]; - v_out[2+v_out_off]=m_in[2+column*4+m_in_off]; - if( v_out.length > 3+v_out_off ) { - v_out[3+v_out_off]=m_in[3+column*4+m_in_off]; - } - return v_out; - } + public static float[] multMatrixVec3(final float[] m_in, final float[] v_in, final float[] v_out) { + // (one matrix row in column-major order) X (column vector) + v_out[0] = v_in[0] * m_in[0*4 ] + v_in[1] * m_in[1*4 ] + + v_in[2] * m_in[2*4 ] + 1f * m_in[3*4 ]; + + v_out[1] = v_in[0] * m_in[0*4+1] + v_in[1] * m_in[1*4+1] + + v_in[2] * m_in[2*4+1] + 1f * m_in[3*4+1]; + + v_out[2] = v_in[0] * m_in[0*4+2] + v_in[1] * m_in[1*4+2] + + v_in[2] * m_in[2*4+2] + 1f * m_in[3*4+2]; - /** - * Copy the named row of the given column-major matrix to v_out. - * <p> - * v_out may be 3 or 4 components long, hence the 4th column may not be stored. - * </p> - * @param m_in input column-major matrix - * @param m_in_off offset to input matrix - * @param row named row to copy - * @param v_out the row-vector storage, at least 3 components long - * @param v_out_off offset to storage - * @return given result vector <i>v_out</i> for chaining - */ - public static float[] copyMatrixRow(final float[] m_in, final int m_in_off, final int row, final float[] v_out, final int v_out_off) { - v_out[0+v_out_off]=m_in[row+0*4+m_in_off]; - v_out[1+v_out_off]=m_in[row+1*4+m_in_off]; - v_out[2+v_out_off]=m_in[row+2*4+m_in_off]; - if( v_out.length > 3+v_out_off ) { - v_out[3+v_out_off]=m_in[row+3*4+m_in_off]; - } return v_out; } @@ -1908,11 +1203,11 @@ public final class FloatUtil { final int a0 = aOffset + a.position(); if(rowMajorOrder) { for(int c=0; c<columns; c++) { - sb.append( String.format((Locale)null, f+" ", a.get( a0 + row*columns + c ) ) ); + sb.append( String.format((Locale)null, f+", ", a.get( a0 + row*columns + c ) ) ); } } else { for(int r=0; r<columns; r++) { - sb.append( String.format((Locale)null, f+" ", a.get( a0 + row + r*rows ) ) ); + sb.append( String.format((Locale)null, f+", ", a.get( a0 + row + r*rows ) ) ); } } return sb; @@ -1936,11 +1231,11 @@ public final class FloatUtil { } if(rowMajorOrder) { for(int c=0; c<columns; c++) { - sb.append( String.format((Locale)null, f+" ", a[ aOffset + row*columns + c ] ) ); + sb.append( String.format((Locale)null, f+", ", a[ aOffset + row*columns + c ] ) ); } } else { for(int r=0; r<columns; r++) { - sb.append( String.format((Locale)null, f+" ", a[ aOffset + row + r*rows ] ) ); + sb.append( String.format((Locale)null, f+", ", a[ aOffset + row + r*rows ] ) ); } } return sb; @@ -1963,11 +1258,15 @@ public final class FloatUtil { sb = new StringBuilder(); } final String prefix = ( null == rowPrefix ) ? "" : rowPrefix; + sb.append(prefix).append("{ "); for(int i=0; i<rows; i++) { - sb.append(prefix).append("[ "); + if( 0 < i ) { + sb.append(prefix).append(" "); + } matrixRowToString(sb, f, a, aOffset, rows, columns, rowMajorOrder, i); - sb.append("]").append(Platform.getNewline()); + sb.append(System.lineSeparator()); } + sb.append(prefix).append("}").append(System.lineSeparator()); return sb; } @@ -1988,71 +1287,15 @@ public final class FloatUtil { sb = new StringBuilder(); } final String prefix = ( null == rowPrefix ) ? "" : rowPrefix; + sb.append(prefix).append("{ "); for(int i=0; i<rows; i++) { - sb.append(prefix).append("[ "); - matrixRowToString(sb, f, a, aOffset, rows, columns, rowMajorOrder, i); - sb.append("]").append(Platform.getNewline()); - } - return sb; - } - - /** - * @param sb optional passed StringBuilder instance to be used - * @param rowPrefix optional prefix for each row - * @param f the format string of one floating point, i.e. "%10.5f", see {@link java.util.Formatter} - * @param a 4x4 matrix in column major order (OpenGL) - * @param aOffset offset to <code>a</code>'s current position - * @param b 4x4 matrix in column major order (OpenGL) - * @param bOffset offset to <code>a</code>'s current position - * @param rows - * @param columns - * @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL) - * @return side by side representation - */ - public static StringBuilder matrixToString(StringBuilder sb, final String rowPrefix, final String f, - final FloatBuffer a, final int aOffset, final FloatBuffer b, final int bOffset, - final int rows, final int columns, final boolean rowMajorOrder) { - if(null == sb) { - sb = new StringBuilder(); - } - final String prefix = ( null == rowPrefix ) ? "" : rowPrefix; - for(int i=0; i<rows; i++) { - sb.append(prefix).append("[ "); - matrixRowToString(sb, f, a, aOffset, rows, columns, rowMajorOrder, i); - sb.append("=?= "); - matrixRowToString(sb, f, b, bOffset, rows, columns, rowMajorOrder, i); - sb.append("]").append(Platform.getNewline()); - } - return sb; - } - - /** - * @param sb optional passed StringBuilder instance to be used - * @param rowPrefix optional prefix for each row - * @param f the format string of one floating point, i.e. "%10.5f", see {@link java.util.Formatter} - * @param a 4x4 matrix in column major order (OpenGL) - * @param aOffset offset to <code>a</code>'s current position - * @param b 4x4 matrix in column major order (OpenGL) - * @param bOffset offset to <code>a</code>'s current position - * @param rows - * @param columns - * @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL) - * @return side by side representation - */ - public static StringBuilder matrixToString(StringBuilder sb, final String rowPrefix, final String f, - final float[] a, final int aOffset, final float[] b, final int bOffset, - final int rows, final int columns, final boolean rowMajorOrder) { - if(null == sb) { - sb = new StringBuilder(); - } - final String prefix = ( null == rowPrefix ) ? "" : rowPrefix; - for(int i=0; i<rows; i++) { - sb.append(prefix).append("[ "); + if( 0 < i ) { + sb.append(prefix).append(" "); + } matrixRowToString(sb, f, a, aOffset, rows, columns, rowMajorOrder, i); - sb.append("=?= "); - matrixRowToString(sb, f, b, bOffset, rows, columns, rowMajorOrder, i); - sb.append("]").append(Platform.getNewline()); + sb.append(System.lineSeparator()); } + sb.append(prefix).append("}").append(System.lineSeparator()); return sb; } @@ -2121,6 +1364,16 @@ public final class FloatUtil { /** The value PI^2. */ public final static float SQUARED_PI = PI * PI; + /** Converts arc-degree to radians */ + public static float adegToRad(final float arc_degree) { + return arc_degree * PI / 180.0f; + } + + /** Converts radians to arc-degree */ + public static float radToADeg(final float rad) { + return rad * 180.0f / PI; + } + /** * Epsilon for floating point {@value}, as once computed via {@link #getMachineEpsilon()} on an AMD-64 CPU. * <p> @@ -2257,6 +1510,14 @@ public final class FloatUtil { return Math.abs(a) < epsilon; } + /** + * Return true if value is zero, i.e. it's absolute value < {@link #EPSILON}. + * @see #EPSILON + */ + public static boolean isZero(final float a) { + return Math.abs(a) < FloatUtil.EPSILON; + } + public static float abs(final float a) { return java.lang.Math.abs(a); } public static float pow(final float a, final float b) { return (float) java.lang.Math.pow(a, b); } @@ -2314,10 +1575,10 @@ public final class FloatUtil { /** * Returns orthogonal distance - * (1f/zNear-1f/orthoDist)/(1f/zNear-1f/zFar); + * (1f/zNear-1f/orthoZ) / (1f/zNear-1f/zFar); */ public static float getOrthoWinZ(final float orthoZ, final float zNear, final float zFar) { - return (1f/zNear-1f/orthoZ)/(1f/zNear-1f/zFar); + return (1f/zNear-1f/orthoZ) / (1f/zNear-1f/zFar); } }
\ No newline at end of file diff --git a/src/jogl/classes/com/jogamp/opengl/math/Matrix4.java b/src/jogl/classes/com/jogamp/opengl/math/Matrix4.java deleted file mode 100644 index a080d4442..000000000 --- a/src/jogl/classes/com/jogamp/opengl/math/Matrix4.java +++ /dev/null @@ -1,172 +0,0 @@ -/** - * Copyright 2014 JogAmp Community. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without modification, are - * permitted provided that the following conditions are met: - * - * 1. Redistributions of source code must retain the above copyright notice, this list of - * conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright notice, this list - * of conditions and the following disclaimer in the documentation and/or other materials - * provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED - * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND - * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR - * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR - * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF - * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - * The views and conclusions contained in the software and documentation are those of the - * authors and should not be interpreted as representing official policies, either expressed - * or implied, of JogAmp Community. - */ - -package com.jogamp.opengl.math; - -import com.jogamp.opengl.GLException; -import com.jogamp.opengl.fixedfunc.GLMatrixFunc; - -import com.jogamp.opengl.util.PMVMatrix; - -/** - * Simple float array-backed float 4x4 matrix - * exposing {@link FloatUtil} matrix functionality in an object oriented manner. - * <p> - * Unlike {@link PMVMatrix}, this class only represents one single matrix - * without a complete {@link GLMatrixFunc} implementation, - * allowing this class to be more lightweight. - * </p> - * <p> - * Implementation is not mature - WIP and subject to change. - * </p> - */ -public class Matrix4 { - - public Matrix4() { - matrix = new float[16]; - matrixTxSx = new float[16]; - mat4Tmp1 = new float[16]; - vec4Tmp1 = new float[4]; - FloatUtil.makeIdentity(matrixTxSx); - loadIdentity(); - } - - public final float[] getMatrix() { - return matrix; - } - - public final void loadIdentity() { - FloatUtil.makeIdentity(matrix); - } - - /** - * Multiply matrix: [this] = [this] x [m] - * @param m 4x4 matrix in column-major order - */ - public final void multMatrix(final float[] m, final int m_offset) { - FloatUtil.multMatrix(matrix, 0, m, m_offset); - } - - /** - * Multiply matrix: [this] = [this] x [m] - * @param m 4x4 matrix in column-major order - */ - public final void multMatrix(final float[] m) { - FloatUtil.multMatrix(matrix, m); - } - - /** - * Multiply matrix: [this] = [this] x [m] - * @param m 4x4 matrix in column-major order - */ - public final void multMatrix(final Matrix4 m) { - FloatUtil.multMatrix(matrix, m.getMatrix()); - } - - /** - * @param v_in 4-component column-vector - * @param v_out this * v_in - */ - public final void multVec(final float[] v_in, final float[] v_out) { - FloatUtil.multMatrixVec(matrix, v_in, v_out); - } - - /** - * @param v_in 4-component column-vector - * @param v_out this * v_in - */ - public final void multVec(final float[] v_in, final int v_in_offset, final float[] v_out, final int v_out_offset) { - FloatUtil.multMatrixVec(matrix, 0, v_in, v_in_offset, v_out, v_out_offset); - } - - public final void translate(final float x, final float y, final float z) { - multMatrix(FloatUtil.makeTranslation(matrixTxSx, false, x, y, z)); - } - - public final void scale(final float x, final float y, final float z) { - multMatrix(FloatUtil.makeScale(matrixTxSx, false, x, y, z)); - } - - public final void rotate(final float angrad, final float x, final float y, final float z) { - multMatrix(FloatUtil.makeRotationAxis(mat4Tmp1, 0, angrad, x, y, z, vec4Tmp1)); - } - - /** - * Rotate the current matrix with the given {@link Quaternion}'s rotation {@link Quaternion#toMatrix(float[], int) matrix representation}. - */ - public final void rotate(final Quaternion quat) { - multMatrix(quat.toMatrix(mat4Tmp1, 0)); - } - - public final void transpose() { - System.arraycopy(matrix, 0, mat4Tmp1, 0, 16); - FloatUtil.transposeMatrix(mat4Tmp1, matrix); - } - - public final float determinant() { - return FloatUtil.matrixDeterminant(matrix); - } - - public final boolean invert() { - return null != FloatUtil.invertMatrix(matrix, matrix); - } - - public final void makeOrtho(final float left, final float right, final float bottom, final float top, final float zNear, final float zFar) { - multMatrix( FloatUtil.makeOrtho(mat4Tmp1, 0, true, left, right, bottom, top, zNear, zFar) ); - } - - /** - * @param left - * @param right - * @param bottom - * @param top - * @param zNear - * @param zFar - * @throws GLException if {@code zNear <= 0} or {@code zFar <= zNear} - * or {@code left == right}, or {@code bottom == top}. - * @see FloatUtil#makeFrustum(float[], int, boolean, float, float, float, float, float, float) - */ - public final void makeFrustum(final float left, final float right, final float bottom, final float top, final float zNear, final float zFar) throws GLException { - multMatrix( FloatUtil.makeFrustum(mat4Tmp1, 0, true, left, right, bottom, top, zNear, zFar) ); - } - - /** - * @param fovy_rad - * @param aspect - * @param zNear - * @param zFar - * @throws GLException if {@code zNear <= 0} or {@code zFar <= zNear} - * @see FloatUtil#makePerspective(float[], int, boolean, float, float, float, float) - */ - public final void makePerspective(final float fovy_rad, final float aspect, final float zNear, final float zFar) throws GLException { - multMatrix( FloatUtil.makePerspective(mat4Tmp1, 0, true, fovy_rad, aspect, zNear, zFar) ); - } - - private final float[] matrix, matrixTxSx; - private final float[] mat4Tmp1, vec4Tmp1; -} diff --git a/src/jogl/classes/com/jogamp/opengl/math/Matrix4f.java b/src/jogl/classes/com/jogamp/opengl/math/Matrix4f.java new file mode 100644 index 000000000..77971b72d --- /dev/null +++ b/src/jogl/classes/com/jogamp/opengl/math/Matrix4f.java @@ -0,0 +1,2153 @@ +/** + * Copyright 2014-2023 JogAmp Community. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, are + * permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this list of + * conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, this list + * of conditions and the following disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND + * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF + * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * The views and conclusions contained in the software and documentation are those of the + * authors and should not be interpreted as representing official policies, either expressed + * or implied, of JogAmp Community. + */ + +package com.jogamp.opengl.math; + +import java.nio.FloatBuffer; + +import com.jogamp.opengl.math.geom.AABBox; +import com.jogamp.opengl.math.geom.Frustum; +import com.jogamp.opengl.math.geom.Frustum.Plane; + +/** + * Basic 4x4 float matrix implementation using fields for intensive use-cases (host operations). + * <p> + * Implementation covers {@link FloatUtil} matrix functionality, exposed in an object oriented manner. + * </p> + * <p> + * Unlike {@link com.jogamp.opengl.util.PMVMatrix PMVMatrix}, this class only represents one single matrix + * without a complete {@link com.jogamp.opengl.fixedfunc.GLMatrixFunc GLMatrixFunc} implementation. + * </p> + * <p> + * For array operations the layout is expected in column-major order + * matching OpenGL's implementation, illustration: + * <pre> + Row-Major Column-Major (OpenGL): + + | 0 1 2 tx | + | | + | 4 5 6 ty | + M = | | + | 8 9 10 tz | + | | + | 12 13 14 15 | + + R C R C + m[0*4+3] = tx; m[0+4*3] = tx; + m[1*4+3] = ty; m[1+4*3] = ty; + m[2*4+3] = tz; m[2+4*3] = tz; + + RC (std subscript order) RC (std subscript order) + m03 = tx; m03 = tx; + m13 = ty; m13 = ty; + m23 = tz; m23 = tz; + + * </pre> + * </p> + * <p> + * <ul> + * <li><a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html">Matrix-FAQ</a></li> + * <li><a href="https://en.wikipedia.org/wiki/Matrix_%28mathematics%29">Wikipedia-Matrix</a></li> + * <li><a href="http://www.euclideanspace.com/maths/algebra/matrix/index.htm">euclideanspace.com-Matrix</a></li> + * </ul> + * </p> + * <p> + * Implementation utilizes unrolling of small vertices and matrices wherever possible + * while trying to access memory in a linear fashion for performance reasons, see: + * <ul> + * <li><a href="https://lessthanoptimal.github.io/Java-Matrix-Benchmark/">java-matrix-benchmark</a></li> + * <li><a href="https://github.com/lessthanoptimal/ejml">EJML Efficient Java Matrix Library</a></li> + * </ul> + * </p> + * @see com.jogamp.opengl.util.PMVMatrix + * @see FloatUtil + */ +public class Matrix4f { + + /** + * Creates a new identity matrix. + */ + public Matrix4f() { + m00 = m11 = m22 = m33 = 1.0f; + // remaining fields have default init to zero + } + + /** + * Creates a new matrix copying the values of the given {@code src} matrix. + */ + public Matrix4f(final Matrix4f src) { + load(src); + } + + /** + * Creates a new matrix based on given float[4*4] column major order. + * @param m 4x4 matrix in column-major order + */ + public Matrix4f(final float[] m) { + load(m); + } + + /** + * Creates a new matrix based on given float[4*4] column major order. + * @param m 4x4 matrix in column-major order + * @param m_off offset for matrix {@code m} + */ + public Matrix4f(final float[] m, final int m_off) { + load(m, m_off); + } + + /** + * Creates a new matrix based on given {@link FloatBuffer} 4x4 column major order. + * @param m 4x4 matrix in column-major order + */ + public Matrix4f(final FloatBuffer m) { + load(m); + } + + // + // Write to Matrix via set(..) or load(..) + // + + /** Sets the {@code i}th component with float {@code v} 0 <= i < 16 */ + public void set(final int i, final float v) { + switch (i) { + case 0+4*0: m00 = v; break; + case 1+4*0: m10 = v; break; + case 2+4*0: m20 = v; break; + case 3+4*0: m30 = v; break; + + case 0+4*1: m01 = v; break; + case 1+4*1: m11 = v; break; + case 2+4*1: m21 = v; break; + case 3+4*1: m31 = v; break; + + case 0+4*2: m02 = v; break; + case 1+4*2: m12 = v; break; + case 2+4*2: m22 = v; break; + case 3+4*2: m32 = v; break; + + case 0+4*3: m03 = v; break; + case 1+4*3: m13 = v; break; + case 2+4*3: m23 = v; break; + case 3+4*3: m33 = v; break; + default: throw new IndexOutOfBoundsException(); + } + } + + /** + * Set this matrix to identity. + * <pre> + Translation matrix (Column Order): + 1 0 0 0 + 0 1 0 0 + 0 0 1 0 + 0 0 0 1 + * </pre> + * @return this matrix for chaining + */ + public final Matrix4f loadIdentity() { + m00 = m11 = m22 = m33 = 1.0f; + m01 = m02 = m03 = + m10 = m12 = m13 = + m20 = m21 = m23 = + m30 = m31 = m32 = 0.0f; + return this; + } + + /** + * Load the values of the given matrix {@code b} to this matrix. + * @param src the source values + * @return this matrix for chaining + */ + public Matrix4f load(final Matrix4f src) { + m00 = src.m00; m10 = src.m10; m20 = src.m20; m30 = src.m30; + m01 = src.m01; m11 = src.m11; m21 = src.m21; m31 = src.m31; + m02 = src.m02; m12 = src.m12; m22 = src.m22; m32 = src.m32; + m03 = src.m03; m13 = src.m13; m23 = src.m23; m33 = src.m33; + return this; + } + + /** + * Load the values of the given matrix {@code src} to this matrix. + * @param src 4x4 matrix float[16] in column-major order + * @return this matrix for chaining + */ + public Matrix4f load(final float[] src) { + m00 = src[0+0*4]; // column 0 + m10 = src[1+0*4]; + m20 = src[2+0*4]; + m30 = src[3+0*4]; + m01 = src[0+1*4]; // column 1 + m11 = src[1+1*4]; + m21 = src[2+1*4]; + m31 = src[3+1*4]; + m02 = src[0+2*4]; // column 2 + m12 = src[1+2*4]; + m22 = src[2+2*4]; + m32 = src[3+2*4]; + m03 = src[0+3*4]; // column 3 + m13 = src[1+3*4]; + m23 = src[2+3*4]; + m33 = src[3+3*4]; + return this; + } + + /** + * Load the values of the given matrix {@code src} to this matrix. + * @param src 4x4 matrix float[16] in column-major order + * @param src_off offset for matrix {@code src} + * @return this matrix for chaining + */ + public Matrix4f load(final float[] src, final int src_off) { + m00 = src[src_off+0+0*4]; + m10 = src[src_off+1+0*4]; + m20 = src[src_off+2+0*4]; + m30 = src[src_off+3+0*4]; + m01 = src[src_off+0+1*4]; + m11 = src[src_off+1+1*4]; + m21 = src[src_off+2+1*4]; + m31 = src[src_off+3+1*4]; + m02 = src[src_off+0+2*4]; + m12 = src[src_off+1+2*4]; + m22 = src[src_off+2+2*4]; + m32 = src[src_off+3+2*4]; + m03 = src[src_off+0+3*4]; + m13 = src[src_off+1+3*4]; + m23 = src[src_off+2+3*4]; + m33 = src[src_off+3+3*4]; + return this; + } + + /** + * Load the values of the given matrix {@code src} to this matrix. + * <p> + * Implementation uses relative {@link FloatBuffer#get()}, + * hence caller may want to issue {@link FloatBuffer#reset()} thereafter. + * </p> + * @param src 4x4 matrix {@link FloatBuffer} in column-major order + * @return this matrix for chaining + */ + public Matrix4f load(final FloatBuffer src) { + m00 = src.get(); + m10 = src.get(); + m20 = src.get(); + m30 = src.get(); + m01 = src.get(); + m11 = src.get(); + m21 = src.get(); + m31 = src.get(); + m02 = src.get(); + m12 = src.get(); + m22 = src.get(); + m32 = src.get(); + m03 = src.get(); + m13 = src.get(); + m23 = src.get(); + m33 = src.get(); + return this; + } + + // + // Read out Matrix via get(..) + // + + /** Gets the {@code i}th component, 0 <= i < 16 */ + public float get(final int i) { + switch (i) { + case 0+4*0: return m00; + case 1+4*0: return m10; + case 2+4*0: return m20; + case 3+4*0: return m30; + + case 0+4*1: return m01; + case 1+4*1: return m11; + case 2+4*1: return m21; + case 3+4*1: return m31; + + case 0+4*2: return m02; + case 1+4*2: return m12; + case 2+4*2: return m22; + case 3+4*2: return m32; + + case 0+4*3: return m03; + case 1+4*3: return m13; + case 2+4*3: return m23; + case 3+4*3: return m33; + + default: throw new IndexOutOfBoundsException(); + } + } + + /** + * Get the named column of the given column-major matrix to v_out. + * @param column named column to copy + * @param v_out the column-vector storage + * @return given result vector <i>v_out</i> for chaining + */ + public Vec4f getColumn(final int column, final Vec4f v_out) { + v_out.set( get(0+column*4), + get(1+column*4), + get(2+column*4), + get(3+column*4) ); + return v_out; + } + + /** + * Get the named column of the given column-major matrix to v_out. + * @param column named column to copy + * @param v_out the column-vector storage + * @return given result vector <i>v_out</i> for chaining + */ + public Vec3f getColumn(final int column, final Vec3f v_out) { + v_out.set( get(0+column*4), + get(1+column*4), + get(2+column*4) ); + return v_out; + } + + /** + * Get the named row of the given column-major matrix to v_out. + * @param row named row to copy + * @param v_out the row-vector storage + * @return given result vector <i>v_out</i> for chaining + */ + public Vec4f getRow(final int row, final Vec4f v_out) { + v_out.set( get(row+0*4), + get(row+1*4), + get(row+2*4), + get(row+3*4) ); + return v_out; + } + + /** + * Get the named row of the given column-major matrix to v_out. + * @param row named row to copy + * @param v_out the row-vector storage + * @return given result vector <i>v_out</i> for chaining + */ + public Vec3f getRow(final int row, final Vec3f v_out) { + v_out.set( get(row+0*4), + get(row+1*4), + get(row+2*4) ); + return v_out; + } + + /** + * Get this matrix into the given float[16] array at {@code dst_off} in column major order. + * + * @param dst float[16] array storage in column major order + * @param dst_off offset + * @return {@code dst} for chaining + */ + public float[] get(final float[] dst, final int dst_off) { + dst[dst_off+0+0*4] = m00; + dst[dst_off+1+0*4] = m10; + dst[dst_off+2+0*4] = m20; + dst[dst_off+3+0*4] = m30; + dst[dst_off+0+1*4] = m01; + dst[dst_off+1+1*4] = m11; + dst[dst_off+2+1*4] = m21; + dst[dst_off+3+1*4] = m31; + dst[dst_off+0+2*4] = m02; + dst[dst_off+1+2*4] = m12; + dst[dst_off+2+2*4] = m22; + dst[dst_off+3+2*4] = m32; + dst[dst_off+0+3*4] = m03; + dst[dst_off+1+3*4] = m13; + dst[dst_off+2+3*4] = m23; + dst[dst_off+3+3*4] = m33; + return dst; + } + + /** + * Get this matrix into the given float[16] array in column major order. + * + * @param dst float[16] array storage in column major order + * @return {@code dst} for chaining + */ + public float[] get(final float[] dst) { + dst[0+0*4] = m00; + dst[1+0*4] = m10; + dst[2+0*4] = m20; + dst[3+0*4] = m30; + dst[0+1*4] = m01; + dst[1+1*4] = m11; + dst[2+1*4] = m21; + dst[3+1*4] = m31; + dst[0+2*4] = m02; + dst[1+2*4] = m12; + dst[2+2*4] = m22; + dst[3+2*4] = m32; + dst[0+3*4] = m03; + dst[1+3*4] = m13; + dst[2+3*4] = m23; + dst[3+3*4] = m33; + return dst; + } + + /** + * Get this matrix into the given {@link FloatBuffer} in column major order. + * <p> + * Implementation uses relative {@link FloatBuffer#put(float)}, + * hence caller may want to issue {@link FloatBuffer#reset()} thereafter. + * </p> + * + * @param dst {@link FloatBuffer} array storage in column major order + * @return {@code dst} for chaining + */ + public FloatBuffer get(final FloatBuffer dst) { + dst.put( m00 ); + dst.put( m10 ); + dst.put( m20 ); + dst.put( m30 ); + dst.put( m01 ); + dst.put( m11 ); + dst.put( m21 ); + dst.put( m31 ); + dst.put( m02 ); + dst.put( m12 ); + dst.put( m22 ); + dst.put( m32 ); + dst.put( m03 ); + dst.put( m13 ); + dst.put( m23 ); + dst.put( m33 ); + return dst; + } + + // + // Basic matrix operations + // + + /** + * Returns the determinant of this matrix + * @return the matrix determinant + */ + public float determinant() { + float ret = 0; + ret += m00 * ( + m11*(m22*m33 - m23*m32) - m12*(m21*m33 - m23*m31) + m13*(m21*m32 - m22*m31)); + ret -= m01 * ( + m10*(m22*m33 - m23*m32) - m12*(m20*m33 - m23*m30) + m13*(m20*m32 - m22*m30)); + ret += m02 * ( + m10*(m21*m33 - m23*m31) - m11*(m20*m33 - m23*m30) + m13*(m20*m31 - m21*m30)); + ret -= m03 * ( + m10*(m21*m32 - m22*m31) - m11*(m20*m32 - m22*m30) + m12*(m20*m31 - m21*m30)); + return ret; + } + + /** + * Transpose this matrix. + * + * @return this matrix for chaining + */ + public final Matrix4f transpose() { + float tmp; + + tmp = m10; + m10 = m01; + m01 = tmp; + + tmp = m20; + m20 = m02; + m02 = tmp; + + tmp = m30; + m30 = m03; + m03 = tmp; + + tmp = m21; + m21 = m12; + m12 = tmp; + + tmp = m31; + m31 = m13; + m13 = tmp; + + tmp = m32; + m32 = m23; + m23 = tmp; + + return this; + } + + /** + * Transpose the given {@code src} matrix into this matrix. + * + * @param src source 4x4 matrix + * @return this matrix (result) for chaining + */ + public final Matrix4f transpose(final Matrix4f src) { + if( src == this ) { + return transpose(); + } + m00 = src.m00; + m10 = src.m01; + m20 = src.m02; + m30 = src.m03; + + m01 = src.m10; + m11 = src.m11; + m21 = src.m12; + m31 = src.m13; + + m02 = src.m20; + m12 = src.m21; + m22 = src.m22; + m32 = src.m23; + + m03 = src.m30; + m13 = src.m31; + m23 = src.m32; + m33 = src.m33; + return this; + } + + /** + * Invert this matrix. + * @return false if this matrix is singular and inversion not possible, otherwise true + */ + public boolean invert() { + final float scale; + try { + scale = mulScale(); + } catch(final ArithmeticException aex) { + return false; // max was 0 + } + final float a00 = m00*scale; + final float a10 = m10*scale; + final float a20 = m20*scale; + final float a30 = m30*scale; + + final float a01 = m01*scale; + final float a11 = m11*scale; + final float a21 = m21*scale; + final float a31 = m31*scale; + + final float a02 = m02*scale; + final float a12 = m12*scale; + final float a22 = m22*scale; + final float a32 = m32*scale; + + final float a03 = m03*scale; + final float a13 = m13*scale; + final float a23 = m23*scale; + final float a33 = m33*scale; + + final float b00 = + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31); + final float b01 = -( + a10*(a22*a33 - a23*a32) - a12*(a20*a33 - a23*a30) + a13*(a20*a32 - a22*a30)); + final float b02 = + a10*(a21*a33 - a23*a31) - a11*(a20*a33 - a23*a30) + a13*(a20*a31 - a21*a30); + final float b03 = -( + a10*(a21*a32 - a22*a31) - a11*(a20*a32 - a22*a30) + a12*(a20*a31 - a21*a30)); + + final float b10 = -( + a01*(a22*a33 - a23*a32) - a02*(a21*a33 - a23*a31) + a03*(a21*a32 - a22*a31)); + final float b11 = + a00*(a22*a33 - a23*a32) - a02*(a20*a33 - a23*a30) + a03*(a20*a32 - a22*a30); + final float b12 = -( + a00*(a21*a33 - a23*a31) - a01*(a20*a33 - a23*a30) + a03*(a20*a31 - a21*a30)); + final float b13 = + a00*(a21*a32 - a22*a31) - a01*(a20*a32 - a22*a30) + a02*(a20*a31 - a21*a30); + + final float b20 = + a01*(a12*a33 - a13*a32) - a02*(a11*a33 - a13*a31) + a03*(a11*a32 - a12*a31); + final float b21 = -( + a00*(a12*a33 - a13*a32) - a02*(a10*a33 - a13*a30) + a03*(a10*a32 - a12*a30)); + final float b22 = + a00*(a11*a33 - a13*a31) - a01*(a10*a33 - a13*a30) + a03*(a10*a31 - a11*a30); + final float b23 = -( + a00*(a11*a32 - a12*a31) - a01*(a10*a32 - a12*a30) + a02*(a10*a31 - a11*a30)); + + final float b30 = -( + a01*(a12*a23 - a13*a22) - a02*(a11*a23 - a13*a21) + a03*(a11*a22 - a12*a21)); + final float b31 = + a00*(a12*a23 - a13*a22) - a02*(a10*a23 - a13*a20) + a03*(a10*a22 - a12*a20); + final float b32 = -( + a00*(a11*a23 - a13*a21) - a01*(a10*a23 - a13*a20) + a03*(a10*a21 - a11*a20)); + final float b33 = + a00*(a11*a22 - a12*a21) - a01*(a10*a22 - a12*a20) + a02*(a10*a21 - a11*a20); + + final float det = (a00*b00 + a01*b01 + a02*b02 + a03*b03) / scale; + if( 0 == det ) { + return false; + } + final float invdet = 1.0f / det; + + m00 = b00 * invdet; + m10 = b01 * invdet; + m20 = b02 * invdet; + m30 = b03 * invdet; + + m01 = b10 * invdet; + m11 = b11 * invdet; + m21 = b12 * invdet; + m31 = b13 * invdet; + + m02 = b20 * invdet; + m12 = b21 * invdet; + m22 = b22 * invdet; + m32 = b23 * invdet; + + m03 = b30 * invdet; + m13 = b31 * invdet; + m23 = b32 * invdet; + m33 = b33 * invdet; + return true; + } + + /** + * Invert the {@code src} matrix values into this matrix + * @param src the source matrix, which values are to be inverted + * @return false if {@code src} matrix is singular and inversion not possible, otherwise true + */ + public boolean invert(final Matrix4f src) { + final float scale; + try { + scale = src.mulScale(); + } catch(final ArithmeticException aex) { + return false; // max was 0 + } + final float a00 = src.m00*scale; + final float a10 = src.m10*scale; + final float a20 = src.m20*scale; + final float a30 = src.m30*scale; + + final float a01 = src.m01*scale; + final float a11 = src.m11*scale; + final float a21 = src.m21*scale; + final float a31 = src.m31*scale; + + final float a02 = src.m02*scale; + final float a12 = src.m12*scale; + final float a22 = src.m22*scale; + final float a32 = src.m32*scale; + + final float a03 = src.m03*scale; + final float a13 = src.m13*scale; + final float a23 = src.m23*scale; + final float a33 = src.m33*scale; + + final float b00 = + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31); + final float b01 = -( + a10*(a22*a33 - a23*a32) - a12*(a20*a33 - a23*a30) + a13*(a20*a32 - a22*a30)); + final float b02 = + a10*(a21*a33 - a23*a31) - a11*(a20*a33 - a23*a30) + a13*(a20*a31 - a21*a30); + final float b03 = -( + a10*(a21*a32 - a22*a31) - a11*(a20*a32 - a22*a30) + a12*(a20*a31 - a21*a30)); + + final float b10 = -( + a01*(a22*a33 - a23*a32) - a02*(a21*a33 - a23*a31) + a03*(a21*a32 - a22*a31)); + final float b11 = + a00*(a22*a33 - a23*a32) - a02*(a20*a33 - a23*a30) + a03*(a20*a32 - a22*a30); + final float b12 = -( + a00*(a21*a33 - a23*a31) - a01*(a20*a33 - a23*a30) + a03*(a20*a31 - a21*a30)); + final float b13 = + a00*(a21*a32 - a22*a31) - a01*(a20*a32 - a22*a30) + a02*(a20*a31 - a21*a30); + + final float b20 = + a01*(a12*a33 - a13*a32) - a02*(a11*a33 - a13*a31) + a03*(a11*a32 - a12*a31); + final float b21 = -( + a00*(a12*a33 - a13*a32) - a02*(a10*a33 - a13*a30) + a03*(a10*a32 - a12*a30)); + final float b22 = + a00*(a11*a33 - a13*a31) - a01*(a10*a33 - a13*a30) + a03*(a10*a31 - a11*a30); + final float b23 = -( + a00*(a11*a32 - a12*a31) - a01*(a10*a32 - a12*a30) + a02*(a10*a31 - a11*a30)); + + final float b30 = -( + a01*(a12*a23 - a13*a22) - a02*(a11*a23 - a13*a21) + a03*(a11*a22 - a12*a21)); + final float b31 = + a00*(a12*a23 - a13*a22) - a02*(a10*a23 - a13*a20) + a03*(a10*a22 - a12*a20); + final float b32 = -( + a00*(a11*a23 - a13*a21) - a01*(a10*a23 - a13*a20) + a03*(a10*a21 - a11*a20)); + final float b33 = + a00*(a11*a22 - a12*a21) - a01*(a10*a22 - a12*a20) + a02*(a10*a21 - a11*a20); + + final float det = (a00*b00 + a01*b01 + a02*b02 + a03*b03) / scale; + + if( 0 == det ) { + return false; + } + final float invdet = 1.0f / det; + + m00 = b00 * invdet; + m10 = b01 * invdet; + m20 = b02 * invdet; + m30 = b03 * invdet; + + m01 = b10 * invdet; + m11 = b11 * invdet; + m21 = b12 * invdet; + m31 = b13 * invdet; + + m02 = b20 * invdet; + m12 = b21 * invdet; + m22 = b22 * invdet; + m32 = b23 * invdet; + + m03 = b30 * invdet; + m13 = b31 * invdet; + m23 = b32 * invdet; + m33 = b33 * invdet; + return true; + } + + private final float mulScale() { + /** + // No Hotspot intrinsic Math.* optimization for at least Math.max(), + // hence this chunk is slower. + float max = Math.abs(m00); + + max = Math.max(max, Math.abs(m01)); + max = Math.max(max, Math.abs(m02)); + ... etc + */ + float a = Math.abs(m00); + float max = a; + a = Math.abs(m01); if( a > max ) max = a; + a = Math.abs(m02); if( a > max ) max = a; + a = Math.abs(m03); if( a > max ) max = a; + + a = Math.abs(m10); if( a > max ) max = a; + a = Math.abs(m11); if( a > max ) max = a; + a = Math.abs(m12); if( a > max ) max = a; + a = Math.abs(m13); if( a > max ) max = a; + + a = Math.abs(m20); if( a > max ) max = a; + a = Math.abs(m21); if( a > max ) max = a; + a = Math.abs(m22); if( a > max ) max = a; + a = Math.abs(m23); if( a > max ) max = a; + + a = Math.abs(m30); if( a > max ) max = a; + a = Math.abs(m31); if( a > max ) max = a; + a = Math.abs(m32); if( a > max ) max = a; + a = Math.abs(m33); if( a > max ) max = a; + + return 1.0f/max; + } + + /** + * Multiply matrix: [this] = [this] x [b] + * @param b 4x4 matrix + * @return this matrix for chaining + * @see #mul(Matrix4f, Matrix4f) + */ + public final Matrix4f mul(final Matrix4f b) { + // return mul(new Matrix4f(this), b); // <- roughly half speed + float ai0=m00; // row-0, m[0+0*4] + float ai1=m01; + float ai2=m02; + float ai3=m03; + m00 = ai0 * b.m00 + ai1 * b.m10 + ai2 * b.m20 + ai3 * b.m30 ; + m01 = ai0 * b.m01 + ai1 * b.m11 + ai2 * b.m21 + ai3 * b.m31 ; + m02 = ai0 * b.m02 + ai1 * b.m12 + ai2 * b.m22 + ai3 * b.m32 ; + m03 = ai0 * b.m03 + ai1 * b.m13 + ai2 * b.m23 + ai3 * b.m33 ; + + ai0=m10; //row-1, m[1+0*4] + ai1=m11; + ai2=m12; + ai3=m13; + m10 = ai0 * b.m00 + ai1 * b.m10 + ai2 * b.m20 + ai3 * b.m30 ; + m11 = ai0 * b.m01 + ai1 * b.m11 + ai2 * b.m21 + ai3 * b.m31 ; + m12 = ai0 * b.m02 + ai1 * b.m12 + ai2 * b.m22 + ai3 * b.m32 ; + m13 = ai0 * b.m03 + ai1 * b.m13 + ai2 * b.m23 + ai3 * b.m33 ; + + ai0=m20; // row-2, m[2+0*4] + ai1=m21; + ai2=m22; + ai3=m23; + m20 = ai0 * b.m00 + ai1 * b.m10 + ai2 * b.m20 + ai3 * b.m30 ; + m21 = ai0 * b.m01 + ai1 * b.m11 + ai2 * b.m21 + ai3 * b.m31 ; + m22 = ai0 * b.m02 + ai1 * b.m12 + ai2 * b.m22 + ai3 * b.m32 ; + m23 = ai0 * b.m03 + ai1 * b.m13 + ai2 * b.m23 + ai3 * b.m33 ; + + ai0=m30; // row-3, m[3+0*4] + ai1=m31; + ai2=m32; + ai3=m33; + m30 = ai0 * b.m00 + ai1 * b.m10 + ai2 * b.m20 + ai3 * b.m30 ; + m31 = ai0 * b.m01 + ai1 * b.m11 + ai2 * b.m21 + ai3 * b.m31 ; + m32 = ai0 * b.m02 + ai1 * b.m12 + ai2 * b.m22 + ai3 * b.m32 ; + m33 = ai0 * b.m03 + ai1 * b.m13 + ai2 * b.m23 + ai3 * b.m33 ; + return this; + } + + /** + * Multiply matrix: [this] = [a] x [b] + * @param a 4x4 matrix, can't be this matrix + * @param b 4x4 matrix, can't be this matrix + * @return this matrix for chaining + * @see #mul(Matrix4f) + */ + public final Matrix4f mul(final Matrix4f a, final Matrix4f b) { + // row-0, m[0+0*4] + m00 = a.m00 * b.m00 + a.m01 * b.m10 + a.m02 * b.m20 + a.m03 * b.m30 ; + m01 = a.m00 * b.m01 + a.m01 * b.m11 + a.m02 * b.m21 + a.m03 * b.m31 ; + m02 = a.m00 * b.m02 + a.m01 * b.m12 + a.m02 * b.m22 + a.m03 * b.m32 ; + m03 = a.m00 * b.m03 + a.m01 * b.m13 + a.m02 * b.m23 + a.m03 * b.m33 ; + + //row-1, m[1+0*4] + m10 = a.m10 * b.m00 + a.m11 * b.m10 + a.m12 * b.m20 + a.m13 * b.m30 ; + m11 = a.m10 * b.m01 + a.m11 * b.m11 + a.m12 * b.m21 + a.m13 * b.m31 ; + m12 = a.m10 * b.m02 + a.m11 * b.m12 + a.m12 * b.m22 + a.m13 * b.m32 ; + m13 = a.m10 * b.m03 + a.m11 * b.m13 + a.m12 * b.m23 + a.m13 * b.m33 ; + + // row-2, m[2+0*4] + m20 = a.m20 * b.m00 + a.m21 * b.m10 + a.m22 * b.m20 + a.m23 * b.m30 ; + m21 = a.m20 * b.m01 + a.m21 * b.m11 + a.m22 * b.m21 + a.m23 * b.m31 ; + m22 = a.m20 * b.m02 + a.m21 * b.m12 + a.m22 * b.m22 + a.m23 * b.m32 ; + m23 = a.m20 * b.m03 + a.m21 * b.m13 + a.m22 * b.m23 + a.m23 * b.m33 ; + + // row-3, m[3+0*4] + m30 = a.m30 * b.m00 + a.m31 * b.m10 + a.m32 * b.m20 + a.m33 * b.m30 ; + m31 = a.m30 * b.m01 + a.m31 * b.m11 + a.m32 * b.m21 + a.m33 * b.m31 ; + m32 = a.m30 * b.m02 + a.m31 * b.m12 + a.m32 * b.m22 + a.m33 * b.m32 ; + m33 = a.m30 * b.m03 + a.m31 * b.m13 + a.m32 * b.m23 + a.m33 * b.m33 ; + + return this; + } + + /** + * @param v_in 4-component column-vector, can be v_out for in-place transformation + * @param v_out this * v_in + * @returns v_out for chaining + */ + public final Vec4f mulVec4f(final Vec4f v_in, final Vec4f v_out) { + // (one matrix row in column-major order) X (column vector) + final float x = v_in.x(), y = v_in.y(), z = v_in.z(), w = v_in.w(); + v_out.set( x * m00 + y * m01 + z * m02 + w * m03, + x * m10 + y * m11 + z * m12 + w * m13, + x * m20 + y * m21 + z * m22 + w * m23, + x * m30 + y * m31 + z * m32 + w * m33 ); + return v_out; + } + + /** + * @param v_inout 4-component column-vector input and output, i.e. in-place transformation + * @returns v_inout for chaining + */ + public final Vec4f mulVec4f(final Vec4f v_inout) { + // (one matrix row in column-major order) X (column vector) + final float x = v_inout.x(), y = v_inout.y(), z = v_inout.z(), w = v_inout.w(); + v_inout.set( x * m00 + y * m01 + z * m02 + w * m03, + x * m10 + y * m11 + z * m12 + w * m13, + x * m20 + y * m21 + z * m22 + w * m23, + x * m30 + y * m31 + z * m32 + w * m33 ); + return v_inout; + } + + /** + * Affine 3f-vector transformation by 4x4 matrix + * + * 4x4 matrix multiplication with 3-component vector, + * using {@code 1} for for {@code v_in.w()} and dropping {@code v_out.w()}, + * which shall be {@code 1}. + * + * @param v_in 3-component column-vector {@link Vec3f}, can be v_out for in-place transformation + * @param v_out m_in * v_in, 3-component column-vector {@link Vec3f} + * @returns v_out for chaining + */ + public final Vec3f mulVec3f(final Vec3f v_in, final Vec3f v_out) { + // (one matrix row in column-major order) X (column vector) + final float x = v_in.x(), y = v_in.y(), z = v_in.z(); + v_out.set( x * m00 + y * m01 + z * m02 + 1f * m03, + x * m10 + y * m11 + z * m12 + 1f * m13, + x * m20 + y * m21 + z * m22 + 1f * m23 ); + return v_out; + } + + /** + * Affine 3f-vector transformation by 4x4 matrix + * + * 4x4 matrix multiplication with 3-component vector, + * using {@code 1} for for {@code v_inout.w()} and dropping {@code v_inout.w()}, + * which shall be {@code 1}. + * + * @param v_inout 3-component column-vector {@link Vec3f} input and output, i.e. in-place transformation + * @returns v_inout for chaining + */ + public final Vec3f mulVec3f(final Vec3f v_inout) { + // (one matrix row in column-major order) X (column vector) + final float x = v_inout.x(), y = v_inout.y(), z = v_inout.z(); + v_inout.set( x * m00 + y * m01 + z * m02 + 1f * m03, + x * m10 + y * m11 + z * m12 + 1f * m13, + x * m20 + y * m21 + z * m22 + 1f * m23 ); + return v_inout; + } + + // + // Matrix setTo...(), affine + basic + // + + /** + * Set this matrix to translation. + * <pre> + Translation matrix (Column Order): + 1 0 0 0 + 0 1 0 0 + 0 0 1 0 + x y z 1 + * </pre> + * @param x x-axis translate + * @param y y-axis translate + * @param z z-axis translate + * @return this matrix for chaining + */ + public final Matrix4f setToTranslation(final float x, final float y, final float z) { + m00 = m11 = m22 = m33 = 1.0f; + m03 = x; + m13 = y; + m23 = z; + m01 = m02 = + m10 = m12 = + m20 = m21 = + m30 = m31 = m32 = 0.0f; + return this; + } + + /** + * Set this matrix to translation. + * <pre> + Translation matrix (Column Order): + 1 0 0 0 + 0 1 0 0 + 0 0 1 0 + x y z 1 + * </pre> + * @param t translate Vec3f + * @return this matrix for chaining + */ + public final Matrix4f setToTranslation(final Vec3f t) { + return setToTranslation(t.x(), t.y(), t.z()); + } + + /** + * Set this matrix to scale. + * <pre> + Scale matrix (Any Order): + x 0 0 0 + 0 y 0 0 + 0 0 z 0 + 0 0 0 1 + * </pre> + * @param x x-axis scale + * @param y y-axis scale + * @param z z-axis scale + * @return this matrix for chaining + */ + public final Matrix4f setToScale(final float x, final float y, final float z) { + m33 = 1.0f; + m00 = x; + m11 = y; + m22 = z; + m01 = m02 = m03 = + m10 = m12 = m13 = + m20 = m21 = m23 = + m30 = m31 = m32 = 0.0f; + return this; + } + + /** + * Set this matrix to scale. + * <pre> + Scale matrix (Any Order): + x 0 0 0 + 0 y 0 0 + 0 0 z 0 + 0 0 0 1 + * </pre> + * @param s scale Vec3f + * @return this matrix for chaining + */ + public final Matrix4f setToScale(final Vec3f s) { + return setToScale(s.x(), s.y(), s.z()); + } + + /** + * Set this matrix to rotation from the given axis and angle in radians. + * <pre> + Rotation matrix (Column Order): + xx(1-c)+c xy(1-c)+zs xz(1-c)-ys 0 + xy(1-c)-zs yy(1-c)+c yz(1-c)+xs 0 + xz(1-c)+ys yz(1-c)-xs zz(1-c)+c 0 + 0 0 0 1 + * </pre> + * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a> + * @param ang_rad angle in radians + * @param x x of rotation axis + * @param y y of rotation axis + * @param z z of rotation axis + * @return this matrix for chaining + */ + public final Matrix4f setToRotationAxis(final float ang_rad, float x, float y, float z) { + final float c = FloatUtil.cos(ang_rad); + final float ic= 1.0f - c; + final float s = FloatUtil.sin(ang_rad); + + final Vec3f tmp = new Vec3f(x, y, z).normalize(); + x = tmp.x(); y = tmp.y(); z = tmp.z(); + + final float xy = x*y; + final float xz = x*z; + final float xs = x*s; + final float ys = y*s; + final float yz = y*z; + final float zs = z*s; + m00 = x*x*ic+c; + m10 = xy*ic+zs; + m20 = xz*ic-ys; + m30 = 0; + + m01 = xy*ic-zs; + m11 = y*y*ic+c; + m21 = yz*ic+xs; + m31 = 0; + + m02 = xz*ic+ys; + m12 = yz*ic-xs; + m22 = z*z*ic+c; + m32 = 0; + + m03 = 0f; + m13 = 0f; + m23 = 0f; + m33 = 1f; + + return this; + } + + /** + * Set this matrix to rotation from the given axis and angle in radians. + * <pre> + Rotation matrix (Column Order): + xx(1-c)+c xy(1-c)+zs xz(1-c)-ys 0 + xy(1-c)-zs yy(1-c)+c yz(1-c)+xs 0 + xz(1-c)+ys yz(1-c)-xs zz(1-c)+c 0 + 0 0 0 1 + * </pre> + * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a> + * @param ang_rad angle in radians + * @param axis rotation axis + * @return this matrix for chaining + */ + public final Matrix4f setToRotationAxis(final float ang_rad, final Vec3f axis) { + return setToRotationAxis(ang_rad, axis.x(), axis.y(), axis.z()); + } + + /** + * Set this matrix to rotation from the given Euler rotation angles in radians. + * <p> + * The rotations are applied in the given order: + * <ul> + * <li>y - heading</li> + * <li>z - attitude</li> + * <li>x - bank</li> + * </ul> + * </p> + * @param bankX the Euler pitch angle in radians. (rotation about the X axis) + * @param headingY the Euler yaw angle in radians. (rotation about the Y axis) + * @param attitudeZ the Euler roll angle in radians. (rotation about the Z axis) + * @return this matrix for chaining + * <p> + * Implementation does not use Quaternion and hence is exposed to + * <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q34">Gimbal-Lock</a>, + * consider using {@link #setToRotation(Quaternion)}. + * </p> + * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q36">Matrix-FAQ Q36</a> + * @see <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToMatrix/index.htm">euclideanspace.com-eulerToMatrix</a> + * @see #setToRotation(Quaternion) + */ + public Matrix4f setToRotationEuler(final float bankX, final float headingY, final float attitudeZ) { + // Assuming the angles are in radians. + final float ch = FloatUtil.cos(headingY); + final float sh = FloatUtil.sin(headingY); + final float ca = FloatUtil.cos(attitudeZ); + final float sa = FloatUtil.sin(attitudeZ); + final float cb = FloatUtil.cos(bankX); + final float sb = FloatUtil.sin(bankX); + + m00 = ch*ca; + m10 = sa; + m20 = -sh*ca; + m30 = 0; + + m01 = sh*sb - ch*sa*cb; + m11 = ca*cb; + m21 = sh*sa*cb + ch*sb; + m31 = 0; + + m02 = ch*sa*sb + sh*cb; + m12 = -ca*sb; + m22 = -sh*sa*sb + ch*cb; + m32 = 0; + + m03 = 0; + m13 = 0; + m23 = 0; + m33 = 1; + + return this; + } + + /** + * Set this matrix to rotation from the given Euler rotation angles in radians. + * <p> + * The rotations are applied in the given order: + * <ul> + * <li>y - heading</li> + * <li>z - attitude</li> + * <li>x - bank</li> + * </ul> + * </p> + * @param angradXYZ euler angle vector in radians holding x-bank, y-heading and z-attitude + * @return this quaternion for chaining. + * <p> + * Implementation does not use Quaternion and hence is exposed to + * <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q34">Gimbal-Lock</a>, + * consider using {@link #setToRotation(Quaternion)}. + * </p> + * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q36">Matrix-FAQ Q36</a> + * @see <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToMatrix/index.htm">euclideanspace.com-eulerToMatrix</a> + * @see #setToRotation(Quaternion) + */ + public Matrix4f setToRotationEuler(final Vec3f angradXYZ) { + return setToRotationEuler(angradXYZ.x(), angradXYZ.y(), angradXYZ.z()); + } + + /** + * Set this matrix to rotation using the given Quaternion. + * <p> + * Implementation Details: + * <ul> + * <li> makes identity matrix if {@link #magnitudeSquared()} is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li> + * <li> The fields [m00 .. m22] define the rotation</li> + * </ul> + * </p> + * + * @param q the Quaternion representing the rotation + * @return this matrix for chaining + * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q54">Matrix-FAQ Q54</a> + * @see Quaternion#toMatrix(float[]) + * @see #getRotation() + */ + public final Matrix4f setToRotation(final Quaternion q) { + // pre-multiply scaled-reciprocal-magnitude to reduce multiplications + final float norm = q.magnitudeSquared(); + if ( FloatUtil.isZero(norm, FloatUtil.EPSILON) ) { + // identity matrix -> srecip = 0f + loadIdentity(); + return this; + } + final float srecip; + if ( FloatUtil.isEqual(1f, norm, FloatUtil.EPSILON) ) { + srecip = 2f; + } else { + srecip = 2.0f / norm; + } + + final float x = q.x(); + final float y = q.y(); + final float z = q.z(); + final float w = q.w(); + + final float xs = srecip * x; + final float ys = srecip * y; + final float zs = srecip * z; + + final float xx = x * xs; + final float xy = x * ys; + final float xz = x * zs; + final float xw = xs * w; + final float yy = y * ys; + final float yz = y * zs; + final float yw = ys * w; + final float zz = z * zs; + final float zw = zs * w; + + m00 = 1f - ( yy + zz ); + m01 = ( xy - zw ); + m02 = ( xz + yw ); + m03 = 0f; + + m10 = ( xy + zw ); + m11 = 1f - ( xx + zz ); + m12 = ( yz - xw ); + m13 = 0f; + + m20 = ( xz - yw ); + m21 = ( yz + xw ); + m22 = 1f - ( xx + yy ); + m23 = 0f; + + m30 = m31 = m32 = 0f; + m33 = 1f; + return this; + } + + /** + * Returns the rotation [m00 .. m22] fields converted to a Quaternion. + * @param res resulting Quaternion + * @return the resulting Quaternion for chaining. + * @see Quaternion#setFromMatrix(float, float, float, float, float, float, float, float, float) + * @see #setToRotation(Quaternion) + */ + public final Quaternion getRotation(final Quaternion res) { + res.setFromMatrix(m00, m01, m02, m10, m11, m12, m20, m21, m22); + return res; + } + + /** + * Set this matrix to orthogonal projection. + * <pre> + Ortho matrix (Column Order): + 2/dx 0 0 0 + 0 2/dy 0 0 + 0 0 2/dz 0 + tx ty tz 1 + * </pre> + * @param left + * @param right + * @param bottom + * @param top + * @param zNear + * @param zFar + * @return this matrix for chaining + */ + public Matrix4f setToOrtho(final float left, final float right, + final float bottom, final float top, + final float zNear, final float zFar) { + { + // m00 = m11 = m22 = m33 = 1f; + m10 = m20 = m30 = 0f; + m01 = m21 = m31 = 0f; + m02 = m12 = m32 = 0f; + // m03 = m13 = m23 = 0f; + } + final float dx=right-left; + final float dy=top-bottom; + final float dz=zFar-zNear; + final float tx=-1.0f*(right+left)/dx; + final float ty=-1.0f*(top+bottom)/dy; + final float tz=-1.0f*(zFar+zNear)/dz; + + m00 = 2.0f/dx; + m11 = 2.0f/dy; + m22 = -2.0f/dz; + + m03 = tx; + m13 = ty; + m23 = tz; + m33 = 1f; + + return this; + } + + /** + * Set this matrix to frustum. + * <pre> + Frustum matrix (Column Order): + 2*zNear/dx 0 0 0 + 0 2*zNear/dy 0 0 + A B C -1 + 0 0 D 0 + * </pre> + * @param left + * @param right + * @param bottom + * @param top + * @param zNear + * @param zFar + * @return this matrix for chaining + * @throws IllegalArgumentException if {@code zNear <= 0} or {@code zFar <= zNear} + * or {@code left == right}, or {@code bottom == top}. + */ + public Matrix4f setToFrustum(final float left, final float right, + final float bottom, final float top, + final float zNear, final float zFar) throws IllegalArgumentException { + if( zNear <= 0.0f || zFar <= zNear ) { + throw new IllegalArgumentException("Requirements zNear > 0 and zFar > zNear, but zNear "+zNear+", zFar "+zFar); + } + if( left == right || top == bottom) { + throw new IllegalArgumentException("GL_INVALID_VALUE: top,bottom and left,right must not be equal"); + } + { + // m00 = m11 = m22 = m33 = 1f; + m10 = m20 = m30 = 0f; + m01 = m21 = m31 = 0f; + m03 = m13 = 0f; + } + final float zNear2 = 2.0f*zNear; + final float dx=right-left; + final float dy=top-bottom; + final float dz=zFar-zNear; + final float A=(right+left)/dx; + final float B=(top+bottom)/dy; + final float C=-1.0f*(zFar+zNear)/dz; + final float D=-2.0f*(zFar*zNear)/dz; + + m00 = zNear2/dx; + m11 = zNear2/dy; + + m02 = A; + m12 = B; + m22 = C; + m32 = -1.0f; + + m23 = D; + m33 = 0f; + + return this; + } + + /** + * Set this matrix to perspective {@link #setToFrustum(float, float, float, float, float, float) frustum} projection. + * + * @param fovy_rad angle in radians + * @param aspect aspect ratio width / height + * @param zNear + * @param zFar + * @return this matrix for chaining + * @throws IllegalArgumentException if {@code zNear <= 0} or {@code zFar <= zNear} + * @see #setToFrustum(float, float, float, float, float, float) + */ + public Matrix4f setToPerspective(final float fovy_rad, final float aspect, final float zNear, final float zFar) throws IllegalArgumentException { + final float top = FloatUtil.tan(fovy_rad/2f) * zNear; // use tangent of half-fov ! + final float bottom = -1.0f * top; // -1f * fovhvTan.top * zNear + final float left = aspect * bottom; // aspect * -1f * fovhvTan.top * zNear + final float right = aspect * top; // aspect * fovhvTan.top * zNear + return setToFrustum(left, right, bottom, top, zNear, zFar); + } + + /** + * Set this matrix to perspective {@link #setToFrustum(float, float, float, float, float, float) frustum} projection. + * + * @param fovhv {@link FovHVHalves} field of view in both directions, may not be centered, either in radians or tangent + * @param zNear + * @param zFar + * @return this matrix for chaining + * @throws IllegalArgumentException if {@code zNear <= 0} or {@code zFar <= zNear} + * @see #setToFrustum(float, float, float, float, float, float) + * @see Frustum#updateByFovDesc(Matrix4f, com.jogamp.opengl.math.geom.Frustum.FovDesc) + */ + public Matrix4f setToPerspective(final FovHVHalves fovhv, final float zNear, final float zFar) throws IllegalArgumentException { + final FovHVHalves fovhvTan = fovhv.toTangents(); // use tangent of half-fov ! + final float top = fovhvTan.top * zNear; + final float bottom = -1.0f * fovhvTan.bottom * zNear; + final float left = -1.0f * fovhvTan.left * zNear; + final float right = fovhvTan.right * zNear; + return setToFrustum(left, right, bottom, top, zNear, zFar); + } + + /** + * Calculate the frustum planes in world coordinates + * using this premultiplied P*MV (column major order) matrix. + * <p> + * Frustum plane's normals will point to the inside of the viewing frustum, + * as required by this class. + * </p> + * <p> + * Usually called by {@link Frustum#updateFrustumPlanes(Matrix4f)}. + * </p> + */ + public void updateFrustumPlanes(final Frustum frustum) { + // Left: a = m41 + m11, b = m42 + m12, c = m43 + m13, d = m44 + m14 - [1..4] column-major + // Left: a = m30 + m00, b = m31 + m01, c = m32 + m02, d = m33 + m03 - [0..3] column-major + { + final Frustum.Plane p = frustum.getPlanes()[Frustum.LEFT]; + final Vec3f p_n = p.n; + p_n.set( m30 + m00, + m31 + m01, + m32 + m02 ); + p.d = m33 + m03; + } + + // Right: a = m41 - m11, b = m42 - m12, c = m43 - m13, d = m44 - m14 - [1..4] column-major + // Right: a = m30 - m00, b = m31 - m01, c = m32 - m02, d = m33 - m03 - [0..3] column-major + { + final Frustum.Plane p = frustum.getPlanes()[Frustum.RIGHT]; + final Vec3f p_n = p.n; + p_n.set( m30 - m00, + m31 - m01, + m32 - m02 ); + p.d = m33 - m03; + } + + // Bottom: a = m41m21, b = m42m22, c = m43m23, d = m44m24 - [1..4] column-major + // Bottom: a = m30m10, b = m31m11, c = m32m12, d = m33m13 - [0..3] column-major + { + final Frustum.Plane p = frustum.getPlanes()[Frustum.BOTTOM]; + final Vec3f p_n = p.n; + p_n.set( m30 + m10, + m31 + m11, + m32 + m12 ); + p.d = m33 + m13; + } + + // Top: a = m41 - m21, b = m42 - m22, c = m43 - m23, d = m44 - m24 - [1..4] column-major + // Top: a = m30 - m10, b = m31 - m11, c = m32 - m12, d = m33 - m13 - [0..3] column-major + { + final Frustum.Plane p = frustum.getPlanes()[Frustum.TOP]; + final Vec3f p_n = p.n; + p_n.set( m30 - m10, + m31 - m11, + m32 - m12 ); + p.d = m33 - m13; + } + + // Near: a = m41m31, b = m42m32, c = m43m33, d = m44m34 - [1..4] column-major + // Near: a = m30m20, b = m31m21, c = m32m22, d = m33m23 - [0..3] column-major + { + final Frustum.Plane p = frustum.getPlanes()[Frustum.NEAR]; + final Vec3f p_n = p.n; + p_n.set( m30 + m20, + m31 + m21, + m32 + m22 ); + p.d = m33 + m23; + } + + // Far: a = m41 - m31, b = m42 - m32, c = m43 - m33, d = m44 - m34 - [1..4] column-major + // Far: a = m30 - m20, b = m31 - m21, c = m32m22, d = m33m23 - [0..3] column-major + { + final Frustum.Plane p = frustum.getPlanes()[Frustum.FAR]; + final Vec3f p_n = p.n; + p_n.set( m30 - m20, + m31 - m21, + m32 - m22 ); + p.d = m33 - m23; + } + + // Normalize all planes + for (int i = 0; i < 6; ++i) { + final Plane p = frustum.getPlanes()[i]; + final Vec3f p_n = p.n; + final float invLen = 1f / p_n.length(); + p_n.scale(invLen); + p.d *= invLen; + } + } + + /** + * Set this matrix to the <i>look-at</i> matrix based on given parameters. + * <p> + * Consist out of two matrix multiplications: + * <pre> + * <b>R</b> = <b>L</b> x <b>T</b>, + * with <b>L</b> for <i>look-at</i> matrix and + * <b>T</b> for eye translation. + * + * Result <b>R</b> can be utilized for <i>projection or modelview</i> multiplication, i.e. + * <b>M</b> = <b>M</b> x <b>R</b>, + * with <b>M</b> being the <i>projection or modelview</i> matrix. + * </pre> + * </p> + * @param eye 3 component eye vector + * @param center 3 component center vector + * @param up 3 component up vector + * @param tmp temporary Matrix4f used for multiplication + * @return this matrix for chaining + */ + public Matrix4f setToLookAt(final Vec3f eye, final Vec3f center, final Vec3f up, final Matrix4f tmp) { + // normalized forward! + final Vec3f fwd = new Vec3f( center.x() - eye.x(), + center.y() - eye.y(), + center.z() - eye.z() ).normalize(); + + /* Side = forward x up, normalized */ + final Vec3f side = fwd.cross(up).normalize(); + + /* Recompute up as: up = side x forward */ + final Vec3f up2 = side.cross(fwd); + + m00 = side.x(); + m10 = up2.x(); + m20 = -fwd.x(); + m30 = 0; + + m01 = side.y(); + m11 = up2.y(); + m21 = -fwd.y(); + m31 = 0; + + m02 = side.z(); + m12 = up2.z(); + m22 = -fwd.z(); + m32 = 0; + + m03 = 0; + m13 = 0; + m23 = 0; + m33 = 1; + + return mul( tmp.setToTranslation( -eye.x(), -eye.y(), -eye.z() ) ); + } + + /** + * Set this matrix to the <i>pick</i> matrix based on given parameters. + * <p> + * Traditional <code>gluPickMatrix</code> implementation. + * </p> + * <p> + * Consist out of two matrix multiplications: + * <pre> + * <b>R</b> = <b>T</b> x <b>S</b>, + * with <b>T</b> for viewport translation matrix and + * <b>S</b> for viewport scale matrix. + * + * Result <b>R</b> can be utilized for <i>projection</i> multiplication, i.e. + * <b>P</b> = <b>P</b> x <b>R</b>, + * with <b>P</b> being the <i>projection</i> matrix. + * </pre> + * </p> + * <p> + * To effectively use the generated pick matrix for picking, + * call {@link #setToPick(float, float, float, float, Recti, Matrix4f) setToPick(..)} + * and multiply a {@link #setToPerspective(float, float, float, float) custom perspective matrix} + * by this pick matrix. Then you may load the result onto the perspective matrix stack. + * </p> + * @param x the center x-component of a picking region in window coordinates + * @param y the center y-component of a picking region in window coordinates + * @param deltaX the width of the picking region in window coordinates. + * @param deltaY the height of the picking region in window coordinates. + * @param viewport Rect4i viewport + * @param mat4Tmp temp storage + * @return this matrix for chaining or {@code null} if either delta value is <= zero. + */ + public Matrix4f setToPick(final float x, final float y, final float deltaX, final float deltaY, + final Recti viewport, final Matrix4f mat4Tmp) { + if (deltaX <= 0 || deltaY <= 0) { + return null; + } + /* Translate and scale the picked region to the entire window */ + setToTranslation( ( viewport.width() - 2 * ( x - viewport.x() ) ) / deltaX, + ( viewport.height() - 2 * ( y - viewport.y() ) ) / deltaY, + 0); + mat4Tmp.setToScale( viewport.width() / deltaX, viewport.height() / deltaY, 1.0f ); + return mul(mat4Tmp); + } + + // + // Matrix affine operations using setTo..() + // + + /** + * Rotate this matrix about give axis and angle in radians, i.e. multiply by {@link #setToRotationAxis(float, float, float, float) axis-rotation matrix}. + * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a> + * @param angrad angle in radians + * @param x x of rotation axis + * @param y y of rotation axis + * @param z z of rotation axis + * @param tmp temporary Matrix4f used for multiplication + * @return this matrix for chaining + */ + public final Matrix4f rotate(final float ang_rad, final float x, final float y, final float z, final Matrix4f tmp) { + return mul( tmp.setToRotationAxis(ang_rad, x, y, z) ); + } + + /** + * Rotate this matrix about give axis and angle in radians, i.e. multiply by {@link #setToRotationAxis(float, Vec3f) axis-rotation matrix}. + * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a> + * @param angrad angle in radians + * @param axis rotation axis + * @param tmp temporary Matrix4f used for multiplication + * @return this matrix for chaining + */ + public final Matrix4f rotate(final float ang_rad, final Vec3f axis, final Matrix4f tmp) { + return mul( tmp.setToRotationAxis(ang_rad, axis) ); + } + + /** + * Rotate this matrix with the given {@link Quaternion}, i.e. multiply by {@link #setToRotation(Quaternion) Quaternion's rotation matrix}. + * @param tmp temporary Matrix4f used for multiplication + * @return this matrix for chaining + */ + public final Matrix4f rotate(final Quaternion quat, final Matrix4f tmp) { + return mul( tmp.setToRotation(quat) ); + } + + /** + * Translate this matrix, i.e. multiply by {@link #setToTranslation(float, float, float) translation matrix}. + * @param x x translation + * @param y y translation + * @param z z translation + * @param tmp temporary Matrix4f used for multiplication + * @return this matrix for chaining + */ + public final Matrix4f translate(final float x, final float y, final float z, final Matrix4f tmp) { + return mul( tmp.setToTranslation(x, y, z) ); + } + + /** + * Translate this matrix, i.e. multiply by {@link #setToTranslation(Vec3f) translation matrix}. + * @param t translation Vec3f + * @param tmp temporary Matrix4f used for multiplication + * @return this matrix for chaining + */ + public final Matrix4f translate(final Vec3f t, final Matrix4f tmp) { + return mul( tmp.setToTranslation(t) ); + } + + /** + * Scale this matrix, i.e. multiply by {@link #setToScale(float, float, float) scale matrix}. + * @param x x scale + * @param y y scale + * @param z z scale + * @param tmp temporary Matrix4f used for multiplication + * @return this matrix for chaining + */ + public final Matrix4f scale(final float x, final float y, final float z, final Matrix4f tmp) { + return mul( tmp.setToScale(x, y, z) ); + } + + /** + * Scale this matrix, i.e. multiply by {@link #setToScale(float, float, float) scale matrix}. + * @param s scale for x-, y- and z-axis + * @param tmp temporary Matrix4f used for multiplication + * @return this matrix for chaining + */ + public final Matrix4f scale(final float s, final Matrix4f tmp) { + return mul( tmp.setToScale(s, s, s) ); + } + + // + // Matrix Stack + // + + /** + * Push the matrix to it's stack, while preserving this matrix values. + * @see #pop() + */ + public final void push() { + stack.push(this); + } + + /** + * Pop the current matrix from it's stack, replacing this matrix values. + * @see #push() + */ + public final void pop() { + stack.pop(this); + } + + // + // equals + // + + /** + * Equals check using a given {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}. + * <p> + * Implementation considers following corner cases: + * <ul> + * <li>NaN == NaN</li> + * <li>+Inf == +Inf</li> + * <li>-Inf == -Inf</li> + * </ul> + * @param o comparison value + * @param epsilon consider using {@link FloatUtil#EPSILON} + * @return true if all components differ less than {@code epsilon}, otherwise false. + */ + public boolean isEqual(final Matrix4f o, final float epsilon) { + if( this == o ) { + return true; + } else { + return FloatUtil.isEqual(m00, o.m00, epsilon) && + FloatUtil.isEqual(m01, o.m01, epsilon) && + FloatUtil.isEqual(m02, o.m02, epsilon) && + FloatUtil.isEqual(m03, o.m03, epsilon) && + FloatUtil.isEqual(m10, o.m10, epsilon) && + FloatUtil.isEqual(m11, o.m11, epsilon) && + FloatUtil.isEqual(m12, o.m12, epsilon) && + FloatUtil.isEqual(m13, o.m13, epsilon) && + FloatUtil.isEqual(m20, o.m20, epsilon) && + FloatUtil.isEqual(m21, o.m21, epsilon) && + FloatUtil.isEqual(m22, o.m22, epsilon) && + FloatUtil.isEqual(m23, o.m23, epsilon) && + FloatUtil.isEqual(m30, o.m30, epsilon) && + FloatUtil.isEqual(m31, o.m31, epsilon) && + FloatUtil.isEqual(m32, o.m32, epsilon) && + FloatUtil.isEqual(m33, o.m33, epsilon); + } + } + + /** + * Equals check using {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}. + * <p> + * Implementation considers following corner cases: + * <ul> + * <li>NaN == NaN</li> + * <li>+Inf == +Inf</li> + * <li>-Inf == -Inf</li> + * </ul> + * @param o comparison value + * @return true if all components differ less than {@link FloatUtil#EPSILON}, otherwise false. + */ + public boolean isEqual(final Matrix4f o) { + return isEqual(o, FloatUtil.EPSILON); + } + + @Override + public boolean equals(final Object o) { + if( o instanceof Matrix4f ) { + return isEqual((Matrix4f)o, FloatUtil.EPSILON); + } else { + return false; + } + } + + // + // Static multi Matrix ops + // + + /** + * Map object coordinates to window coordinates. + * <p> + * Traditional <code>gluProject</code> implementation. + * </p> + * + * @param obj object position, 3 component vector + * @param mMv modelview matrix + * @param mP projection matrix + * @param viewport Rect4i viewport + * @param winPos 3 component window coordinate, the result + * @return true if successful, otherwise false (z is 1) + */ + public static boolean mapObjToWin(final Vec3f obj, final Matrix4f mMv, final Matrix4f mP, + final Recti viewport, final Vec3f winPos) + { + final Vec4f vec4Tmp1 = new Vec4f(obj, 1f); + + // vec4Tmp2 = Mv * o + // rawWinPos = P * vec4Tmp2 + // rawWinPos = P * ( Mv * o ) + // rawWinPos = P * Mv * o + final Vec4f vec4Tmp2 = mMv.mulVec4f(vec4Tmp1, new Vec4f()); + final Vec4f rawWinPos = mP.mulVec4f(vec4Tmp2, vec4Tmp1); + + if (rawWinPos.w() == 0.0f) { + return false; + } + + final float s = ( 1.0f / rawWinPos.w() ) * 0.5f; + + // Map x, y and z to range 0-1 (w is ignored) + rawWinPos.scale(s).add(0.5f, 0.5f, 0.5f, 0f); + + // Map x,y to viewport + winPos.set( rawWinPos.x() * viewport.width() + viewport.x(), + rawWinPos.y() * viewport.height() + viewport.y(), + rawWinPos.z() ); + + return true; + } + + /** + * Map object coordinates to window coordinates. + * <p> + * Traditional <code>gluProject</code> implementation. + * </p> + * + * @param obj object position, 3 component vector + * @param mPMv [projection] x [modelview] matrix, i.e. P x Mv + * @param viewport Rect4i viewport + * @param winPos 3 component window coordinate, the result + * @return true if successful, otherwise false (z is 1) + */ + public static boolean mapObjToWin(final Vec3f obj, final Matrix4f mPMv, + final Recti viewport, final Vec3f winPos) + { + final Vec4f vec4Tmp2 = new Vec4f(obj, 1f); + + // rawWinPos = P * Mv * o + final Vec4f rawWinPos = mPMv.mulVec4f(vec4Tmp2, new Vec4f()); + + if (rawWinPos.w() == 0.0f) { + return false; + } + + final float s = ( 1.0f / rawWinPos.w() ) * 0.5f; + + // Map x, y and z to range 0-1 (w is ignored) + rawWinPos.scale(s).add(0.5f, 0.5f, 0.5f, 0f); + + // Map x,y to viewport + winPos.set( rawWinPos.x() * viewport.width() + viewport.x(), + rawWinPos.y() * viewport.height() + viewport.y(), + rawWinPos.z() ); + + return true; + } + + /** + * Map window coordinates to object coordinates. + * <p> + * Traditional <code>gluUnProject</code> implementation. + * </p> + * + * @param winx + * @param winy + * @param winz + * @param mMv 4x4 modelview matrix + * @param mP 4x4 projection matrix + * @param viewport Rect4i viewport + * @param objPos 3 component object coordinate, the result + * @param mat4Tmp 16 component matrix for temp storage + * @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z) + */ + public static boolean mapWinToObj(final float winx, final float winy, final float winz, + final Matrix4f mMv, final Matrix4f mP, + final Recti viewport, + final Vec3f objPos, + final Matrix4f mat4Tmp) + { + // invPMv = Inv(P x Mv) + final Matrix4f invPMv = mat4Tmp.mul(mP, mMv); + if( !invPMv.invert() ) { + return false; + } + + final Vec4f winPos = new Vec4f(winx, winy, winz, 1f); + + // Map x and y from window coordinates + winPos.add(-viewport.x(), -viewport.y(), 0f, 0f).scale(1f/viewport.width(), 1f/viewport.height(), 1f, 1f); + + // Map to range -1 to 1 + winPos.scale(2f, 2f, 2f, 1f).add(-1f, -1f, -1f, 0f); + + // rawObjPos = Inv(P x Mv) * winPos + final Vec4f rawObjPos = invPMv.mulVec4f(winPos, new Vec4f()); + + if ( rawObjPos.w() == 0.0f ) { + return false; + } + objPos.set( rawObjPos.scale( 1f / rawObjPos.w() ) ); + + return true; + } + + /** + * Map window coordinates to object coordinates. + * <p> + * Traditional <code>gluUnProject</code> implementation. + * </p> + * + * @param winx + * @param winy + * @param winz + * @param invPMv inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv), if null method returns false + * @param viewport Rect4i viewport + * @param objPos 3 component object coordinate, the result + * @return true if successful, otherwise false (null invert matrix, or becomes infinity due to zero z) + */ + public static boolean mapWinToObj(final float winx, final float winy, final float winz, + final Matrix4f invPMv, + final Recti viewport, + final Vec3f objPos) + { + if( null == invPMv ) { + return false; + } + final Vec4f winPos = new Vec4f(winx, winy, winz, 1f); + + // Map x and y from window coordinates + winPos.add(-viewport.x(), -viewport.y(), 0f, 0f).scale(1f/viewport.width(), 1f/viewport.height(), 1f, 1f); + + // Map to range -1 to 1 + winPos.scale(2f, 2f, 2f, 1f).add(-1f, -1f, -1f, 0f); + + // rawObjPos = Inv(P x Mv) * winPos + final Vec4f rawObjPos = invPMv.mulVec4f(winPos, new Vec4f()); + + if ( rawObjPos.w() == 0.0f ) { + return false; + } + objPos.set( rawObjPos.scale( 1f / rawObjPos.w() ) ); + + return true; + } + + /** + * Map two window coordinates to two object coordinates, + * distinguished by their z component. + * <p> + * Traditional <code>gluUnProject</code> implementation. + * </p> + * + * @param winx + * @param winy + * @param winz1 + * @param winz2 + * @param invPMv inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv), if null method returns false + * @param viewport Rect4i viewport vector + * @param objPos1 3 component object coordinate, the result + * @return true if successful, otherwise false (null invert matrix, or becomes infinity due to zero z) + */ + public static boolean mapWinToObj(final float winx, final float winy, final float winz1, final float winz2, + final Matrix4f invPMv, + final Recti viewport, + final Vec3f objPos1, final Vec3f objPos2) + { + if( null == invPMv ) { + return false; + } + final Vec4f winPos = new Vec4f(winx, winy, winz1, 1f); + + // Map x and y from window coordinates + winPos.add(-viewport.x(), -viewport.y(), 0f, 0f).scale(1f/viewport.width(), 1f/viewport.height(), 1f, 1f); + + // Map to range -1 to 1 + winPos.scale(2f, 2f, 2f, 1f).add(-1f, -1f, -1f, 0f); + + // rawObjPos = Inv(P x Mv) * winPos1 + final Vec4f rawObjPos = invPMv.mulVec4f(winPos, new Vec4f()); + + if ( rawObjPos.w() == 0.0f ) { + return false; + } + objPos1.set( rawObjPos.scale( 1f / rawObjPos.w() ) ); + + // + // winz2 + // + // Map Z to range -1 to 1 + winPos.setZ( winz2 * 2f - 1f ); + + // rawObjPos = Inv(P x Mv) * winPos2 + invPMv.mulVec4f(winPos, rawObjPos); + + if ( rawObjPos.w() == 0.0f ) { + return false; + } + objPos2.set( rawObjPos.scale( 1f / rawObjPos.w() ) ); + + return true; + } + + /** + * Map window coordinates to object coordinates. + * <p> + * Traditional <code>gluUnProject4</code> implementation. + * </p> + * + * @param winx + * @param winy + * @param winz + * @param clipw + * @param mMv 4x4 modelview matrix + * @param mP 4x4 projection matrix + * @param viewport Rect4i viewport vector + * @param near + * @param far + * @param obj_pos 4 component object coordinate, the result + * @param mat4Tmp 16 component matrix for temp storage + * @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z) + */ + public static boolean mapWinToObj4(final float winx, final float winy, final float winz, final float clipw, + final Matrix4f mMv, final Matrix4f mP, + final Recti viewport, + final float near, final float far, + final Vec4f objPos, + final Matrix4f mat4Tmp) + { + // invPMv = Inv(P x Mv) + final Matrix4f invPMv = mat4Tmp.mul(mP, mMv); + if( !invPMv.invert() ) { + return false; + } + + final Vec4f winPos = new Vec4f(winx, winy, winz, clipw); + + // Map x and y from window coordinates + winPos.add(-viewport.x(), -viewport.y(), -near, 0f).scale(1f/viewport.width(), 1f/viewport.height(), 1f/(far-near), 1f); + + // Map to range -1 to 1 + winPos.scale(2f, 2f, 2f, 1f).add(-1f, -1f, -1f, 0f); + + // objPos = Inv(P x Mv) * winPos + invPMv.mulVec4f(winPos, objPos); + + if ( objPos.w() == 0.0f ) { + return false; + } + return true; + } + + /** + * Map window coordinates to object coordinates. + * <p> + * Traditional <code>gluUnProject4</code> implementation. + * </p> + * + * @param winx + * @param winy + * @param winz + * @param clipw + * @param invPMv inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv), if null method returns false + * @param viewport Rect4i viewport vector + * @param near + * @param far + * @param obj_pos 4 component object coordinate, the result + * @return true if successful, otherwise false (null invert matrix, or becomes infinity due to zero z) + */ + public static boolean mapWinToObj4(final float winx, final float winy, final float winz, final float clipw, + final Matrix4f invPMv, + final Recti viewport, + final float near, final float far, + final Vec4f objPos) + { + if( null == invPMv ) { + return false; + } + final Vec4f winPos = new Vec4f(winx, winy, winz, clipw); + + // Map x and y from window coordinates + winPos.add(-viewport.x(), -viewport.y(), -near, 0f).scale(1f/viewport.width(), 1f/viewport.height(), 1f/(far-near), 1f); + + // Map to range -1 to 1 + winPos.scale(2f, 2f, 2f, 1f).add(-1f, -1f, -1f, 0f); + + // objPos = Inv(P x Mv) * winPos + invPMv.mulVec4f(winPos, objPos); + + if ( objPos.w() == 0.0f ) { + return false; + } + return true; + } + + /** + * Map two window coordinates w/ shared X/Y and distinctive Z + * to a {@link Ray}. The resulting {@link Ray} maybe used for <i>picking</i> + * using a {@link AABBox#getRayIntersection(Vec3f, Ray, float, boolean)}. + * <p> + * Notes for picking <i>winz0</i> and <i>winz1</i>: + * <ul> + * <li>see {@link FloatUtil#getZBufferEpsilon(int, float, float)}</li> + * <li>see {@link FloatUtil#getZBufferValue(int, float, float, float)}</li> + * <li>see {@link FloatUtil#getOrthoWinZ(float, float, float)}</li> + * </ul> + * </p> + * @param winx + * @param winy + * @param winz0 + * @param winz1 + * @param mMv 4x4 modelview matrix + * @param mP 4x4 projection matrix + * @param viewport Rect4i viewport + * @param ray storage for the resulting {@link Ray} + * @param mat4Tmp1 16 component matrix for temp storage + * @param mat4Tmp2 16 component matrix for temp storage + * @return true if successful, otherwise false (failed to invert matrix, or becomes z is infinity) + */ + public static boolean mapWinToRay(final float winx, final float winy, final float winz0, final float winz1, + final Matrix4f mMv, final Matrix4f mP, + final Recti viewport, + final Ray ray, + final Matrix4f mat4Tmp1, final Matrix4f mat4Tmp2) { + // invPMv = Inv(P x Mv) + final Matrix4f invPMv = mat4Tmp1.mul(mP, mMv); + if( !invPMv.invert() ) { + return false; + } + + if( mapWinToObj(winx, winy, winz0, winz1, invPMv, viewport, ray.orig, ray.dir) ) { + ray.dir.sub(ray.orig).normalize(); + return true; + } else { + return false; + } + } + + /** + * Map two window coordinates w/ shared X/Y and distinctive Z + * to a {@link Ray}. The resulting {@link Ray} maybe used for <i>picking</i> + * using a {@link AABBox#getRayIntersection(Vec3f, Ray, float, boolean)}. + * <p> + * Notes for picking <i>winz0</i> and <i>winz1</i>: + * <ul> + * <li>see {@link FloatUtil#getZBufferEpsilon(int, float, float)}</li> + * <li>see {@link FloatUtil#getZBufferValue(int, float, float, float)}</li> + * <li>see {@link FloatUtil#getOrthoWinZ(float, float, float)}</li> + * </ul> + * </p> + * @param winx + * @param winy + * @param winz0 + * @param winz1 + * @param invPMv inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv), if null method returns false + * @param viewport Rect4i viewport + * @param ray storage for the resulting {@link Ray} + * @return true if successful, otherwise false (null invert matrix, or becomes z is infinity) + */ + public static boolean mapWinToRay(final float winx, final float winy, final float winz0, final float winz1, + final Matrix4f invPMv, + final Recti viewport, + final Ray ray) { + if( mapWinToObj(winx, winy, winz0, winz1, invPMv, viewport, ray.orig, ray.dir) ) { + ray.dir.sub(ray.orig).normalize(); + return true; + } else { + return false; + } + } + + // + // String and internals + // + + /** + * @param sb optional passed StringBuilder instance to be used + * @param rowPrefix optional prefix for each row + * @param f the format string of one floating point, i.e. "%10.5f", see {@link java.util.Formatter} + * @return matrix string representation + */ + public StringBuilder toString(final StringBuilder sb, final String rowPrefix, final String f) { + final float[] tmp = new float[16]; + this.get(tmp); + return FloatUtil.matrixToString(sb, rowPrefix, f,tmp, 0, 4, 4, false /* rowMajorOrder */); + } + + @Override + public String toString() { + return toString(null, null, "%10.5f").toString(); + } + + private float m00, m10, m20, m30; + private float m01, m11, m21, m31; + private float m02, m12, m22, m32; + private float m03, m13, m23, m33; + + final Stack stack = new Stack(0, 16*16); // start w/ zero size, growSize is half GL-min size (32) + + private static class Stack { + private int position; + private float[] buffer; + private final int growSize; + + /** + * @param initialSize initial size + * @param growSize grow size if {@link #position()} is reached, maybe <code>0</code> + * in which case an {@link IndexOutOfBoundsException} is thrown. + */ + public Stack(final int initialSize, final int growSize) { + this.position = 0; + this.growSize = growSize; + this.buffer = new float[initialSize]; + } + + private final void growIfNecessary(final int length) throws IndexOutOfBoundsException { + if( position + length > buffer.length ) { + if( 0 >= growSize ) { + throw new IndexOutOfBoundsException("Out of fixed stack size: "+this); + } + final float[] newBuffer = + new float[buffer.length + growSize]; + System.arraycopy(buffer, 0, newBuffer, 0, position); + buffer = newBuffer; + } + } + + public final Matrix4f push(final Matrix4f src) throws IndexOutOfBoundsException { + growIfNecessary(16); + src.get(buffer, position); + position += 16; + return src; + } + + public final Matrix4f pop(final Matrix4f dest) throws IndexOutOfBoundsException { + position -= 16; + dest.load(buffer, position); + return dest; + } + } +} diff --git a/src/jogl/classes/com/jogamp/opengl/math/Quaternion.java b/src/jogl/classes/com/jogamp/opengl/math/Quaternion.java index 430450767..a285774f8 100644 --- a/src/jogl/classes/com/jogamp/opengl/math/Quaternion.java +++ b/src/jogl/classes/com/jogamp/opengl/math/Quaternion.java @@ -1,5 +1,5 @@ /** - * Copyright 2010 JogAmp Community. All rights reserved. + * Copyright 2010-2023 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: @@ -99,7 +99,7 @@ public class Quaternion { return FloatUtil.sqrt(magnitudeSQ); } - public final float getW() { + public final float w() { return w; } @@ -107,7 +107,7 @@ public class Quaternion { this.w = w; } - public final float getX() { + public final float x() { return x; } @@ -115,7 +115,7 @@ public class Quaternion { this.x = x; } - public final float getY() { + public final float y() { return y; } @@ -123,7 +123,7 @@ public class Quaternion { this.y = y; } - public final float getZ() { + public final float z() { return z; } @@ -142,15 +142,15 @@ public class Quaternion { * Returns the dot product of this quaternion with the given quaternion */ public final float dot(final Quaternion quat) { - return dot(quat.getX(), quat.getY(), quat.getZ(), quat.getW()); + return dot(quat.x(), quat.y(), quat.z(), quat.w()); } /** * Returns <code>true</code> if this quaternion has identity. * <p> * Implementation uses {@link FloatUtil#EPSILON epsilon} to compare - * {@link #getW() W} {@link FloatUtil#isEqual(float, float, float) against 1f} and - * {@link #getX() X}, {@link #getY() Y} and {@link #getZ() Z} + * {@link #w() W} {@link FloatUtil#isEqual(float, float, float) against 1f} and + * {@link #x() X}, {@link #y() Y} and {@link #z() Z} * {@link FloatUtil#isZero(float, float) against zero}. * </p> */ @@ -404,12 +404,12 @@ public class Quaternion { * </ul> * </p> * For details see {@link #rotateByEuler(float, float, float)}. - * @param angradXYZ euler angel array in radians + * @param angradXYZ euler angle array in radians * @return this quaternion for chaining. * @see #rotateByEuler(float, float, float) */ - public final Quaternion rotateByEuler(final float[] angradXYZ) { - return rotateByEuler(angradXYZ[0], angradXYZ[1], angradXYZ[2]); + public final Quaternion rotateByEuler(final Vec3f angradXYZ) { + return rotateByEuler(angradXYZ.x(), angradXYZ.y(), angradXYZ.z()); } /** @@ -450,48 +450,42 @@ public class Quaternion { /*** * Rotate the given vector by this quaternion + * @param vecIn vector to be rotated + * @param vecOut result storage for rotated vector, maybe equal to vecIn for in-place rotation * - * @param vecOut result float[3] storage for rotated vector, maybe equal to vecIn for in-place rotation - * @param vecOutOffset offset in result storage - * @param vecIn float[3] vector to be rotated - * @param vecInOffset offset in vecIn * @return the given vecOut store for chaining * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q63">Matrix-FAQ Q63</a> */ - public final float[] rotateVector(final float[] vecOut, final int vecOutOffset, final float[] vecIn, final int vecInOffset) { - if ( VectorUtil.isVec3Zero(vecIn, vecInOffset, FloatUtil.EPSILON) ) { - vecOut[0+vecOutOffset] = 0f; - vecOut[1+vecOutOffset] = 0f; - vecOut[2+vecOutOffset] = 0f; + public final Vec3f rotateVector(final Vec3f vecIn, final Vec3f vecOut) { + if( vecIn.isZero() ) { + vecOut.set(0, 0, 0); } else { - final float vecX = vecIn[0+vecInOffset]; - final float vecY = vecIn[1+vecInOffset]; - final float vecZ = vecIn[2+vecInOffset]; + final float vecX = vecIn.x(); + final float vecY = vecIn.y(); + final float vecZ = vecIn.z(); final float x_x = x*x; final float y_y = y*y; final float z_z = z*z; final float w_w = w*w; - vecOut[0+vecOutOffset] = w_w * vecX - + x_x * vecX - - z_z * vecX - - y_y * vecX - + 2f * ( y*w*vecZ - z*w*vecY + y*x*vecY + z*x*vecZ ); + vecOut.setX( w_w * vecX + + x_x * vecX + - z_z * vecX + - y_y * vecX + + 2f * ( y*w*vecZ - z*w*vecY + y*x*vecY + z*x*vecZ ) ); ; - vecOut[1+vecOutOffset] = y_y * vecY - - z_z * vecY - + w_w * vecY - - x_x * vecY - + 2f * ( x*y*vecX + z*y*vecZ + w*z*vecX - x*w*vecZ ); - ; - - vecOut[2+vecOutOffset] = z_z * vecZ - - y_y * vecZ - - x_x * vecZ - + w_w * vecZ - + 2f * ( x*z*vecX + y*z*vecY - w*y*vecX + w*x*vecY ); - ; + vecOut.setY( y_y * vecY + - z_z * vecY + + w_w * vecY + - x_x * vecY + + 2f * ( x*y*vecX + z*y*vecZ + w*z*vecX - x*w*vecZ ) );; + + vecOut.setZ( z_z * vecZ + - y_y * vecZ + - x_x * vecZ + + w_w * vecZ + + 2f * ( x*z*vecX + y*z*vecY - w*y*vecX + w*x*vecY ) ); } return vecOut; } @@ -593,21 +587,19 @@ public class Quaternion { * @return this quaternion for chaining. * @see <a href="http://www.euclideanspace.com/maths/algebra/vectors/lookat/index.htm">euclideanspace.com-LookUp</a> */ - public Quaternion setLookAt(final float[] directionIn, final float[] upIn, - final float[] xAxisOut, final float[] yAxisOut, final float[] zAxisOut) { + public Quaternion setLookAt(final Vec3f directionIn, final Vec3f upIn, + final Vec3f xAxisOut, final Vec3f yAxisOut, final Vec3f zAxisOut) { // Z = norm(dir) - VectorUtil.normalizeVec3(zAxisOut, directionIn); + zAxisOut.set(directionIn).normalize(); // X = upIn x Z // (borrow yAxisOut for upNorm) - VectorUtil.normalizeVec3(yAxisOut, upIn); - VectorUtil.crossVec3(xAxisOut, yAxisOut, zAxisOut); - VectorUtil.normalizeVec3(xAxisOut); + yAxisOut.set(upIn).normalize(); + xAxisOut.cross(yAxisOut, zAxisOut).normalize(); // Y = Z x X // - VectorUtil.crossVec3(yAxisOut, zAxisOut, xAxisOut); - VectorUtil.normalizeVec3(yAxisOut); + yAxisOut.cross(zAxisOut, xAxisOut).normalize(); /** final float m00 = xAxisOut[0]; @@ -642,42 +634,42 @@ public class Quaternion { * </p> * @param v1 not normalized * @param v2 not normalized - * @param tmpPivotVec float[3] temp storage for cross product - * @param tmpNormalVec float[3] temp storage to normalize vector + * @param tmpPivotVec temp storage for cross product + * @param tmpNormalVec temp storage to normalize vector * @return this quaternion for chaining. */ - public final Quaternion setFromVectors(final float[] v1, final float[] v2, final float[] tmpPivotVec, final float[] tmpNormalVec) { - final float factor = VectorUtil.normVec3(v1) * VectorUtil.normVec3(v2); + public final Quaternion setFromVectors(final Vec3f v1, final Vec3f v2, final Vec3f tmpPivotVec, final Vec3f tmpNormalVec) { + final float factor = v1.length() * v2.length(); if ( FloatUtil.isZero(factor, FloatUtil.EPSILON ) ) { return setIdentity(); } else { - final float dot = VectorUtil.dotVec3(v1, v2) / factor; // normalize + final float dot = v1.dot(v2) / factor; // normalize final float theta = FloatUtil.acos(Math.max(-1.0f, Math.min(dot, 1.0f))); // clipping [-1..1] - VectorUtil.crossVec3(tmpPivotVec, v1, v2); + tmpPivotVec.cross(v1, v2); - if ( dot < 0.0f && FloatUtil.isZero( VectorUtil.normVec3(tmpPivotVec), FloatUtil.EPSILON ) ) { + if ( dot < 0.0f && FloatUtil.isZero( tmpPivotVec.length(), FloatUtil.EPSILON ) ) { // Vectors parallel and opposite direction, therefore a rotation of 180 degrees about any vector // perpendicular to this vector will rotate vector a onto vector b. // // The following guarantees the dot-product will be 0.0. int dominantIndex; - if (Math.abs(v1[0]) > Math.abs(v1[1])) { - if (Math.abs(v1[0]) > Math.abs(v1[2])) { + if (Math.abs(v1.x()) > Math.abs(v1.y())) { + if (Math.abs(v1.x()) > Math.abs(v1.z())) { dominantIndex = 0; } else { dominantIndex = 2; } } else { - if (Math.abs(v1[1]) > Math.abs(v1[2])) { + if (Math.abs(v1.y()) > Math.abs(v1.z())) { dominantIndex = 1; } else { dominantIndex = 2; } } - tmpPivotVec[dominantIndex] = -v1[(dominantIndex + 1) % 3]; - tmpPivotVec[(dominantIndex + 1) % 3] = v1[dominantIndex]; - tmpPivotVec[(dominantIndex + 2) % 3] = 0f; + tmpPivotVec.set( dominantIndex, -v1.get( (dominantIndex + 1) % 3 ) ); + tmpPivotVec.set( (dominantIndex + 1) % 3, v1.get( dominantIndex ) ); + tmpPivotVec.set( (dominantIndex + 2) % 3, 0f ); } return setFromAngleAxis(theta, tmpPivotVec, tmpNormalVec); } @@ -698,41 +690,41 @@ public class Quaternion { * </p> * @param v1 normalized * @param v2 normalized - * @param tmpPivotVec float[3] temp storage for cross product + * @param tmpPivotVec temp storage for cross product * @return this quaternion for chaining. */ - public final Quaternion setFromNormalVectors(final float[] v1, final float[] v2, final float[] tmpPivotVec) { - final float factor = VectorUtil.normVec3(v1) * VectorUtil.normVec3(v2); + public final Quaternion setFromNormalVectors(final Vec3f v1, final Vec3f v2, final Vec3f tmpPivotVec) { + final float factor = v1.length() * v2.length(); if ( FloatUtil.isZero(factor, FloatUtil.EPSILON ) ) { return setIdentity(); } else { - final float dot = VectorUtil.dotVec3(v1, v2) / factor; // normalize + final float dot = v1.dot(v2) / factor; // normalize final float theta = FloatUtil.acos(Math.max(-1.0f, Math.min(dot, 1.0f))); // clipping [-1..1] - VectorUtil.crossVec3(tmpPivotVec, v1, v2); + tmpPivotVec.cross(v1, v2); - if ( dot < 0.0f && FloatUtil.isZero( VectorUtil.normVec3(tmpPivotVec), FloatUtil.EPSILON ) ) { + if ( dot < 0.0f && FloatUtil.isZero( tmpPivotVec.length(), FloatUtil.EPSILON ) ) { // Vectors parallel and opposite direction, therefore a rotation of 180 degrees about any vector // perpendicular to this vector will rotate vector a onto vector b. // // The following guarantees the dot-product will be 0.0. int dominantIndex; - if (Math.abs(v1[0]) > Math.abs(v1[1])) { - if (Math.abs(v1[0]) > Math.abs(v1[2])) { + if (Math.abs(v1.x()) > Math.abs(v1.y())) { + if (Math.abs(v1.x()) > Math.abs(v1.z())) { dominantIndex = 0; } else { dominantIndex = 2; } } else { - if (Math.abs(v1[1]) > Math.abs(v1[2])) { + if (Math.abs(v1.y()) > Math.abs(v1.z())) { dominantIndex = 1; } else { dominantIndex = 2; } } - tmpPivotVec[dominantIndex] = -v1[(dominantIndex + 1) % 3]; - tmpPivotVec[(dominantIndex + 1) % 3] = v1[dominantIndex]; - tmpPivotVec[(dominantIndex + 2) % 3] = 0f; + tmpPivotVec.set( dominantIndex, -v1.get( (dominantIndex + 1) % 3 ) ); + tmpPivotVec.set( (dominantIndex + 1) % 3, v1.get( dominantIndex ) ); + tmpPivotVec.set( (dominantIndex + 2) % 3, 0f ); } return setFromAngleNormalAxis(theta, tmpPivotVec); } @@ -748,14 +740,14 @@ public class Quaternion { * </p> * @param angle rotation angle (rads) * @param vector axis vector not normalized - * @param tmpV3f float[3] temp storage to normalize vector + * @param tmpV3f temp storage to normalize vector * @return this quaternion for chaining. * * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56">Matrix-FAQ Q56</a> - * @see #toAngleAxis(float[]) + * @see #toAngleAxis(Vec3f) */ - public final Quaternion setFromAngleAxis(final float angle, final float[] vector, final float[] tmpV3f) { - VectorUtil.normalizeVec3(tmpV3f, vector); + public final Quaternion setFromAngleAxis(final float angle, final Vec3f vector, final Vec3f tmpV3f) { + tmpV3f.set(vector).normalize(); return setFromAngleNormalAxis(angle, tmpV3f); } @@ -772,17 +764,17 @@ public class Quaternion { * @return this quaternion for chaining. * * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56">Matrix-FAQ Q56</a> - * @see #toAngleAxis(float[]) + * @see #toAngleAxis(Vec3f) */ - public final Quaternion setFromAngleNormalAxis(final float angle, final float[] vector) { - if ( VectorUtil.isVec3Zero(vector, 0, FloatUtil.EPSILON) ) { + public final Quaternion setFromAngleNormalAxis(final float angle, final Vec3f vector) { + if( vector.isZero() ) { setIdentity(); } else { final float halfangle = angle * 0.5f; final float sin = FloatUtil.sin(halfangle); - x = vector[0] * sin; - y = vector[1] * sin; - z = vector[2] * sin; + x = vector.x() * sin; + y = vector.y() * sin; + z = vector.z() * sin; w = FloatUtil.cos(halfangle); } return this; @@ -791,24 +783,22 @@ public class Quaternion { /** * Transform the rotational quaternion to axis based rotation angles * - * @param axis float[3] storage for computed axis + * @param axis storage for computed axis * @return the rotation angle in radians - * @see #setFromAngleAxis(float, float[], float[]) + * @see #setFromAngleAxis(float, Vec3f, Vec3f) */ - public final float toAngleAxis(final float[] axis) { + public final float toAngleAxis(final Vec3f axis) { final float sqrLength = x*x + y*y + z*z; float angle; if ( FloatUtil.isZero(sqrLength, FloatUtil.EPSILON) ) { // length is ~0 angle = 0.0f; - axis[0] = 1.0f; - axis[1] = 0.0f; - axis[2] = 0.0f; + axis.set( 1.0f, 0.0f, 0.0f ); } else { angle = FloatUtil.acos(w) * 2.0f; final float invLength = 1.0f / FloatUtil.sqrt(sqrLength); - axis[0] = x * invLength; - axis[1] = y * invLength; - axis[2] = z * invLength; + axis.set( x * invLength, + y * invLength, + z * invLength ); } return angle; } @@ -816,7 +806,7 @@ public class Quaternion { /** * Initializes this quaternion from the given Euler rotation array <code>angradXYZ</code> in radians. * <p> - * The <code>angradXYZ</code> array is laid out in natural order: + * The <code>angradXYZ</code> vector is laid out in natural order: * <ul> * <li>x - bank</li> * <li>y - heading</li> @@ -824,12 +814,12 @@ public class Quaternion { * </ul> * </p> * For details see {@link #setFromEuler(float, float, float)}. - * @param angradXYZ euler angel array in radians + * @param angradXYZ euler angle vector in radians holding x-bank, y-heading and z-attitude * @return this quaternion for chaining. * @see #setFromEuler(float, float, float) */ - public final Quaternion setFromEuler(final float[] angradXYZ) { - return setFromEuler(angradXYZ[0], angradXYZ[1], angradXYZ[2]); + public final Quaternion setFromEuler(final Vec3f angradXYZ) { + return setFromEuler(angradXYZ.x(), angradXYZ.y(), angradXYZ.z()); } /** @@ -857,7 +847,7 @@ public class Quaternion { * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q60">Matrix-FAQ Q60</a> * @see <a href="http://vered.rose.utoronto.ca/people/david_dir/GEMS/GEMS.html">Gems</a> * @see <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm">euclideanspace.com-eulerToQuaternion</a> - * @see #toEuler(float[]) + * @see #toEuler(Vec3f) */ public final Quaternion setFromEuler(final float bankX, final float headingY, final float attitudeZ) { if ( VectorUtil.isZero(bankX, headingY, attitudeZ, FloatUtil.EPSILON) ) { @@ -889,58 +879,45 @@ public class Quaternion { /** * Transform this quaternion to Euler rotation angles in radians (pitchX, yawY and rollZ). + * <p> + * The <code>result</code> array is laid out in natural order: + * <ul> + * <li>x - bank</li> + * <li>y - heading</li> + * <li>z - attitude</li> + * </ul> + * </p> * - * @param result the float[] array storing the computed angles. - * @return the double[] array, filled with heading, attitude and bank in that order.. + * @param result euler angle result vector for radians x-bank, y-heading and z-attitude + * @return the Vec3f `result` filled with x-bank, y-heading and z-attitude * @see <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/index.htm">euclideanspace.com-quaternionToEuler</a> * @see #setFromEuler(float, float, float) */ - public float[] toEuler(final float[] result) { + public Vec3f toEuler(final Vec3f result) { final float sqw = w*w; final float sqx = x*x; final float sqy = y*y; final float sqz = z*z; - final float unit = sqx + sqy + sqz + sqw; // if normalized is one, otherwise - // is correction factor + final float unit = sqx + sqy + sqz + sqw; // if normalized is one, otherwise, is correction factor final float test = x*y + z*w; if (test > 0.499f * unit) { // singularity at north pole - result[0] = 0f; - result[1] = 2f * FloatUtil.atan2(x, w); - result[2] = FloatUtil.HALF_PI; + result.set( 0f, // x-bank + 2f * FloatUtil.atan2(x, w), // y-heading + FloatUtil.HALF_PI ); // z-attitude } else if (test < -0.499f * unit) { // singularity at south pole - result[0] = 0f; - result[1] = -2 * FloatUtil.atan2(x, w); - result[2] = -FloatUtil.HALF_PI; + result.set( 0f, // x-bank + -2 * FloatUtil.atan2(x, w), // y-heading + -FloatUtil.HALF_PI ); // z-attitude } else { - result[0] = FloatUtil.atan2(2f * x * w - 2 * y * z, -sqx + sqy - sqz + sqw); - result[1] = FloatUtil.atan2(2f * y * w - 2 * x * z, sqx - sqy - sqz + sqw); - result[2] = FloatUtil.asin( 2f * test / unit); + result.set( FloatUtil.atan2(2f * x * w - 2 * y * z, -sqx + sqy - sqz + sqw), // x-bank + FloatUtil.atan2(2f * y * w - 2 * x * z, sqx - sqy - sqz + sqw), // y-heading + FloatUtil.asin( 2f * test / unit) ); // z-attitude } return result; } /** - * Initializes this quaternion from a 4x4 column rotation matrix - * <p> - * See <a href="ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z">Graphics Gems Code</a>,<br/> - * <a href="http://mathworld.wolfram.com/MatrixTrace.html">MatrixTrace</a>. - * </p> - * <p> - * Buggy <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q55">Matrix-FAQ Q55</a> - * </p> - * - * @param m 4x4 column matrix - * @return this quaternion for chaining. - * @see #toMatrix(float[], int) - */ - public final Quaternion setFromMatrix(final float[] m, final int m_off) { - return setFromMatrix(m[0+0*4+m_off], m[0+1*4+m_off], m[0+2*4+m_off], - m[1+0*4+m_off], m[1+1*4+m_off], m[1+2*4+m_off], - m[2+0*4+m_off], m[2+1*4+m_off], m[2+2*4+m_off]); - } - - /** * Compute the quaternion from a 3x3 column rotation matrix * <p> * See <a href="ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z">Graphics Gems Code</a>,<br/> @@ -951,7 +928,7 @@ public class Quaternion { * </p> * * @return this quaternion for chaining. - * @see #toMatrix(float[], int) + * @see #setFromMatrix(Matrix4f) */ public Quaternion setFromMatrix(final float m00, final float m01, final float m02, final float m10, final float m11, final float m12, @@ -996,6 +973,24 @@ public class Quaternion { } /** + * Compute the quaternion from a 3x3 column rotation matrix + * <p> + * See <a href="ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z">Graphics Gems Code</a>,<br/> + * <a href="http://mathworld.wolfram.com/MatrixTrace.html">MatrixTrace</a>. + * </p> + * <p> + * Buggy <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q55">Matrix-FAQ Q55</a> + * </p> + * + * @return this quaternion for chaining. + * @see Matrix4f#getRotation(Quaternion) + * @see #setFromMatrix(float, float, float, float, float, float, float, float, float) + */ + public Quaternion setFromMatrix(final Matrix4f m) { + return m.getRotation(this); + } + + /** * Transform this quaternion to a normalized 4x4 column matrix representing the rotation. * <p> * Implementation Details: @@ -1005,17 +1000,17 @@ public class Quaternion { * </p> * * @param matrix float[16] store for the resulting normalized column matrix 4x4 - * @param mat_offset * @return the given matrix store * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q54">Matrix-FAQ Q54</a> - * @see #setFromMatrix(float[], int) + * @see #setFromMatrix(Matrix4f) + * @see #setFromMatrix(float, float, float, float, float, float, float, float, float) */ - public final float[] toMatrix(final float[] matrix, final int mat_offset) { + public final float[] toMatrix(final float[] matrix) { // pre-multiply scaled-reciprocal-magnitude to reduce multiplications final float norm = magnitudeSquared(); if ( FloatUtil.isZero(norm, FloatUtil.EPSILON) ) { // identity matrix -> srecip = 0f - return FloatUtil.makeIdentity(matrix, mat_offset); + return FloatUtil.makeIdentity(matrix); } final float srecip; if ( FloatUtil.isEqual(1f, norm, FloatUtil.EPSILON) ) { @@ -1038,81 +1033,45 @@ public class Quaternion { final float zz = z * zs; final float zw = zs * w; - matrix[0+0*4+mat_offset] = 1f - ( yy + zz ); - matrix[0+1*4+mat_offset] = ( xy - zw ); - matrix[0+2*4+mat_offset] = ( xz + yw ); - matrix[0+3*4+mat_offset] = 0f; - - matrix[1+0*4+mat_offset] = ( xy + zw ); - matrix[1+1*4+mat_offset] = 1f - ( xx + zz ); - matrix[1+2*4+mat_offset] = ( yz - xw ); - matrix[1+3*4+mat_offset] = 0f; - - matrix[2+0*4+mat_offset] = ( xz - yw ); - matrix[2+1*4+mat_offset] = ( yz + xw ); - matrix[2+2*4+mat_offset] = 1f - ( xx + yy ); - matrix[2+3*4+mat_offset] = 0f; - - matrix[3+0*4+mat_offset] = 0f; - matrix[3+1*4+mat_offset] = 0f; - matrix[3+2*4+mat_offset] = 0f; - matrix[3+3*4+mat_offset] = 1f; + matrix[0+0*4] = 1f - ( yy + zz ); + matrix[0+1*4] = ( xy - zw ); + matrix[0+2*4] = ( xz + yw ); + matrix[0+3*4] = 0f; + + matrix[1+0*4] = ( xy + zw ); + matrix[1+1*4] = 1f - ( xx + zz ); + matrix[1+2*4] = ( yz - xw ); + matrix[1+3*4] = 0f; + + matrix[2+0*4] = ( xz - yw ); + matrix[2+1*4] = ( yz + xw ); + matrix[2+2*4] = 1f - ( xx + yy ); + matrix[2+3*4] = 0f; + + matrix[3+0*4] = 0f; + matrix[3+1*4] = 0f; + matrix[3+2*4] = 0f; + matrix[3+3*4] = 1f; return matrix; } /** - * @param index the 3x3 rotation matrix column to retrieve from this quaternion (normalized). Must be between 0 and 2. - * @param result the vector object to store the result in. - * @return the result column-vector for chaining. + * Transform this quaternion to a normalized 4x4 column matrix representing the rotation. + * <p> + * Implementation Details: + * <ul> + * <li> makes identity matrix if {@link #magnitudeSquared()} is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}</li> + * </ul> + * </p> + * + * @param matrix store for the resulting normalized column matrix 4x4 + * @return the given matrix store + * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q54">Matrix-FAQ Q54</a> + * @see #setFromMatrix(float, float, float, float, float, float, float, float, float) + * @see Matrix4f#setToRotation(Quaternion) */ - public float[] copyMatrixColumn(final int index, final float[] result, final int resultOffset) { - // pre-multipliy scaled-reciprocal-magnitude to reduce multiplications - final float norm = magnitudeSquared(); - final float srecip; - if ( FloatUtil.isZero(norm, FloatUtil.EPSILON) ) { - srecip= 0f; - } else if ( FloatUtil.isEqual(1f, norm, FloatUtil.EPSILON) ) { - srecip= 2f; - } else { - srecip= 2.0f / norm; - } - - // compute xs/ys/zs first to save 6 multiplications, since xs/ys/zs - // will be used 2-4 times each. - final float xs = x * srecip; - final float ys = y * srecip; - final float zs = z * srecip; - final float xx = x * xs; - final float xy = x * ys; - final float xz = x * zs; - final float xw = w * xs; - final float yy = y * ys; - final float yz = y * zs; - final float yw = w * ys; - final float zz = z * zs; - final float zw = w * zs; - - // using s=2/norm (instead of 1/norm) saves 3 multiplications by 2 here - switch (index) { - case 0: - result[0+resultOffset] = 1.0f - (yy + zz); - result[1+resultOffset] = xy + zw; - result[2+resultOffset] = xz - yw; - break; - case 1: - result[0+resultOffset] = xy - zw; - result[1+resultOffset] = 1.0f - (xx + zz); - result[2+resultOffset] = yz + xw; - break; - case 2: - result[0+resultOffset] = xz + yw; - result[1+resultOffset] = yz - xw; - result[2+resultOffset] = 1.0f - (xx + yy); - break; - default: - throw new IllegalArgumentException("Invalid column index. " + index); - } - return result; + public final Matrix4f toMatrix(final Matrix4f matrix) { + return matrix.setToRotation(this); } /** @@ -1126,10 +1085,10 @@ public class Quaternion { * @param zAxis vector representing the <i>orthogonal</i> z-axis of the coordinate system. * @return this quaternion for chaining. */ - public final Quaternion setFromAxes(final float[] xAxis, final float[] yAxis, final float[] zAxis) { - return setFromMatrix(xAxis[0], yAxis[0], zAxis[0], - xAxis[1], yAxis[1], zAxis[1], - xAxis[2], yAxis[2], zAxis[2]); + public final Quaternion setFromAxes(final Vec3f xAxis, final Vec3f yAxis, final Vec3f zAxis) { + return setFromMatrix(xAxis.x(), yAxis.x(), zAxis.x(), + xAxis.y(), yAxis.y(), zAxis.y(), + xAxis.z(), yAxis.z(), zAxis.z()); } /** @@ -1140,11 +1099,11 @@ public class Quaternion { * @param zAxis vector representing the <i>orthogonal</i> z-axis of the coordinate system. * @param tmpMat4 temporary float[4] matrix, used to transform this quaternion to a matrix. */ - public void toAxes(final float[] xAxis, final float[] yAxis, final float[] zAxis, final float[] tmpMat4) { - toMatrix(tmpMat4, 0); - FloatUtil.copyMatrixColumn(tmpMat4, 0, 2, zAxis, 0); - FloatUtil.copyMatrixColumn(tmpMat4, 0, 1, yAxis, 0); - FloatUtil.copyMatrixColumn(tmpMat4, 0, 0, xAxis, 0); + public void toAxes(final Vec3f xAxis, final Vec3f yAxis, final Vec3f zAxis, final Matrix4f tmpMat4) { + tmpMat4.setToRotation(this); + tmpMat4.getColumn(2, zAxis); + tmpMat4.getColumn(1, yAxis); + tmpMat4.getColumn(0, xAxis); } /** @@ -1154,6 +1113,7 @@ public class Quaternion { * @param m 3x3 column matrix * @return true if representing a rotational matrix, false otherwise */ + @Deprecated public final boolean isRotationMatrix3f(final float[] m) { final float epsilon = 0.01f; // margin to allow for rounding errors if (FloatUtil.abs(m[0] * m[3] + m[3] * m[4] + m[6] * m[7]) > epsilon) @@ -1171,6 +1131,7 @@ public class Quaternion { return (FloatUtil.abs(determinant3f(m) - 1) < epsilon); } + @Deprecated private final float determinant3f(final float[] m) { return m[0] * m[4] * m[8] + m[3] * m[7] * m[2] + m[6] * m[1] * m[5] - m[0] * m[7] * m[5] - m[3] * m[1] * m[8] - m[6] * m[4] * m[2]; @@ -1193,17 +1154,18 @@ public class Quaternion { return false; } final Quaternion comp = (Quaternion) o; - return Math.abs(x - comp.getX()) <= ALLOWED_DEVIANCE && - Math.abs(y - comp.getY()) <= ALLOWED_DEVIANCE && - Math.abs(z - comp.getZ()) <= ALLOWED_DEVIANCE && - Math.abs(w - comp.getW()) <= ALLOWED_DEVIANCE; + return Math.abs(x - comp.x()) <= ALLOWED_DEVIANCE && + Math.abs(y - comp.y()) <= ALLOWED_DEVIANCE && + Math.abs(z - comp.z()) <= ALLOWED_DEVIANCE && + Math.abs(w - comp.w()) <= ALLOWED_DEVIANCE; } @Override public final int hashCode() { throw new InternalError("hashCode not designed"); } + @Override public String toString() { - return "Quaternion[x "+x+", y "+y+", z "+z+", w "+w+"]"; + return "Quat[x "+x+", y "+y+", z "+z+", w "+w+"]"; } } diff --git a/src/jogl/classes/com/jogamp/opengl/math/Ray.java b/src/jogl/classes/com/jogamp/opengl/math/Ray.java index 4d651d1c3..25a7d9a70 100644 --- a/src/jogl/classes/com/jogamp/opengl/math/Ray.java +++ b/src/jogl/classes/com/jogamp/opengl/math/Ray.java @@ -1,5 +1,5 @@ /** - * Copyright 2014 JogAmp Community. All rights reserved. + * Copyright 2014-2023 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: @@ -47,13 +47,14 @@ import com.jogamp.opengl.math.geom.AABBox; * </p> */ public class Ray { - /** Origin of Ray, float[3]. */ - public final float[] orig = new float[3]; + /** Origin of Ray. */ + public final Vec3f orig = new Vec3f(); - /** Normalized direction vector of ray, float[3]. */ - public final float[] dir = new float[3]; + /** Normalized direction vector of ray. */ + public final Vec3f dir = new Vec3f(); + @Override public String toString() { - return "Ray[orig["+orig[0]+", "+orig[1]+", "+orig[2]+"], dir["+dir[0]+", "+dir[1]+", "+dir[2]+"]]"; + return "Ray[orig["+orig+"], dir["+dir+"]]"; } }
\ No newline at end of file diff --git a/src/jogl/classes/com/jogamp/opengl/math/Recti.java b/src/jogl/classes/com/jogamp/opengl/math/Recti.java new file mode 100644 index 000000000..58f5e5e77 --- /dev/null +++ b/src/jogl/classes/com/jogamp/opengl/math/Recti.java @@ -0,0 +1,134 @@ +/** + * Copyright 2022-2023 JogAmp Community. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, are + * permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this list of + * conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, this list + * of conditions and the following disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND + * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF + * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * The views and conclusions contained in the software and documentation are those of the + * authors and should not be interpreted as representing official policies, either expressed + * or implied, of JogAmp Community. + */ + +package com.jogamp.opengl.math; + +/** + * Rectangle with x, y, width and height integer components. + */ +public final class Recti { + private int x; + private int y; + private int width; + private int height; + + public Recti() {} + + public Recti(final Recti o) { + set(o); + } + + public Recti copy() { + return new Recti(this); + } + + public Recti(final int[/*4*/] xywh) { + set(xywh); + } + + public Recti(final int x, final int y, final int width, final int height) { + set(x, y, width, height); + } + + /** this = o, returns this. */ + public void set(final Recti o) { + this.x = o.x; + this.y = o.y; + this.width = o.width; + this.height= o.height; + } + + /** this = { x, y, width, height }, returns this. */ + public void set(final int x, final int y, final int width, final int height) { + this.x = x; + this.y = y; + this.width = width; + this.height= height; + } + + /** this = xywh, returns this. */ + public Recti set(final int[/*2*/] xywh) { + this.x = xywh[0]; + this.y = xywh[1]; + this.width = xywh[2]; + this.height= xywh[3]; + return this; + } + + /** xywh = this, returns xy. */ + public int[] get(final int[/*4*/] xywh) { + xywh[0] = this.x; + xywh[1] = this.y; + xywh[2] = this.width; + xywh[3] = this.height; + return xywh; + } + + public int x() { return x; } + public int y() { return y; } + public int width() { return width; } + public int height() { return height; } + + public void setX(final int x) { this.x = x; } + public void setY(final int y) { this.y = y; } + public void setWidth(final int width) { this.width = width; } + public void setHeight(final int height) { this.height = height; } + + /** Return true if all components are zero. */ + public boolean isZero() { + return 0 == x && 0 == y; + } + + /** + * Equals check. + * @param o comparison value + * @return true if all components are equal + */ + public boolean isEqual(final Recti o) { + if( this == o ) { + return true; + } else { + return x == o.x && y == o.y && + width == o.width && height == o.height; + } + } + + @Override + public boolean equals(final Object o) { + if( o instanceof Recti ) { + return isEqual((Recti)o); + } else { + return false; + } + } + + @Override + public String toString() { + return x + " / " + y + " " + width + " x " + height; + } +} diff --git a/src/jogl/classes/com/jogamp/opengl/math/Vec2f.java b/src/jogl/classes/com/jogamp/opengl/math/Vec2f.java new file mode 100644 index 000000000..47d1a78dc --- /dev/null +++ b/src/jogl/classes/com/jogamp/opengl/math/Vec2f.java @@ -0,0 +1,377 @@ +/** + * Copyright 2022-2023 JogAmp Community. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, are + * permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this list of + * conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, this list + * of conditions and the following disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND + * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF + * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * The views and conclusions contained in the software and documentation are those of the + * authors and should not be interpreted as representing official policies, either expressed + * or implied, of JogAmp Community. + */ + +package com.jogamp.opengl.math; + +/** + * 2D Vector based upon two float components. + * + * Implementation borrowed from [gfxbox2](https://jausoft.com/cgit/cs_class/gfxbox2.git/tree/include/pixel/pixel2f.hpp#n29) + * and its data layout from JOAL's Vec3f. + */ +public final class Vec2f { + private float x; + private float y; + + public static Vec2f from_length_angle(final float magnitude, final float radians) { + return new Vec2f((float)(magnitude * Math.cos(radians)), (float)(magnitude * Math.sin(radians))); + } + + public Vec2f() {} + + public Vec2f(final Vec2f o) { + set(o); + } + + /** Creating new Vec2f using Vec3f, dropping z. */ + public Vec2f(final Vec3f o) { + set(o); + } + + public Vec2f copy() { + return new Vec2f(this); + } + + public Vec2f(final float[/*2*/] xy) { + set(xy); + } + + public Vec2f(final float x, final float y) { + set(x, y); + } + + /** this = o, returns this. */ + public void set(final Vec2f o) { + this.x = o.x; + this.y = o.y; + } + + /** this = o while dropping z, returns this. */ + public void set(final Vec3f o) { + this.x = o.x(); + this.y = o.y(); + } + + /** this = { x, y }, returns this. */ + public void set(final float x, final float y) { + this.x = x; + this.y = y; + } + + /** this = xy, returns this. */ + public Vec2f set(final float[/*2*/] xy) { + this.x = xy[0]; + this.y = xy[1]; + return this; + } + + /** Sets the ith component, 0 <= i < 2 */ + public void set(final int i, final float val) { + switch (i) { + case 0: x = val; break; + case 1: y = val; break; + default: throw new IndexOutOfBoundsException(); + } + } + + /** xy = this, returns xy. */ + public float[] get(final float[/*2*/] xy) { + xy[0] = this.x; + xy[1] = this.y; + return xy; + } + + /** Gets the ith component, 0 <= i < 2 */ + public float get(final int i) { + switch (i) { + case 0: return x; + case 1: return y; + default: throw new IndexOutOfBoundsException(); + } + } + + public float x() { return x; } + public float y() { return y; } + + public void setX(final float x) { this.x = x; } + public void setY(final float y) { this.y = y; } + + /** this = max(this, m), returns this. */ + public Vec2f max(final Vec2f m) { + this.x = Math.max(this.x, m.x); + this.y = Math.max(this.y, m.y); + return this; + } + /** this = min(this, m), returns this. */ + public Vec2f min(final Vec2f m) { + this.x = Math.min(this.x, m.x); + this.y = Math.min(this.y, m.y); + return this; + } + + /** Returns this * val; creates new vector */ + public Vec2f mul(final float val) { + return new Vec2f(this).scale(val); + } + + /** this = a * b, returns this. */ + public Vec2f mul(final Vec2f a, final Vec2f b) { + x = a.x * b.x; + y = a.y * b.y; + return this; + } + + /** this = this * s, returns this. */ + public Vec2f scale(final float s) { + x *= s; + y *= s; + return this; + } + + /** this = this * { sx, sy }, returns this. */ + public Vec2f scale(final float sx, final float sy) { + x *= sx; + y *= sy; + return this; + } + + /** Returns this + arg; creates new vector */ + public Vec2f plus(final Vec2f arg) { + return new Vec2f(this).add(arg); + } + + /** this = a + b, returns this. */ + public Vec2f plus(final Vec2f a, final Vec2f b) { + x = a.x + b.x; + y = a.y + b.y; + return this; + } + + /** this = this + { dx, dy }, returns this. */ + public Vec2f add(final float dx, final float dy) { + x += dx; + y += dy; + return this; + } + + /** this = this + b, returns this. */ + public Vec2f add(final Vec2f b) { + x += b.x; + y += b.y; + return this; + } + + /** Returns this - arg; creates new vector */ + public Vec2f minus(final Vec2f arg) { + return new Vec2f(this).sub(arg); + } + + /** this = a - b, returns this. */ + public Vec2f minus(final Vec2f a, final Vec2f b) { + x = a.x - b.x; + y = a.y - b.y; + return this; + } + + /** this = this - b, returns this. */ + public Vec2f sub(final Vec2f b) { + x -= b.x; + y -= b.y; + return this; + } + + /** Return true if all components are zero, i.e. it's absolute value < {@link #EPSILON}. */ + public boolean isZero() { + return FloatUtil.isZero(x) && FloatUtil.isZero(y); + } + + public void rotate(final float radians, final Vec2f ctr) { + final float cos = (float)Math.cos(radians); + final float sin = (float)Math.sin(radians); + rotate(sin, cos, ctr); + } + + public void rotate(final float sin, final float cos, final Vec2f ctr) { + final float x0 = x - ctr.x; + final float y0 = y - ctr.y; + final float tmp = x0 * cos - y0 * sin + ctr.x; + y = x0 * sin + y0 * cos + ctr.y; + x = tmp; + } + + /** + * Return the length of this vector, a.k.a the <i>norm</i> or <i>magnitude</i> + */ + public float length() { + return (float) Math.sqrt(lengthSq()); + } + + /** + * Return the squared length of this vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i> + */ + public float lengthSq() { + return x*x + y*y; + } + + /** + * Return the direction angle of this vector in radians + */ + public float angle() { + // Utilize atan2 taking y=sin(a) and x=cos(a), resulting in proper direction angle for all quadrants. + return (float) Math.atan2(y, x); + } + + /** + * Normalize this vector in place + */ + public Vec2f normalize() { + final float lengthSq = lengthSq(); + if ( FloatUtil.isZero( lengthSq ) ) { + x = 0.0f; + y = 0.0f; + } else { + final float invSqr = 1.0f / (float)Math.sqrt(lengthSq); + x *= invSqr; + y *= invSqr; + } + return this; + } + + /** + * Return the squared distance between this vector and the given one. + * <p> + * When comparing the relative distance between two points it is usually sufficient to compare the squared + * distances, thus avoiding an expensive square root operation. + * </p> + */ + public float distSq(final Vec2f o) { + final float dx = x - o.x; + final float dy = y - o.y; + return dx*dx + dy*dy; + } + + /** + * Return the distance between this vector and the given one. + */ + public float dist(final Vec2f o) { + return (float)Math.sqrt(distSq(o)); + } + + + /** + * Return the dot product of this vector and the given one + * @return the dot product as float + */ + public float dot(final Vec2f arg) { + return x * arg.x + y * arg.y; + } + + /** + * Returns cross product of this vectors and the given one, i.e. *this x o. + * + * The 2D cross product is identical with the 2D perp dot product. + * + * @return the resulting scalar + */ + public float cross(final Vec2f o) { + return x * o.y - y * o.x; + } + + /** + * Return the cosines of the angle between two vectors + */ + public float cosAngle(final Vec2f o) { + return dot(o) / ( length() * o.length() ) ; + } + + /** + * Return the angle between two vectors in radians + */ + public float angle(final Vec2f o) { + return (float) Math.acos( cosAngle(o) ); + } + + /** + * Return the counter-clock-wise (CCW) normal of this vector, i.e. perp(endicular) vector + */ + public Vec2f normal_ccw() { + return new Vec2f(-y, x); + } + + /** + * Equals check using a given {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}. + * <p> + * Implementation considers following corner cases: + * <ul> + * <li>NaN == NaN</li> + * <li>+Inf == +Inf</li> + * <li>-Inf == -Inf</li> + * </ul> + * @param o comparison value + * @param epsilon consider using {@link FloatUtil#EPSILON} + * @return true if all components differ less than {@code epsilon}, otherwise false. + */ + public boolean isEqual(final Vec2f o, final float epsilon) { + if( this == o ) { + return true; + } else { + return FloatUtil.isEqual(x, o.x, epsilon) && + FloatUtil.isEqual(y, o.y, epsilon); + } + } + + /** + * Equals check using {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}. + * <p> + * Implementation considers following corner cases: + * <ul> + * <li>NaN == NaN</li> + * <li>+Inf == +Inf</li> + * <li>-Inf == -Inf</li> + * </ul> + * @param o comparison value + * @return true if all components differ less than {@link FloatUtil#EPSILON}, otherwise false. + */ + public boolean isEqual(final Vec2f o) { + return isEqual(o, FloatUtil.EPSILON); + } + + @Override + public boolean equals(final Object o) { + if( o instanceof Vec2f ) { + return isEqual((Vec2f)o, FloatUtil.EPSILON); + } else { + return false; + } + } + + @Override + public String toString() { + return x + " / " + y; + } +} diff --git a/src/jogl/classes/com/jogamp/opengl/math/Vec2i.java b/src/jogl/classes/com/jogamp/opengl/math/Vec2i.java new file mode 100644 index 000000000..9e70a502f --- /dev/null +++ b/src/jogl/classes/com/jogamp/opengl/math/Vec2i.java @@ -0,0 +1,153 @@ +/** + * Copyright 2022-2023 JogAmp Community. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, are + * permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this list of + * conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, this list + * of conditions and the following disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND + * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF + * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * The views and conclusions contained in the software and documentation are those of the + * authors and should not be interpreted as representing official policies, either expressed + * or implied, of JogAmp Community. + */ + +package com.jogamp.opengl.math; + +/** + * 2D Vector based upon two integer components. + */ +public final class Vec2i { + private int x; + private int y; + + public Vec2i() {} + + public Vec2i(final Vec2i o) { + set(o); + } + + public Vec2i copy() { + return new Vec2i(this); + } + + public Vec2i(final int[/*2*/] xy) { + set(xy); + } + + public Vec2i(final int x, final int y) { + set(x, y); + } + + /** this = o, returns this. */ + public void set(final Vec2i o) { + this.x = o.x; + this.y = o.y; + } + + /** this = { x, y }, returns this. */ + public void set(final int x, final int y) { + this.x = x; + this.y = y; + } + + /** this = xy, returns this. */ + public Vec2i set(final int[/*2*/] xy) { + this.x = xy[0]; + this.y = xy[1]; + return this; + } + + /** xy = this, returns xy. */ + public int[] get(final int[/*2*/] xy) { + xy[0] = this.x; + xy[1] = this.y; + return xy; + } + + public int x() { return x; } + public int y() { return y; } + + public void setX(final int x) { this.x = x; } + public void setY(final int y) { this.y = y; } + + /** Return true if all components are zero. */ + public boolean isZero() { + return 0 == x && 0 == y; + } + + /** + * Return the length of this vector, a.k.a the <i>norm</i> or <i>magnitude</i> + */ + public int length() { + return (int) Math.sqrt(lengthSq()); + } + + /** + * Return the squared length of this vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i> + */ + public int lengthSq() { + return x*x + y*y; + } + + /** + * Return the squared distance between this vector and the given one. + * <p> + * When comparing the relative distance between two points it is usually sufficient to compare the squared + * distances, thus avoiding an expensive square root operation. + * </p> + */ + public int distSq(final Vec2i o) { + final int dx = x - o.x; + final int dy = y - o.y; + return dx*dx + dy*dy; + } + + /** + * Return the distance between this vector and the given one. + */ + public int dist(final Vec2i o) { + return (int)Math.sqrt(distSq(o)); + } + + /** + * Equals check. + * @param o comparison value + * @return true if all components are equal + */ + public boolean isEqual(final Vec2i o) { + if( this == o ) { + return true; + } else { + return x == o.x && y == o.y; + } + } + + @Override + public boolean equals(final Object o) { + if( o instanceof Vec2i ) { + return isEqual((Vec2i)o); + } else { + return false; + } + } + + @Override + public String toString() { + return x + " / " + y; + } +} diff --git a/src/jogl/classes/com/jogamp/opengl/math/Vec3f.java b/src/jogl/classes/com/jogamp/opengl/math/Vec3f.java new file mode 100644 index 000000000..eb1144c07 --- /dev/null +++ b/src/jogl/classes/com/jogamp/opengl/math/Vec3f.java @@ -0,0 +1,393 @@ +/** + * Copyright 2022-2023 JogAmp Community. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, are + * permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this list of + * conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, this list + * of conditions and the following disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND + * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF + * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * The views and conclusions contained in the software and documentation are those of the + * authors and should not be interpreted as representing official policies, either expressed + * or implied, of JogAmp Community. + */ + +package com.jogamp.opengl.math; + +/** + * 3D Vector based upon three float components. + * + * Implementation borrowed from [gfxbox2](https://jausoft.com/cgit/cs_class/gfxbox2.git/tree/include/pixel/pixel3f.hpp#n29) + * and its data layout from JOAL's Vec3f. + */ +public final class Vec3f { + public static final Vec3f ONE = new Vec3f(1f, 1f, 1f); + public static final Vec3f UNIT_Y = new Vec3f(0f, 1f, 0f); + public static final Vec3f UNIT_Y_NEG = new Vec3f(0f, -1f, 0f); + public static final Vec3f UNIT_Z = new Vec3f(0f, 0f, 1f); + public static final Vec3f UNIT_Z_NEG = new Vec3f(0f, 0f, -1f); + + private float x; + private float y; + private float z; + + public Vec3f() {} + + public Vec3f(final Vec3f o) { + set(o); + } + + /** Creating new Vec3f using Vec4f, dropping w. */ + public Vec3f(final Vec4f o) { + set(o); + } + + /** Creating new Vec3f using { Vec2f, z}. */ + public Vec3f(final Vec2f o, final float z) { + set(o, z); + } + + public Vec3f copy() { + return new Vec3f(this); + } + + public Vec3f(final float[/*3*/] xyz) { + set(xyz); + } + + public Vec3f(final float x, final float y, final float z) { + set(x, y, z); + } + + /** this = o, returns this. */ + public Vec3f set(final Vec3f o) { + this.x = o.x; + this.y = o.y; + this.z = o.z; + return this; + } + + /** this = { o, z }, returns this. */ + public Vec3f set(final Vec2f o, final float z) { + this.x = o.x(); + this.y = o.y(); + this.z = z; + return this; + } + + /** this = o while dropping w, returns this. */ + public Vec3f set(final Vec4f o) { + this.x = o.x(); + this.y = o.y(); + this.z = o.z(); + return this; + } + + /** this = { x, y, z }, returns this. */ + public Vec3f set(final float x, final float y, final float z) { + this.x = x; + this.y = y; + this.z = z; + return this; + } + + /** this = xyz, returns this. */ + public Vec3f set(final float[/*3*/] xyz) { + this.x = xyz[0]; + this.y = xyz[1]; + this.z = xyz[2]; + return this; + } + + /** Sets the ith component, 0 <= i < 3 */ + public void set(final int i, final float val) { + switch (i) { + case 0: x = val; break; + case 1: y = val; break; + case 2: z = val; break; + default: throw new IndexOutOfBoundsException(); + } + } + + /** xyz = this, returns xyz. */ + public float[] get(final float[/*3*/] xyz) { + xyz[0] = this.x; + xyz[1] = this.y; + xyz[2] = this.z; + return xyz; + } + + /** Gets the ith component, 0 <= i < 3 */ + public float get(final int i) { + switch (i) { + case 0: return x; + case 1: return y; + case 2: return z; + default: throw new IndexOutOfBoundsException(); + } + } + + public float x() { return x; } + public float y() { return y; } + public float z() { return z; } + + public void setX(final float x) { this.x = x; } + public void setY(final float y) { this.y = y; } + public void setZ(final float z) { this.z = z; } + + /** this = max(this, m), returns this. */ + public Vec3f max(final Vec3f m) { + this.x = Math.max(this.x, m.x); + this.y = Math.max(this.y, m.y); + this.z = Math.max(this.z, m.z); + return this; + } + /** this = min(this, m), returns this. */ + public Vec3f min(final Vec3f m) { + this.x = Math.min(this.x, m.x); + this.y = Math.min(this.y, m.y); + this.z = Math.min(this.z, m.z); + return this; + } + + /** Returns this * val; creates new vector */ + public Vec3f mul(final float val) { + return new Vec3f(this).scale(val); + } + + /** this = a * b, returns this. */ + public Vec3f mul(final Vec3f a, final Vec3f b) { + x = a.x * b.x; + y = a.y * b.y; + z = a.z * b.z; + return this; + } + + /** this = this * s, returns this. */ + public Vec3f scale(final float s) { + x *= s; + y *= s; + z *= s; + return this; + } + + /** this = this * { sx, sy, sz }, returns this. */ + public Vec3f scale(final float sx, final float sy, final float sz) { + x *= sx; + y *= sy; + z *= sz; + return this; + } + + /** Returns this + arg; creates new vector */ + public Vec3f plus(final Vec3f arg) { + return new Vec3f(this).add(arg); + } + + /** this = a + b, returns this. */ + public Vec3f plus(final Vec3f a, final Vec3f b) { + x = a.x + b.x; + y = a.y + b.y; + z = a.z + b.z; + return this; + } + + /** this = this + { dx, dy, dz }, returns this. */ + public Vec3f add(final float dx, final float dy, final float dz) { + x += dx; + y += dy; + z += dz; + return this; + } + + /** this = this + b, returns this. */ + public Vec3f add(final Vec3f b) { + x += b.x; + y += b.y; + z += b.z; + return this; + } + + /** Returns this - arg; creates new vector */ + public Vec3f minus(final Vec3f arg) { + return new Vec3f(this).sub(arg); + } + + /** this = a - b, returns this. */ + public Vec3f minus(final Vec3f a, final Vec3f b) { + x = a.x - b.x; + y = a.y - b.y; + z = a.z - b.z; + return this; + } + + /** this = this - b, returns this. */ + public Vec3f sub(final Vec3f b) { + x -= b.x; + y -= b.y; + z -= b.z; + return this; + } + + /** Return true if all components are zero, i.e. it's absolute value < {@link #EPSILON}. */ + public boolean isZero() { + return FloatUtil.isZero(x) && FloatUtil.isZero(y) && FloatUtil.isZero(z); + } + + /** + * Return the length of this vector, a.k.a the <i>norm</i> or <i>magnitude</i> + */ + public float length() { + return (float) Math.sqrt(lengthSq()); + } + + /** + * Return the squared length of this vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i> + */ + public float lengthSq() { + return x*x + y*y + z*z; + } + + /** + * Normalize this vector in place + */ + public Vec3f normalize() { + final float lengthSq = lengthSq(); + if ( FloatUtil.isZero( lengthSq ) ) { + x = 0.0f; + y = 0.0f; + z = 0.0f; + } else { + final float invSqr = 1.0f / (float)Math.sqrt(lengthSq); + x *= invSqr; + y *= invSqr; + z *= invSqr; + } + return this; + } + + /** + * Return the squared distance between this vector and the given one. + * <p> + * When comparing the relative distance between two points it is usually sufficient to compare the squared + * distances, thus avoiding an expensive square root operation. + * </p> + */ + public float distSq(final Vec3f o) { + final float dx = x - o.x; + final float dy = y - o.y; + final float dz = z - o.z; + return dx*dx + dy*dy + dz*dz; + } + + /** + * Return the distance between this vector and the given one. + */ + public float dist(final Vec3f o) { + return (float)Math.sqrt(distSq(o)); + } + + + /** + * Return the dot product of this vector and the given one + * @return the dot product as float + */ + public float dot(final Vec3f o) { + return x*o.x + y*o.y + z*o.z; + } + + /** Returns this cross arg; creates new vector */ + public Vec3f cross(final Vec3f arg) { + return new Vec3f().cross(this, arg); + } + + /** this = a cross b. NOTE: "this" must be a different vector than + both a and b. */ + public Vec3f cross(final Vec3f a, final Vec3f b) { + x = a.y * b.z - a.z * b.y; + y = a.z * b.x - a.x * b.z; + z = a.x * b.y - a.y * b.x; + return this; + } + + /** + * Return the cosines of the angle between two vectors + */ + public float cosAngle(final Vec3f o) { + return dot(o) / ( length() * o.length() ) ; + } + + /** + * Return the angle between two vectors in radians + */ + public float angle(final Vec3f o) { + return (float) Math.acos( cosAngle(o) ); + } + + /** + * Equals check using a given {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}. + * <p> + * Implementation considers following corner cases: + * <ul> + * <li>NaN == NaN</li> + * <li>+Inf == +Inf</li> + * <li>-Inf == -Inf</li> + * </ul> + * @param o comparison value + * @param epsilon consider using {@link FloatUtil#EPSILON} + * @return true if all components differ less than {@code epsilon}, otherwise false. + */ + public boolean isEqual(final Vec3f o, final float epsilon) { + if( this == o ) { + return true; + } else { + return FloatUtil.isEqual(x, o.x, epsilon) && + FloatUtil.isEqual(y, o.y, epsilon) && + FloatUtil.isEqual(z, o.z, epsilon); + } + } + + /** + * Equals check using {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}. + * <p> + * Implementation considers following corner cases: + * <ul> + * <li>NaN == NaN</li> + * <li>+Inf == +Inf</li> + * <li>-Inf == -Inf</li> + * </ul> + * @param o comparison value + * @return true if all components differ less than {@link FloatUtil#EPSILON}, otherwise false. + */ + public boolean isEqual(final Vec3f o) { + return isEqual(o, FloatUtil.EPSILON); + } + + @Override + public boolean equals(final Object o) { + if( o instanceof Vec3f ) { + return isEqual((Vec3f)o, FloatUtil.EPSILON); + } else { + return false; + } + } + + @Override + public String toString() { + return x + " / " + y + " / " + z; + } +} diff --git a/src/jogl/classes/com/jogamp/opengl/math/Vec4f.java b/src/jogl/classes/com/jogamp/opengl/math/Vec4f.java new file mode 100644 index 000000000..f86fe5dad --- /dev/null +++ b/src/jogl/classes/com/jogamp/opengl/math/Vec4f.java @@ -0,0 +1,384 @@ +/** + * Copyright 2022-2023 JogAmp Community. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, are + * permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this list of + * conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, this list + * of conditions and the following disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND + * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF + * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * The views and conclusions contained in the software and documentation are those of the + * authors and should not be interpreted as representing official policies, either expressed + * or implied, of JogAmp Community. + */ + +package com.jogamp.opengl.math; + +/** + * 4D Vector based upon four float components. + * + * Implementation borrowed from [gfxbox2](https://jausoft.com/cgit/cs_class/gfxbox2.git/tree/include/pixel/pixel3f.hpp#n29) + * and its data layout from JOAL's Vec3f. + */ +public final class Vec4f { + private float x; + private float y; + private float z; + private float w; + + public Vec4f() {} + + public Vec4f(final Vec4f o) { + set(o); + } + + /** Creating new Vec4f using { o, w }. */ + public Vec4f(final Vec3f o, final float w) { + set(o, w); + } + + public Vec4f copy() { + return new Vec4f(this); + } + + public Vec4f(final float[/*4*/] xyzw) { + set(xyzw); + } + + public Vec4f(final float x, final float y, final float z, final float w) { + set(x, y, z, w); + } + + /** this = o, returns this. */ + public Vec4f set(final Vec4f o) { + this.x = o.x; + this.y = o.y; + this.z = o.z; + this.w = o.w; + return this; + } + + /** this = { o, w }, returns this. */ + public Vec4f set(final Vec3f o, final float w) { + this.x = o.x(); + this.y = o.y(); + this.z = o.z(); + this.w = w; + return this; + } + + /** this = { x, y, z, w }, returns this. */ + public Vec4f set(final float x, final float y, final float z, final float w) { + this.x = x; + this.y = y; + this.z = z; + this.w = w; + return this; + } + + /** this = xyzw, returns this. */ + public Vec4f set(final float[/*4*/] xyzw) { + this.x = xyzw[0]; + this.y = xyzw[1]; + this.z = xyzw[2]; + this.w = xyzw[3]; + return this; + } + + /** Sets the ith component, 0 <= i < 4 */ + public void set(final int i, final float val) { + switch (i) { + case 0: x = val; break; + case 1: y = val; break; + case 2: z = val; break; + case 3: w = val; break; + default: throw new IndexOutOfBoundsException(); + } + } + + /** xyzw = this, returns xyzw. */ + public float[] get(final float[/*4*/] xyzw) { + xyzw[0] = this.x; + xyzw[1] = this.y; + xyzw[2] = this.z; + xyzw[3] = this.w; + return xyzw; + } + + /** Gets the ith component, 0 <= i < 4 */ + public float get(final int i) { + switch (i) { + case 0: return x; + case 1: return y; + case 2: return z; + case 3: return w; + default: throw new IndexOutOfBoundsException(); + } + } + + public float x() { return x; } + public float y() { return y; } + public float z() { return z; } + public float w() { return w; } + + public void setX(final float x) { this.x = x; } + public void setY(final float y) { this.y = y; } + public void setZ(final float z) { this.z = z; } + public void setW(final float w) { this.w = w; } + + /** this = max(this, m), returns this. */ + public Vec4f max(final Vec4f m) { + this.x = Math.max(this.x, m.x); + this.y = Math.max(this.y, m.y); + this.z = Math.max(this.z, m.z); + this.w = Math.max(this.w, m.w); + return this; + } + /** this = min(this, m), returns this. */ + public Vec4f min(final Vec4f m) { + this.x = Math.min(this.x, m.x); + this.y = Math.min(this.y, m.y); + this.z = Math.min(this.z, m.z); + this.w = Math.min(this.w, m.w); + return this; + } + + /** Returns this * val; creates new vector */ + public Vec4f mul(final float val) { + return new Vec4f(this).scale(val); + } + + /** this = a * b, returns this. */ + public Vec4f mul(final Vec4f a, final Vec4f b) { + x = a.x * b.x; + y = a.y * b.y; + z = a.z * b.z; + w = a.w * b.w; + return this; + } + + /** this = this * s, returns this. */ + public Vec4f scale(final float s) { + x *= s; + y *= s; + z *= s; + w *= s; + return this; + } + + /** this = this * { sx, sy, sz, sw }, returns this. */ + public Vec4f scale(final float sx, final float sy, final float sz, final float sw) { + x *= sx; + y *= sy; + z *= sz; + w *= sw; + return this; + } + + /** Returns this + arg; creates new vector */ + public Vec4f plus(final Vec4f arg) { + return new Vec4f(this).add(arg); + } + + /** this = a + b, returns this. */ + public Vec4f plus(final Vec4f a, final Vec4f b) { + x = a.x + b.x; + y = a.y + b.y; + z = a.z + b.z; + w = a.w + b.w; + return this; + } + + /** this = this + { dx, dy, dz, dw }, returns this. */ + public Vec4f add(final float dx, final float dy, final float dz, final float dw) { + x += dx; + y += dy; + z += dz; + w += dw; + return this; + } + + /** this = this + b, returns this. */ + public Vec4f add(final Vec4f b) { + x += b.x; + y += b.y; + z += b.z; + w += b.w; + return this; + } + + /** Returns this - arg; creates new vector */ + public Vec4f minus(final Vec4f arg) { + return new Vec4f(this).sub(arg); + } + + /** this = a - b, returns this. */ + public Vec4f minus(final Vec4f a, final Vec4f b) { + x = a.x - b.x; + y = a.y - b.y; + z = a.z - b.z; + w = a.w - b.w; + return this; + } + + /** this = this - b, returns this. */ + public Vec4f sub(final Vec4f b) { + x -= b.x; + y -= b.y; + z -= b.z; + w -= b.w; + return this; + } + + /** Return true if all components are zero, i.e. it's absolute value < {@link #EPSILON}. */ + public boolean isZero() { + return FloatUtil.isZero(x) && FloatUtil.isZero(y) && FloatUtil.isZero(z) && FloatUtil.isZero(w); + } + + /** + * Return the length of this vector, a.k.a the <i>norm</i> or <i>magnitude</i> + */ + public float length() { + return (float) Math.sqrt(lengthSq()); + } + + /** + * Return the squared length of this vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i> + */ + public float lengthSq() { + return x*x + y*y + z*z + w*w; + } + + /** + * Normalize this vector in place + */ + public Vec4f normalize() { + final float lengthSq = lengthSq(); + if ( FloatUtil.isZero( lengthSq ) ) { + x = 0.0f; + y = 0.0f; + z = 0.0f; + w = 0.0f; + } else { + final float invSqr = 1.0f / (float)Math.sqrt(lengthSq); + x *= invSqr; + y *= invSqr; + z *= invSqr; + w *= invSqr; + } + return this; + } + + /** + * Return the squared distance between this vector and the given one. + * <p> + * When comparing the relative distance between two points it is usually sufficient to compare the squared + * distances, thus avoiding an expensive square root operation. + * </p> + */ + public float distSq(final Vec4f o) { + final float dx = x - o.x; + final float dy = y - o.y; + final float dz = z - o.z; + final float dw = w - o.w; + return dx*dx + dy*dy + dz*dz + dw*dw; + } + + /** + * Return the distance between this vector and the given one. + */ + public float dist(final Vec4f o) { + return (float)Math.sqrt(distSq(o)); + } + + + /** + * Return the dot product of this vector and the given one + * @return the dot product as float + */ + public float dot(final Vec4f o) { + return x*o.x + y*o.y + z*o.z + w*o.w; + } + + /** + * Return the cosines of the angle between two vectors + */ + public float cosAngle(final Vec4f o) { + return dot(o) / ( length() * o.length() ) ; + } + + /** + * Return the angle between two vectors in radians + */ + public float angle(final Vec4f o) { + return (float) Math.acos( cosAngle(o) ); + } + + /** + * Equals check using a given {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}. + * <p> + * Implementation considers following corner cases: + * <ul> + * <li>NaN == NaN</li> + * <li>+Inf == +Inf</li> + * <li>-Inf == -Inf</li> + * </ul> + * @param o comparison value + * @param epsilon consider using {@link FloatUtil#EPSILON} + * @return true if all components differ less than {@code epsilon}, otherwise false. + */ + public boolean isEqual(final Vec4f o, final float epsilon) { + if( this == o ) { + return true; + } else { + return FloatUtil.isEqual(x, o.x, epsilon) && + FloatUtil.isEqual(y, o.y, epsilon) && + FloatUtil.isEqual(z, o.z, epsilon) && + FloatUtil.isEqual(w, o.w, epsilon); + } + } + + /** + * Equals check using {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}. + * <p> + * Implementation considers following corner cases: + * <ul> + * <li>NaN == NaN</li> + * <li>+Inf == +Inf</li> + * <li>-Inf == -Inf</li> + * </ul> + * @param o comparison value + * @return true if all components differ less than {@link FloatUtil#EPSILON}, otherwise false. + */ + public boolean isEqual(final Vec4f o) { + return isEqual(o, FloatUtil.EPSILON); + } + + @Override + public boolean equals(final Object o) { + if( o instanceof Vec4f ) { + return isEqual((Vec4f)o, FloatUtil.EPSILON); + } else { + return false; + } + } + + @Override + public String toString() { + return x + " / " + y + " / " + z + " / " + w; + } +} diff --git a/src/jogl/classes/com/jogamp/opengl/math/VectorUtil.java b/src/jogl/classes/com/jogamp/opengl/math/VectorUtil.java index a07153155..d3b2c3cfd 100644 --- a/src/jogl/classes/com/jogamp/opengl/math/VectorUtil.java +++ b/src/jogl/classes/com/jogamp/opengl/math/VectorUtil.java @@ -1,5 +1,5 @@ /** - * Copyright 2010 JogAmp Community. All rights reserved. + * Copyright 2010-2023 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: @@ -32,145 +32,11 @@ import java.util.ArrayList; import com.jogamp.graph.geom.plane.Winding; public final class VectorUtil { - - public static final float[] VEC3_ONE = { 1f, 1f, 1f }; - public static final float[] VEC3_ZERO = { 0f, 0f, 0f }; - public static final float[] VEC3_UNIT_Y = { 0f, 1f, 0f }; - public static final float[] VEC3_UNIT_Y_NEG = { 0f, -1f, 0f }; - public static final float[] VEC3_UNIT_Z = { 0f, 0f, 1f }; - public static final float[] VEC3_UNIT_Z_NEG = { 0f, 0f, -1f }; - - /** - * Copies a vector of length 2 - * @param dst output vector - * @param dstOffset offset of dst in array - * @param src input vector - * @param srcOffset offset of src in array - * @return copied output vector for chaining - */ - public static float[] copyVec2(final float[] dst, final int dstOffset, final float[] src, final int srcOffset) - { - System.arraycopy(src, srcOffset, dst, dstOffset, 2); - return dst; - } - - /** - * Copies a vector of length 3 - * @param dst output vector - * @param dstOffset offset of dst in array - * @param src input vector - * @param srcOffset offset of src in array - * @return copied output vector for chaining - */ - public static float[] copyVec3(final float[] dst, final int dstOffset, final float[] src, final int srcOffset) - { - System.arraycopy(src, srcOffset, dst, dstOffset, 3); - return dst; - } - - /** - * Copies a vector of length 4 - * @param dst output vector - * @param dstOffset offset of dst in array - * @param src input vector - * @param srcOffset offset of src in array - * @return copied output vector for chaining - */ - public static float[] copyVec4(final float[] dst, final int dstOffset, final float[] src, final int srcOffset) - { - System.arraycopy(src, srcOffset, dst, dstOffset, 4); - return dst; - } - - /** - * Return true if both vectors are equal w/o regarding an epsilon. - * <p> - * Implementation uses {@link FloatUtil#isEqual(float, float)}, see API doc for details. - * </p> - */ - public static boolean isVec2Equal(final float[] vec1, final int vec1Offset, final float[] vec2, final int vec2Offset) { - return FloatUtil.isEqual(vec1[0+vec1Offset], vec2[0+vec2Offset]) && - FloatUtil.isEqual(vec1[1+vec1Offset], vec2[1+vec2Offset]) ; - } - - /** - * Return true if both vectors are equal w/o regarding an epsilon. - * <p> - * Implementation uses {@link FloatUtil#isEqual(float, float)}, see API doc for details. - * </p> - */ - public static boolean isVec3Equal(final float[] vec1, final int vec1Offset, final float[] vec2, final int vec2Offset) { - return FloatUtil.isEqual(vec1[0+vec1Offset], vec2[0+vec2Offset]) && - FloatUtil.isEqual(vec1[1+vec1Offset], vec2[1+vec2Offset]) && - FloatUtil.isEqual(vec1[2+vec1Offset], vec2[2+vec2Offset]) ; - } - - /** - * Return true if both vectors are equal, i.e. their absolute delta < <code>epsilon</code>. - * <p> - * Implementation uses {@link FloatUtil#isEqual(float, float, float)}, see API doc for details. - * </p> - */ - public static boolean isVec2Equal(final float[] vec1, final int vec1Offset, final float[] vec2, final int vec2Offset, final float epsilon) { - return FloatUtil.isEqual(vec1[0+vec1Offset], vec2[0+vec2Offset], epsilon) && - FloatUtil.isEqual(vec1[1+vec1Offset], vec2[1+vec2Offset], epsilon) ; - } - /** - * Return true if both vectors are equal, i.e. their absolute delta < <code>epsilon</code>. - * <p> - * Implementation uses {@link FloatUtil#isEqual(float, float, float)}, see API doc for details. - * </p> - */ - public static boolean isVec3Equal(final float[] vec1, final int vec1Offset, final float[] vec2, final int vec2Offset, final float epsilon) { - return FloatUtil.isEqual(vec1[0+vec1Offset], vec2[0+vec2Offset], epsilon) && - FloatUtil.isEqual(vec1[1+vec1Offset], vec2[1+vec2Offset], epsilon) && - FloatUtil.isEqual(vec1[2+vec1Offset], vec2[2+vec2Offset], epsilon) ; - } - - /** - * Return true if vector is zero, no {@link FloatUtil#EPSILON} is taken into consideration. - */ - public static boolean isVec2Zero(final float[] vec, final int vecOffset) { - return 0f == vec[0+vecOffset] && 0f == vec[1+vecOffset]; - } - - /** - * Return true if vector is zero, no {@link FloatUtil#EPSILON} is taken into consideration. - */ - public static boolean isVec3Zero(final float[] vec, final int vecOffset) { - return 0f == vec[0+vecOffset] && 0f == vec[1+vecOffset] && 0f == vec[2+vecOffset]; - } - - /** - * Return true if vector is zero, i.e. it's absolute components < <code>epsilon</code>. - * <p> - * Implementation uses {@link FloatUtil#isZero(float, float)}, see API doc for details. - * </p> - */ - public static boolean isVec2Zero(final float[] vec, final int vecOffset, final float epsilon) { - return isZero(vec[0+vecOffset], vec[1+vecOffset], epsilon); - } - - /** - * Return true if vector is zero, i.e. it's absolute components < <code>epsilon</code>. - * <p> - * Implementation uses {@link FloatUtil#isZero(float, float)}, see API doc for details. - * </p> - */ - public static boolean isVec3Zero(final float[] vec, final int vecOffset, final float epsilon) { - return isZero(vec[0+vecOffset], vec[1+vecOffset], vec[2+vecOffset], epsilon); - } - - /** - * Return true if all two vector components are zero, i.e. it's their absolute value < <code>epsilon</code>. - * <p> - * Implementation uses {@link FloatUtil#isZero(float, float)}, see API doc for details. - * </p> + * Return true if 2D vector components are zero, no {@link FloatUtil#EPSILON} is taken into consideration. */ - public static boolean isZero(final float x, final float y, final float epsilon) { - return FloatUtil.isZero(x, epsilon) && - FloatUtil.isZero(y, epsilon) ; + public static boolean isVec2Zero(final Vec3f vec) { + return 0f == vec.x() && 0f == vec.y(); } /** @@ -207,34 +73,6 @@ public final class VectorUtil { } /** - * Return the dot product of two points - * @param vec1 vector 1 - * @param vec2 vector 2 - * @return the dot product as float - */ - public static float dotVec3(final float[] vec1, final float[] vec2) { - return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2]; - } - - /** - * Return the cosines of the angle between to vectors - * @param vec1 vector 1 - * @param vec2 vector 2 - */ - public static float cosAngleVec3(final float[] vec1, final float[] vec2) { - return dotVec3(vec1, vec2) / ( normVec3(vec1) * normVec3(vec2) ) ; - } - - /** - * Return the angle between to vectors in radians - * @param vec1 vector 1 - * @param vec2 vector 2 - */ - public static float angleVec3(final float[] vec1, final float[] vec2) { - return FloatUtil.acos(cosAngleVec3(vec1, vec2)); - } - - /** * Return the squared length of a vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i> */ public static float normSquareVec2(final float[] vec) { @@ -244,16 +82,6 @@ public final class VectorUtil { /** * Return the squared length of a vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i> */ - public static float normSquareVec2(final float[] vec, final int offset) { - float v = vec[0+offset]; - final float r = v*v; - v = vec[1+offset]; - return r + v*v; - } - - /** - * Return the squared length of a vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i> - */ public static float normSquareVec3(final float[] vec) { return vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]; } @@ -278,73 +106,6 @@ public final class VectorUtil { } /** - * Return the length of a vector, a.k.a the <i>norm</i> or <i>magnitude</i> - */ - public static float normVec3(final float[] vec) { - return FloatUtil.sqrt(normSquareVec3(vec)); - } - - /** - * Normalize a vector - * @param result output vector, may be vector (in-place) - * @param vector input vector - * @return normalized output vector - * @return result vector for chaining - */ - public static float[] normalizeVec2(final float[] result, final float[] vector) { - final float lengthSq = normSquareVec2(vector); - if ( FloatUtil.isZero(lengthSq, FloatUtil.EPSILON) ) { - result[0] = 0f; - result[1] = 0f; - } else { - final float invSqr = 1f / FloatUtil.sqrt(lengthSq); - result[0] = vector[0] * invSqr; - result[1] = vector[1] * invSqr; - } - return result; - } - - /** - * Normalize a vector in place - * @param vector input vector - * @return normalized output vector - */ - public static float[] normalizeVec2(final float[] vector) { - final float lengthSq = normSquareVec2(vector); - if ( FloatUtil.isZero(lengthSq, FloatUtil.EPSILON) ) { - vector[0] = 0f; - vector[1] = 0f; - } else { - final float invSqr = 1f / FloatUtil.sqrt(lengthSq); - vector[0] *= invSqr; - vector[1] *= invSqr; - } - return vector; - } - - /** - * Normalize a vector - * @param result output vector, may be vector (in-place) - * @param vector input vector - * @return normalized output vector - * @return result vector for chaining - */ - public static float[] normalizeVec3(final float[] result, final float[] vector) { - final float lengthSq = normSquareVec3(vector); - if ( FloatUtil.isZero(lengthSq, FloatUtil.EPSILON) ) { - result[0] = 0f; - result[1] = 0f; - result[2] = 0f; - } else { - final float invSqr = 1f / FloatUtil.sqrt(lengthSq); - result[0] = vector[0] * invSqr; - result[1] = vector[1] * invSqr; - result[2] = vector[2] * invSqr; - } - return result; - } - - /** * Normalize a vector in place * @param vector input vector * @return normalized output vector @@ -401,35 +162,6 @@ public final class VectorUtil { * Scales a vector by param using given result float[], result = vector * scale * @param result vector for the result, may be vector (in-place) * @param vector input vector - * @param scale single scale constant for all vector components - * @return result vector for chaining - */ - public static float[] scaleVec3(final float[] result, final float[] vector, final float scale) { - result[0] = vector[0] * scale; - result[1] = vector[1] * scale; - result[2] = vector[2] * scale; - return result; - } - - /** - * Scales a vector by param using given result float[], result = vector * scale - * @param result vector for the result, may be vector (in-place) - * @param vector input vector - * @param scale 3 component scale constant for each vector component - * @return result vector for chaining - */ - public static float[] scaleVec3(final float[] result, final float[] vector, final float[] scale) - { - result[0] = vector[0] * scale[0]; - result[1] = vector[1] * scale[1]; - result[2] = vector[2] * scale[2]; - return result; - } - - /** - * Scales a vector by param using given result float[], result = vector * scale - * @param result vector for the result, may be vector (in-place) - * @param vector input vector * @param scale 2 component scale constant for each vector component * @return result vector for chaining */ @@ -457,35 +189,6 @@ public final class VectorUtil { * Divides a vector by param using given result float[], result = vector / scale * @param result vector for the result, may be vector (in-place) * @param vector input vector - * @param scale single scale constant for all vector components - * @return result vector for chaining - */ - public static float[] divVec3(final float[] result, final float[] vector, final float scale) { - result[0] = vector[0] / scale; - result[1] = vector[1] / scale; - result[2] = vector[2] / scale; - return result; - } - - /** - * Divides a vector by param using given result float[], result = vector / scale - * @param result vector for the result, may be vector (in-place) - * @param vector input vector - * @param scale 3 component scale constant for each vector component - * @return result vector for chaining - */ - public static float[] divVec3(final float[] result, final float[] vector, final float[] scale) - { - result[0] = vector[0] / scale[0]; - result[1] = vector[1] / scale[1]; - result[2] = vector[2] / scale[2]; - return result; - } - - /** - * Divides a vector by param using given result float[], result = vector / scale - * @param result vector for the result, may be vector (in-place) - * @param vector input vector * @param scale 2 component scale constant for each vector component * @return result vector for chaining */ @@ -510,20 +213,6 @@ public final class VectorUtil { } /** - * Adds two vectors, result = v1 + v2 - * @param result float[3] result vector, may be either v1 or v2 (in-place) - * @param v1 vector 1 - * @param v2 vector 2 - * @return result vector for chaining - */ - public static float[] addVec3(final float[] result, final float[] v1, final float[] v2) { - result[0] = v1[0] + v2[0]; - result[1] = v1[1] + v2[1]; - result[2] = v1[2] + v2[2]; - return result; - } - - /** * Subtracts two vectors, result = v1 - v2 * @param result float[2] result vector, may be either v1 or v2 (in-place) * @param v1 vector 1 @@ -537,34 +226,6 @@ public final class VectorUtil { } /** - * Subtracts two vectors, result = v1 - v2 - * @param result float[3] result vector, may be either v1 or v2 (in-place) - * @param v1 vector 1 - * @param v2 vector 2 - * @return result vector for chaining - */ - public static float[] subVec3(final float[] result, final float[] v1, final float[] v2) { - result[0] = v1[0] - v2[0]; - result[1] = v1[1] - v2[1]; - result[2] = v1[2] - v2[2]; - return result; - } - - /** - * cross product vec1 x vec2 - * @param v1 vector 1 - * @param v2 vector 2 - * @return the resulting vector - */ - public static float[] crossVec3(final float[] result, final float[] v1, final float[] v2) - { - result[0] = v1[1] * v2[2] - v1[2] * v2[1]; - result[1] = v1[2] * v2[0] - v1[0] * v2[2]; - result[2] = v1[0] * v2[1] - v1[1] * v2[0]; - return result; - } - - /** * cross product vec1 x vec2 * @param v1 vector 1 * @param v2 vector 2 @@ -579,55 +240,15 @@ public final class VectorUtil { } /** - * Multiplication of column-major 4x4 matrix with vector - * @param colMatrix column matrix (4x4) - * @param vec vector(x,y,z) - * @return result - */ - public static float[] mulColMat4Vec3(final float[] result, final float[] colMatrix, final float[] vec) - { - result[0] = vec[0]*colMatrix[0] + vec[1]*colMatrix[4] + vec[2]*colMatrix[8] + colMatrix[12]; - result[1] = vec[0]*colMatrix[1] + vec[1]*colMatrix[5] + vec[2]*colMatrix[9] + colMatrix[13]; - result[2] = vec[0]*colMatrix[2] + vec[1]*colMatrix[6] + vec[2]*colMatrix[10] + colMatrix[14]; - - return result; - } - - /** - * Matrix Vector multiplication - * @param rawMatrix column matrix (4x4) - * @param vec vector(x,y,z) - * @return result - */ - public static float[] mulRowMat4Vec3(final float[] result, final float[] rawMatrix, final float[] vec) - { - result[0] = vec[0]*rawMatrix[0] + vec[1]*rawMatrix[1] + vec[2]*rawMatrix[2] + rawMatrix[3]; - result[1] = vec[0]*rawMatrix[4] + vec[1]*rawMatrix[5] + vec[2]*rawMatrix[6] + rawMatrix[7]; - result[2] = vec[0]*rawMatrix[8] + vec[1]*rawMatrix[9] + vec[2]*rawMatrix[10] + rawMatrix[11]; - - return result; - } - - /** - * Calculate the midpoint of two values - * @param p1 first value - * @param p2 second vale - * @return midpoint - */ - public static float mid(final float p1, final float p2) { - return (p1+p2)*0.5f; - } - - /** * Calculate the midpoint of two points * @param p1 first point vector * @param p2 second point vector * @return midpoint */ - public static float[] midVec3(final float[] result, final float[] p1, final float[] p2) { - result[0] = (p1[0] + p2[0])*0.5f; - result[1] = (p1[1] + p2[1])*0.5f; - result[2] = (p1[2] + p2[2])*0.5f; + public static Vec3f midVec3(final Vec3f result, final Vec3f p1, final Vec3f p2) { + result.set( (p1.x() + p2.x())*0.5f, + (p1.y() + p2.y())*0.5f, + (p1.z() + p2.z())*0.5f ); return result; } @@ -638,8 +259,8 @@ public final class VectorUtil { * @param c vector 3 * @return the determinant value */ - public static float determinantVec3(final float[] a, final float[] b, final float[] c) { - return a[0]*b[1]*c[2] + a[1]*b[2]*c[0] + a[2]*b[0]*c[1] - a[0]*b[2]*c[1] - a[1]*b[0]*c[2] - a[2]*b[1]*c[0]; + public static float determinantVec3(final Vec3f a, final Vec3f b, final Vec3f c) { + return a.x()*b.y()*c.z() + a.y()*b.z()*c.x() + a.z()*b.x()*c.y() - a.x()*b.z()*c.y() - a.y()*b.x()*c.z() - a.z()*b.y()*c.x(); } /** @@ -649,7 +270,7 @@ public final class VectorUtil { * @param v3 vertex 3 * @return true if collinear, false otherwise */ - public static boolean isCollinearVec3(final float[] v1, final float[] v2, final float[] v3) { + public static boolean isCollinearVec3(final Vec3f v1, final Vec3f v2, final Vec3f v3) { return FloatUtil.isZero( determinantVec3(v1, v2, v3), FloatUtil.EPSILON ); } @@ -663,14 +284,10 @@ public final class VectorUtil { * vertices a, b, c. from paper by Guibas and Stolfi (1985). */ public static boolean isInCircleVec2(final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c, final Vert2fImmutable d) { - final float[] A = a.getCoord(); - final float[] B = b.getCoord(); - final float[] C = c.getCoord(); - final float[] D = d.getCoord(); - return (A[0] * A[0] + A[1] * A[1]) * triAreaVec2(B, C, D) - - (B[0] * B[0] + B[1] * B[1]) * triAreaVec2(A, C, D) + - (C[0] * C[0] + C[1] * C[1]) * triAreaVec2(A, B, D) - - (D[0] * D[0] + D[1] * D[1]) * triAreaVec2(A, B, C) > 0; + return (a.x() * a.x() + a.y() * a.y()) * triAreaVec2(b, c, d) - + (b.x() * b.x() + b.y() * b.y()) * triAreaVec2(a, c, d) + + (c.x() * c.x() + c.y() * c.y()) * triAreaVec2(a, b, d) - + (d.x() * d.x() + d.y() * d.y()) * triAreaVec2(a, b, c) > 0; } /** @@ -682,47 +299,34 @@ public final class VectorUtil { * is positive if the triangle is oriented counterclockwise. */ public static float triAreaVec2(final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c){ - final float[] A = a.getCoord(); - final float[] B = b.getCoord(); - final float[] C = c.getCoord(); - return (B[0] - A[0]) * (C[1] - A[1]) - (B[1] - A[1]) * (C[0] - A[0]); - } - - /** - * Computes oriented area of a triangle - * @param A first vertex - * @param B second vertex - * @param C third vertex - * @return compute twice the area of the oriented triangle (a,b,c), the area - * is positive if the triangle is oriented counterclockwise. - */ - public static float triAreaVec2(final float[] A, final float[] B, final float[] C){ - return (B[0] - A[0]) * (C[1] - A[1]) - (B[1] - A[1])*(C[0] - A[0]); + return (b.x() - a.x()) * (c.y() - a.y()) - (b.y() - a.y()) * (c.x() - a.x()); } /** - * Check if a vertex is in triangle using - * barycentric coordinates computation. + * Check if a vertex is in triangle using barycentric coordinates computation. * @param a first triangle vertex * @param b second triangle vertex * @param c third triangle vertex * @param p the vertex in question + * @param ac temporary storage + * @param ab temporary storage + * @param ap temporary storage * @return true if p is in triangle (a, b, c), false otherwise. */ - public static boolean isInTriangleVec3(final float[] a, final float[] b, final float[] c, - final float[] p, - final float[] ac, final float[] ab, final float[] ap){ + public static boolean isInTriangleVec3(final Vec3f a, final Vec3f b, final Vec3f c, + final Vec3f p, + final Vec3f ac, final Vec3f ab, final Vec3f ap){ // Compute vectors - subVec3(ac, c, a); //v0 - subVec3(ab, b, a); //v1 - subVec3(ap, p, a); //v2 + ac.minus( c, a); // v0 + ab.minus( b, a); // v1 + ap.minus( p, a); // v2 // Compute dot products - final float dotAC_AC = dotVec3(ac, ac); - final float dotAC_AB = dotVec3(ac, ab); - final float dotAB_AB = dotVec3(ab, ab); - final float dotAC_AP = dotVec3(ac, ap); - final float dotAB_AP = dotVec3(ab, ap); + final float dotAC_AC = ac.dot(ac); + final float dotAC_AB = ac.dot(ab); + final float dotAB_AB = ab.dot(ab); + final float dotAC_AP = ac.dot(ap); + final float dotAB_AP = ab.dot(ap); // Compute barycentric coordinates final float invDenom = 1 / (dotAC_AC * dotAB_AB - dotAC_AB * dotAC_AB); @@ -734,37 +338,36 @@ public final class VectorUtil { } /** - * Check if one of three vertices are in triangle using - * barycentric coordinates computation. + * Check if one of three vertices are in triangle using barycentric coordinates computation. * @param a first triangle vertex * @param b second triangle vertex * @param c third triangle vertex * @param p1 the vertex in question * @param p2 the vertex in question * @param p3 the vertex in question - * @param tmpAC - * @param tmpAB - * @param tmpAP + * @param ac temporary storage + * @param ab temporary storage + * @param ap temporary storage * @return true if p1 or p2 or p3 is in triangle (a, b, c), false otherwise. */ - public static boolean isVec3InTriangle3(final float[] a, final float[] b, final float[] c, - final float[] p1, final float[] p2, final float[] p3, - final float[] tmpAC, final float[] tmpAB, final float[] tmpAP){ + public static boolean isVec3InTriangle3(final Vec3f a, final Vec3f b, final Vec3f c, + final Vec3f p1, final Vec3f p2, final Vec3f p3, + final Vec3f ac, final Vec3f ab, final Vec3f ap){ // Compute vectors - subVec3(tmpAC, c, a); //v0 - subVec3(tmpAB, b, a); //v1 + ac.minus(c, a); // v0 + ab.minus(b, a); // v1 // Compute dot products - final float dotAC_AC = dotVec3(tmpAC, tmpAC); - final float dotAC_AB = dotVec3(tmpAC, tmpAB); - final float dotAB_AB = dotVec3(tmpAB, tmpAB); + final float dotAC_AC = ac.dot(ac); + final float dotAC_AB = ac.dot(ab); + final float dotAB_AB = ab.dot(ab); // Compute barycentric coordinates final float invDenom = 1 / (dotAC_AC * dotAB_AB - dotAC_AB * dotAC_AB); { - subVec3(tmpAP, p1, a); //v2 - final float dotAC_AP1 = dotVec3(tmpAC, tmpAP); - final float dotAB_AP1 = dotVec3(tmpAB, tmpAP); + ap.minus(p1, a); // v2 + final float dotAC_AP1 = ac.dot(ap); + final float dotAB_AP1 = ab.dot(ap); final float u = (dotAB_AB * dotAC_AP1 - dotAC_AB * dotAB_AP1) * invDenom; final float v = (dotAC_AC * dotAB_AP1 - dotAC_AB * dotAC_AP1) * invDenom; @@ -775,9 +378,9 @@ public final class VectorUtil { } { - subVec3(tmpAP, p1, a); //v2 - final float dotAC_AP2 = dotVec3(tmpAC, tmpAP); - final float dotAB_AP2 = dotVec3(tmpAB, tmpAP); + ap.minus(p2, a); // v2 + final float dotAC_AP2 = ac.dot(ap); + final float dotAB_AP2 = ab.dot(ap); final float u = (dotAB_AB * dotAC_AP2 - dotAC_AB * dotAB_AP2) * invDenom; final float v = (dotAC_AC * dotAB_AP2 - dotAC_AB * dotAC_AP2) * invDenom; @@ -788,9 +391,9 @@ public final class VectorUtil { } { - subVec3(tmpAP, p2, a); //v2 - final float dotAC_AP3 = dotVec3(tmpAC, tmpAP); - final float dotAB_AP3 = dotVec3(tmpAB, tmpAP); + ap.minus(p3, a); // v3 + final float dotAC_AP3 = ac.dot(ap); + final float dotAB_AP3 = ab.dot(ap); final float u = (dotAB_AB * dotAC_AP3 - dotAC_AB * dotAB_AP3) * invDenom; final float v = (dotAC_AC * dotAB_AP3 - dotAC_AB * dotAC_AP3) * invDenom; @@ -815,25 +418,25 @@ public final class VectorUtil { * @param tmpAP * @return true if p1 or p2 or p3 is in triangle (a, b, c), false otherwise. */ - public static boolean isVec3InTriangle3(final float[] a, final float[] b, final float[] c, - final float[] p1, final float[] p2, final float[] p3, - final float[] tmpAC, final float[] tmpAB, final float[] tmpAP, - final float epsilon){ + public static boolean isVec3InTriangle3(final Vec3f a, final Vec3f b, final Vec3f c, + final Vec3f p1, final Vec3f p2, final Vec3f p3, + final Vec3f ac, final Vec3f ab, final Vec3f ap, + final float epsilon) { // Compute vectors - subVec3(tmpAC, c, a); //v0 - subVec3(tmpAB, b, a); //v1 + ac.minus(c, a); // v0 + ab.minus(b, a); // v1 // Compute dot products - final float dotAC_AC = dotVec3(tmpAC, tmpAC); - final float dotAC_AB = dotVec3(tmpAC, tmpAB); - final float dotAB_AB = dotVec3(tmpAB, tmpAB); + final float dotAC_AC = ac.dot(ac); + final float dotAC_AB = ac.dot(ab); + final float dotAB_AB = ab.dot(ab); // Compute barycentric coordinates final float invDenom = 1 / (dotAC_AC * dotAB_AB - dotAC_AB * dotAC_AB); { - subVec3(tmpAP, p1, a); //v2 - final float dotAC_AP1 = dotVec3(tmpAC, tmpAP); - final float dotAB_AP1 = dotVec3(tmpAB, tmpAP); + ap.minus(p1, a); // v2 + final float dotAC_AP1 = ac.dot(ap); + final float dotAB_AP1 = ab.dot(ap); final float u = (dotAB_AB * dotAC_AP1 - dotAC_AB * dotAB_AP1) * invDenom; final float v = (dotAC_AC * dotAB_AP1 - dotAC_AB * dotAC_AP1) * invDenom; @@ -846,9 +449,9 @@ public final class VectorUtil { } { - subVec3(tmpAP, p1, a); //v2 - final float dotAC_AP2 = dotVec3(tmpAC, tmpAP); - final float dotAB_AP2 = dotVec3(tmpAB, tmpAP); + ap.minus(p2, a); // v3 + final float dotAC_AP2 = ac.dot(ap); + final float dotAB_AP2 = ab.dot(ap); final float u = (dotAB_AB * dotAC_AP2 - dotAC_AB * dotAB_AP2) * invDenom; final float v = (dotAC_AC * dotAB_AP2 - dotAC_AB * dotAC_AP2) * invDenom; @@ -861,9 +464,9 @@ public final class VectorUtil { } { - subVec3(tmpAP, p2, a); //v2 - final float dotAC_AP3 = dotVec3(tmpAC, tmpAP); - final float dotAB_AP3 = dotVec3(tmpAB, tmpAP); + ap.minus(p3, a); // v4 + final float dotAC_AP3 = ac.dot(ap); + final float dotAB_AP3 = ab.dot(ap); final float u = (dotAB_AB * dotAC_AP3 - dotAC_AB * dotAB_AP3) * invDenom; final float v = (dotAC_AC * dotAB_AP3 - dotAC_AB * dotAC_AP3) * invDenom; @@ -874,7 +477,6 @@ public final class VectorUtil { return true; } } - return false; } @@ -918,9 +520,9 @@ public final class VectorUtil { final int n = vertices.size(); float area = 0.0f; for (int p = n - 1, q = 0; q < n; p = q++) { - final float[] pCoord = vertices.get(p).getCoord(); - final float[] qCoord = vertices.get(q).getCoord(); - area += pCoord[0] * qCoord[1] - qCoord[0] * pCoord[1]; + final Vert2fImmutable pCoord = vertices.get(p); + final Vert2fImmutable qCoord = vertices.get(q); + area += pCoord.x() * qCoord.y() - qCoord.x() * pCoord.y(); } return area; } @@ -940,36 +542,6 @@ public final class VectorUtil { } /** - * @param result vec2 result for normal - * @param v1 vec2 - * @param v2 vec2 - * @return result for chaining - */ - public static float[] getNormalVec2(final float[] result, final float[] v1, final float[] v2 ) { - subVec2(result, v2, v1); - final float tmp = result [ 0 ] ; result [ 0 ] = -result [ 1 ] ; result [ 1 ] = tmp ; - return normalizeVec2 ( result ) ; - } - - /** - * Returns the 3d surface normal of a triangle given three vertices. - * - * @param result vec3 result for normal - * @param v1 vec3 - * @param v2 vec3 - * @param v3 vec3 - * @param tmp1Vec3 temp vec3 - * @param tmp2Vec3 temp vec3 - * @return result for chaining - */ - public static float[] getNormalVec3(final float[] result, final float[] v1, final float[] v2, final float[] v3, - final float[] tmp1Vec3, final float[] tmp2Vec3) { - subVec3 ( tmp1Vec3, v2, v1 ); - subVec3 ( tmp2Vec3, v3, v1 ) ; - return normalizeVec3 ( crossVec3(result, tmp1Vec3, tmp2Vec3) ) ; - } - - /** * Finds the plane equation of a plane given its normal and a point on the plane. * * @param resultV4 vec4 plane equation @@ -977,15 +549,14 @@ public final class VectorUtil { * @param pVec3 * @return result for chaining */ - public static float[] getPlaneVec3(final float[/*4*/] resultV4, final float[] normalVec3, final float[] pVec3) { + public static Vec4f getPlaneVec3(final Vec4f resultV4, final Vec3f normalVec3, final Vec3f pVec3) { /** Ax + By + Cz + D == 0 ; D = - ( Ax + By + Cz ) = - ( A*a[0] + B*a[1] + C*a[2] ) = - vec3Dot ( normal, a ) ; */ - System.arraycopy(normalVec3, 0, resultV4, 0, 3); - resultV4 [ 3 ] = -dotVec3(normalVec3, pVec3) ; + resultV4.set(normalVec3, -normalVec3.dot(pVec3)); return resultV4; } @@ -1000,16 +571,16 @@ public final class VectorUtil { * @param temp2V3 * @return result for chaining */ - public static float[] getPlaneVec3(final float[/*4*/] resultVec4, final float[] v1, final float[] v2, final float[] v3, - final float[] temp1V3, final float[] temp2V3) { + public static Vec4f getPlaneVec3(final Vec4f resultVec4, final Vec3f v1, final Vec3f v2, final Vec3f v3, + final Vec3f temp1V3, final Vec3f temp2V3, final Vec3f temp3V3) { /** Ax + By + Cz + D == 0 ; D = - ( Ax + By + Cz ) = - ( A*a[0] + B*a[1] + C*a[2] ) = - vec3Dot ( normal, a ) ; */ - getNormalVec3( resultVec4, v1, v2, v3, temp1V3, temp2V3 ) ; - resultVec4 [ 3 ] = -dotVec3 (resultVec4, v1) ; + temp3V3.cross(temp1V3.minus(v2, v1), temp2V3.minus(v3, v1)).normalize(); + resultVec4.set(temp3V3, -temp3V3.dot(v1)); return resultVec4; } @@ -1025,14 +596,15 @@ public final class VectorUtil { * @param epsilon * @return resulting intersecting if exists, otherwise null */ - public static float[] line2PlaneIntersection(final float[] result, final Ray ray, final float[/*4*/] plane, final float epsilon) { - final float tmp = dotVec3(ray.dir, plane) ; + public static Vec3f line2PlaneIntersection(final Vec3f result, final Ray ray, final Vec4f plane, final float epsilon) { + final Vec3f plane3 = new Vec3f(plane); + final float tmp = ray.dir.dot(plane3); if ( Math.abs(tmp) < epsilon ) { return null; // ray is parallel to plane } - scaleVec3 ( result, ray.dir, -( dotVec3(ray.orig, plane) + plane[3] ) / tmp ) ; - return addVec3(result, result, ray.orig); + result.set( ray.dir ); + return result.scale( -( ray.orig.dot(plane3) + plane.w() ) / tmp ).add(ray.orig); } /** Compute intersection between two segments @@ -1042,26 +614,23 @@ public final class VectorUtil { * @param d vertex 2 of second segment * @return the intersection coordinates if the segments intersect, otherwise returns null */ - public static float[] seg2SegIntersection(final float[] result, final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c, final Vert2fImmutable d) { - final float determinant = (a.getX()-b.getX())*(c.getY()-d.getY()) - (a.getY()-b.getY())*(c.getX()-d.getX()); + public static Vec3f seg2SegIntersection(final Vec3f result, final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c, final Vert2fImmutable d) { + final float determinant = (a.x()-b.x())*(c.y()-d.y()) - (a.y()-b.y())*(c.x()-d.x()); if (determinant == 0) return null; - final float alpha = (a.getX()*b.getY()-a.getY()*b.getX()); - final float beta = (c.getX()*d.getY()-c.getY()*d.getY()); - final float xi = ((c.getX()-d.getX())*alpha-(a.getX()-b.getX())*beta)/determinant; - final float yi = ((c.getY()-d.getY())*alpha-(a.getY()-b.getY())*beta)/determinant; + final float alpha = (a.x()*b.y()-a.y()*b.x()); + final float beta = (c.x()*d.y()-c.y()*d.y()); + final float xi = ((c.x()-d.x())*alpha-(a.x()-b.x())*beta)/determinant; + final float yi = ((c.y()-d.y())*alpha-(a.y()-b.y())*beta)/determinant; - final float gamma = (xi - a.getX())/(b.getX() - a.getX()); - final float gamma1 = (xi - c.getX())/(d.getX() - c.getX()); + final float gamma = (xi - a.x())/(b.x() - a.x()); + final float gamma1 = (xi - c.x())/(d.x() - c.x()); if(gamma <= 0 || gamma >= 1) return null; if(gamma1 <= 0 || gamma1 >= 1) return null; - result[0] = xi; - result[1] = yi; - result[2] = 0; - return result; + return result.set(xi, yi, 0); } /** @@ -1074,23 +643,18 @@ public final class VectorUtil { */ public static boolean testSeg2SegIntersection(final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c, final Vert2fImmutable d) { - final float[] A = a.getCoord(); - final float[] B = b.getCoord(); - final float[] C = c.getCoord(); - final float[] D = d.getCoord(); - - final float determinant = (A[0]-B[0])*(C[1]-D[1]) - (A[1]-B[1])*(C[0]-D[0]); + final float determinant = (a.x()-b.x())*(c.y()-d.y()) - (a.y()-b.y())*(c.x()-d.x()); if (determinant == 0) { return false; } - final float alpha = (A[0]*B[1]-A[1]*B[0]); - final float beta = (C[0]*D[1]-C[1]*D[1]); - final float xi = ((C[0]-D[0])*alpha-(A[0]-B[0])*beta)/determinant; + final float alpha = (a.x()*b.y()-a.y()*b.x()); + final float beta = (c.x()*d.y()-c.y()*d.y()); + final float xi = ((c.x()-d.x())*alpha-(a.x()-b.x())*beta)/determinant; - final float gamma0 = (xi - A[0])/(B[0] - A[0]); - final float gamma1 = (xi - C[0])/(D[0] - C[0]); + final float gamma0 = (xi - a.x())/(b.x() - a.x()); + final float gamma1 = (xi - c.x())/(d.x() - c.x()); if(gamma0 <= 0 || gamma0 >= 1 || gamma1 <= 0 || gamma1 >= 1) { return false; } @@ -1108,23 +672,19 @@ public final class VectorUtil { public static boolean testSeg2SegIntersection(final Vert2fImmutable a, final Vert2fImmutable b, final Vert2fImmutable c, final Vert2fImmutable d, final float epsilon) { - final float[] A = a.getCoord(); - final float[] B = b.getCoord(); - final float[] C = c.getCoord(); - final float[] D = d.getCoord(); - - final float determinant = (A[0]-B[0])*(C[1]-D[1]) - (A[1]-B[1])*(C[0]-D[0]); + final float determinant = (a.x()-b.x())*(c.y()-d.y()) - (a.y()-b.y())*(c.x()-d.x()); if ( FloatUtil.isZero(determinant, epsilon) ) { return false; } - final float alpha = (A[0]*B[1]-A[1]*B[0]); - final float beta = (C[0]*D[1]-C[1]*D[1]); - final float xi = ((C[0]-D[0])*alpha-(A[0]-B[0])*beta)/determinant; + final float alpha = (a.x()*b.y()-a.y()*b.x()); + final float beta = (c.x()*d.y()-c.y()*d.y()); + final float xi = ((c.x()-d.x())*alpha-(a.x()-b.x())*beta)/determinant; + + final float gamma0 = (xi - a.x())/(b.x() - a.x()); + final float gamma1 = (xi - c.x())/(d.x() - c.x()); - final float gamma0 = (xi - A[0])/(B[0] - A[0]); - final float gamma1 = (xi - C[0])/(D[0] - C[0]); if( FloatUtil.compare(gamma0, 0.0f, epsilon) <= 0 || FloatUtil.compare(gamma0, 1.0f, epsilon) >= 0 || FloatUtil.compare(gamma1, 0.0f, epsilon) <= 0 || @@ -1148,23 +708,20 @@ public final class VectorUtil { * @return the intersection coordinates if the lines intersect, otherwise * returns null */ - public static float[] line2lineIntersection(final float[] result, - final Vert2fImmutable a, final Vert2fImmutable b, - final Vert2fImmutable c, final Vert2fImmutable d) { - final float determinant = (a.getX()-b.getX())*(c.getY()-d.getY()) - (a.getY()-b.getY())*(c.getX()-d.getX()); + public static Vec3f line2lineIntersection(final Vec3f result, + final Vert2fImmutable a, final Vert2fImmutable b, + final Vert2fImmutable c, final Vert2fImmutable d) { + final float determinant = (a.x()-b.x())*(c.y()-d.y()) - (a.y()-b.y())*(c.x()-d.x()); if (determinant == 0) return null; - final float alpha = (a.getX()*b.getY()-a.getY()*b.getX()); - final float beta = (c.getX()*d.getY()-c.getY()*d.getY()); - final float xi = ((c.getX()-d.getX())*alpha-(a.getX()-b.getX())*beta)/determinant; - final float yi = ((c.getY()-d.getY())*alpha-(a.getY()-b.getY())*beta)/determinant; + final float alpha = (a.x()*b.y()-a.y()*b.x()); + final float beta = (c.x()*d.y()-c.y()*d.y()); + final float xi = ((c.x()-d.x())*alpha-(a.x()-b.x())*beta)/determinant; + final float yi = ((c.y()-d.y())*alpha-(a.y()-b.y())*beta)/determinant; - result[0] = xi; - result[1] = yi; - result[2] = 0; - return result; + return result.set(xi, yi, 0); } /** diff --git a/src/jogl/classes/com/jogamp/opengl/math/Vert2fImmutable.java b/src/jogl/classes/com/jogamp/opengl/math/Vert2fImmutable.java index ec90b401f..66bf078f3 100644 --- a/src/jogl/classes/com/jogamp/opengl/math/Vert2fImmutable.java +++ b/src/jogl/classes/com/jogamp/opengl/math/Vert2fImmutable.java @@ -28,12 +28,9 @@ package com.jogamp.opengl.math; public interface Vert2fImmutable { - float getX(); + float x(); - float getY(); + float y(); int getCoordCount(); - - float[] getCoord(); - } diff --git a/src/jogl/classes/com/jogamp/opengl/math/Vert3fImmutable.java b/src/jogl/classes/com/jogamp/opengl/math/Vert3fImmutable.java index 76bd02fbc..6f63a746c 100644 --- a/src/jogl/classes/com/jogamp/opengl/math/Vert3fImmutable.java +++ b/src/jogl/classes/com/jogamp/opengl/math/Vert3fImmutable.java @@ -28,5 +28,7 @@ package com.jogamp.opengl.math; public interface Vert3fImmutable extends Vert2fImmutable { - float getZ(); + float z(); + + Vec3f getCoord(); } diff --git a/src/jogl/classes/com/jogamp/opengl/math/geom/AABBox.java b/src/jogl/classes/com/jogamp/opengl/math/geom/AABBox.java index 234b2121b..531ea99ec 100644 --- a/src/jogl/classes/com/jogamp/opengl/math/geom/AABBox.java +++ b/src/jogl/classes/com/jogamp/opengl/math/geom/AABBox.java @@ -1,5 +1,5 @@ /** - * Copyright 2010 JogAmp Community. All rights reserved. + * Copyright 2010-2023 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: @@ -29,9 +29,12 @@ package com.jogamp.opengl.math.geom; import com.jogamp.graph.geom.plane.AffineTransform; import com.jogamp.opengl.math.FloatUtil; +import com.jogamp.opengl.math.Matrix4f; import com.jogamp.opengl.math.Quaternion; import com.jogamp.opengl.math.Ray; -import com.jogamp.opengl.math.VectorUtil; +import com.jogamp.opengl.math.Recti; +import com.jogamp.opengl.math.Vec3f; +import com.jogamp.opengl.util.PMVMatrix; /** @@ -51,13 +54,17 @@ import com.jogamp.opengl.math.VectorUtil; */ public class AABBox { private static final boolean DEBUG = FloatUtil.DEBUG; - private final float[] low = new float[3]; - private final float[] high = new float[3]; - private final float[] center = new float[3]; + private final Vec3f low = new Vec3f(); + private final Vec3f high = new Vec3f(); + private final Vec3f center = new Vec3f(); /** - * Create an Axis Aligned bounding box (AABBox) - * where the low and and high MAX float Values. + * Create an Axis Aligned bounding box (AABBox) with the + * inverse low/high, allowing the next {@link #resize(float, float, float)} command to hit. + * <p> + * The dimension, i.e. {@link #getWidth()} abd {@link #getHeight()} is {@link Float#isInfinite()} thereafter. + * </p> + * @see #reset() */ public AABBox() { reset(); @@ -96,48 +103,43 @@ public class AABBox { } /** - * resets this box to the inverse low/high, allowing the next {@link #resize(float, float, float)} command to hit. + * Resets this box to the inverse low/high, allowing the next {@link #resize(float, float, float)} command to hit. + * <p> + * The dimension, i.e. {@link #getWidth()} abd {@link #getHeight()} is {@link Float#isInfinite()} thereafter. + * </p> * @return this AABBox for chaining */ public final AABBox reset() { setLow(Float.MAX_VALUE,Float.MAX_VALUE,Float.MAX_VALUE); setHigh(-1*Float.MAX_VALUE,-1*Float.MAX_VALUE,-1*Float.MAX_VALUE); - center[0] = 0f; - center[1] = 0f; - center[2] = 0f; + center.set( 0f, 0f, 0f); return this; } /** Get the max xyz-coordinates - * @return a float array containing the max xyz coordinates + * @return max xyz coordinates */ - public final float[] getHigh() { + public final Vec3f getHigh() { return high; } private final void setHigh(final float hx, final float hy, final float hz) { - this.high[0] = hx; - this.high[1] = hy; - this.high[2] = hz; + this.high.set(hx, hy, hz); } /** Get the min xyz-coordinates - * @return a float array containing the min xyz coordinates + * @return min xyz coordinates */ - public final float[] getLow() { + public final Vec3f getLow() { return low; } private final void setLow(final float lx, final float ly, final float lz) { - this.low[0] = lx; - this.low[1] = ly; - this.low[2] = lz; + this.low.set(lx, ly, lz); } private final void computeCenter() { - center[0] = (high[0] + low[0])/2f; - center[1] = (high[1] + low[1])/2f; - center[2] = (high[2] + low[2])/2f; + center.set(high).add(low).scale(1f/2f); } /** @@ -147,9 +149,9 @@ public class AABBox { * @return this AABBox for chaining */ public final AABBox copy(final AABBox src) { - System.arraycopy(src.low, 0, low, 0, 3); - System.arraycopy(src.high, 0, high, 0, 3); - System.arraycopy(src.center, 0, center, 0, 3); + low.set(src.low); + high.set(src.high); + center.set(src.center); return this; } @@ -179,12 +181,23 @@ public class AABBox { */ public final AABBox setSize(final float lx, final float ly, final float lz, final float hx, final float hy, final float hz) { - this.low[0] = lx; - this.low[1] = ly; - this.low[2] = lz; - this.high[0] = hx; - this.high[1] = hy; - this.high[2] = hz; + this.low.set(lx, ly, lz); + this.high.set(hx, hy, hz); + computeCenter(); + return this; + } + + /** + * Set size of the AABBox specifying the coordinates + * of the low and high. + * + * @param low min xyz-coordinates + * @param high max xyz-coordinates + * @return this AABBox for chaining + */ + public final AABBox setSize(final Vec3f low, final Vec3f high) { + this.low.set(low); + this.high.set(high); computeCenter(); return this; } @@ -195,25 +208,30 @@ public class AABBox { * @return this AABBox for chaining */ public final AABBox resize(final AABBox newBox) { - final float[] newLow = newBox.getLow(); - final float[] newHigh = newBox.getHigh(); + final Vec3f newLow = newBox.getLow(); + final Vec3f newHigh = newBox.getHigh(); /** test low */ - if (newLow[0] < low[0]) - low[0] = newLow[0]; - if (newLow[1] < low[1]) - low[1] = newLow[1]; - if (newLow[2] < low[2]) - low[2] = newLow[2]; + if (newLow.x() < low.x()) { + low.setX( newLow.x() ); + } + if (newLow.y() < low.y()) { + low.setY( newLow.y() ); + } + if (newLow.z() < low.z()) { + low.setZ( newLow.z() ); + } /** test high */ - if (newHigh[0] > high[0]) - high[0] = newHigh[0]; - if (newHigh[1] > high[1]) - high[1] = newHigh[1]; - if (newHigh[2] > high[2]) - high[2] = newHigh[2]; - + if (newHigh.x() > high.x()) { + high.setX( newHigh.x() ); + } + if (newHigh.y() > high.y()) { + high.setY( newHigh.y() ); + } + if (newHigh.z() > high.z()) { + high.setZ( newHigh.z() ); + } computeCenter(); return this; } @@ -222,34 +240,32 @@ public class AABBox { * Resize the AABBox to encapsulate another AABox, which will be <i>transformed</i> on the fly first. * @param newBox AABBox to be encapsulated in * @param t the {@link AffineTransform} applied on <i>newBox</i> on the fly - * @param tmpV3 temp float[3] storage + * @param tmpV3 temporary storage * @return this AABBox for chaining */ - public final AABBox resize(final AABBox newBox, final AffineTransform t, final float[] tmpV3) { + public final AABBox resize(final AABBox newBox, final AffineTransform t, final Vec3f tmpV3) { /** test low */ { - final float[] newBoxLow = newBox.getLow(); + final Vec3f newBoxLow = newBox.getLow(); t.transform(newBoxLow, tmpV3); - tmpV3[2] = newBoxLow[2]; - if (tmpV3[0] < low[0]) - low[0] = tmpV3[0]; - if (tmpV3[1] < low[1]) - low[1] = tmpV3[1]; - if (tmpV3[2] < low[2]) - low[2] = tmpV3[2]; + if (tmpV3.x() < low.x()) + low.setX( tmpV3.x() ); + if (tmpV3.y() < low.y()) + low.setY( tmpV3.y() ); + if (tmpV3.z() < low.z()) + low.setZ( tmpV3.z() ); } /** test high */ { - final float[] newBoxHigh = newBox.getHigh(); + final Vec3f newBoxHigh = newBox.getHigh(); t.transform(newBoxHigh, tmpV3); - tmpV3[2] = newBoxHigh[2]; - if (tmpV3[0] > high[0]) - high[0] = tmpV3[0]; - if (tmpV3[1] > high[1]) - high[1] = tmpV3[1]; - if (tmpV3[2] > high[2]) - high[2] = tmpV3[2]; + if (tmpV3.x() > high.x()) + high.setX( tmpV3.x() ); + if (tmpV3.y() > high.y()) + high.setY( tmpV3.y() ); + if (tmpV3.z() > high.z()) + high.setZ( tmpV3.z() ); } computeCenter(); @@ -266,25 +282,25 @@ public class AABBox { */ public final AABBox resize(final float x, final float y, final float z) { /** test low */ - if (x < low[0]) { - low[0] = x; + if (x < low.x()) { + low.setX( x ); } - if (y < low[1]) { - low[1] = y; + if (y < low.y()) { + low.setY( y ); } - if (z < low[2]) { - low[2] = z; + if (z < low.z()) { + low.setZ( z ); } /** test high */ - if (x > high[0]) { - high[0] = x; + if (x > high.x()) { + high.setX( x ); } - if (y > high[1]) { - high[1] = y; + if (y > high.y()) { + high.setY( y ); } - if (z > high[2]) { - high[2] = z; + if (z > high.z()) { + high.setZ( z ); } computeCenter(); @@ -313,6 +329,16 @@ public class AABBox { } /** + * Resize the AABBox to encapsulate the passed + * xyz-coordinates. + * @param xyz xyz-axis coordinate values + * @return this AABBox for chaining + */ + public final AABBox resize(final Vec3f xyz) { + return resize(xyz.x(), xyz.y(), xyz.z()); + } + + /** * Check if the x & y coordinates are bounded/contained * by this AABBox * @param x x-axis coordinate value @@ -321,10 +347,10 @@ public class AABBox { * y belong to (low.y, high.y) */ public final boolean contains(final float x, final float y) { - if(x<low[0] || x>high[0]){ + if(x<low.x() || x>high.x()){ return false; } - if(y<low[1]|| y>high[1]){ + if(y<low.y()|| y>high.y()){ return false; } return true; @@ -340,13 +366,13 @@ public class AABBox { * y belong to (low.y, high.y) and z belong to (low.z, high.z) */ public final boolean contains(final float x, final float y, final float z) { - if(x<low[0] || x>high[0]){ + if(x<low.x() || x>high.x()){ return false; } - if(y<low[1]|| y>high[1]){ + if(y<low.y()|| y>high.y()){ return false; } - if(z<low[2] || z>high[2]){ + if(z<low.z() || z>high.z()){ return false; } return true; @@ -398,19 +424,19 @@ public class AABBox { // diff[XYZ] -> VectorUtil.subVec3(diff, ray.orig, center); // ext[XYZ] -> extend VectorUtil.subVec3(ext, high, center); - final float dirX = ray.dir[0]; - final float diffX = ray.orig[0] - center[0]; - final float extX = high[0] - center[0]; + final float dirX = ray.dir.x(); + final float diffX = ray.orig.x() - center.x(); + final float extX = high.x() - center.x(); if( Math.abs(diffX) > extX && diffX*dirX >= 0f ) return false; - final float dirY = ray.dir[1]; - final float diffY = ray.orig[1] - center[1]; - final float extY = high[1] - center[1]; + final float dirY = ray.dir.y(); + final float diffY = ray.orig.y() - center.y(); + final float extY = high.y() - center.y(); if( Math.abs(diffY) > extY && diffY*dirY >= 0f ) return false; - final float dirZ = ray.dir[2]; - final float diffZ = ray.orig[2] - center[2]; - final float extZ = high[2] - center[2]; + final float dirZ = ray.dir.z(); + final float diffZ = ray.orig.z() - center.z(); + final float extZ = high.z() - center.z(); if( Math.abs(diffZ) > extZ && diffZ*dirZ >= 0f ) return false; final float absDirY = Math.abs(dirY); @@ -460,45 +486,45 @@ public class AABBox { * @param assumeIntersection if true, method assumes an intersection, i.e. by pre-checking via {@link #intersectsRay(Ray)}. * In this case method will not validate a possible non-intersection and just computes * coordinates. - * @param tmp1V3 temp vec3 - * @param tmp2V3 temp vec3 - * @param tmp3V3 temp vec3 * @return float[3] result of intersection coordinates, or null if none exists */ - public final float[] getRayIntersection(final float[] result, final Ray ray, final float epsilon, - final boolean assumeIntersection, - final float[] tmp1V3, final float[] tmp2V3, final float[] tmp3V3) { + public final Vec3f getRayIntersection(final Vec3f result, final Ray ray, final float epsilon, + final boolean assumeIntersection) { final float[] maxT = { -1f, -1f, -1f }; - final float[] origin = ray.orig; - final float[] dir = ray.dir; + final Vec3f origin = ray.orig; + final Vec3f dir = ray.dir; boolean inside = true; // Find candidate planes. for(int i=0; i<3; i++) { - if(origin[i] < low[i]) { - result[i] = low[i]; + final float origin_i = origin.get(i); + final float dir_i = dir.get(i); + final float low_i = low.get(i); + final float high_i = high.get(i); + if(origin_i < low_i) { + result.set(i, low_i); inside = false; // Calculate T distances to candidate planes - if( 0 != Float.floatToIntBits(dir[i]) ) { - maxT[i] = (low[i] - origin[i]) / dir[i]; + if( 0 != Float.floatToIntBits(dir_i) ) { + maxT[i] = (low_i - origin_i) / dir_i; } - } else if(origin[i] > high[i]) { - result[i] = high[i]; + } else if(origin_i > high_i) { + result.set(i, high_i); inside = false; // Calculate T distances to candidate planes - if( 0 != Float.floatToIntBits(dir[i]) ) { - maxT[i] = (high[i] - origin[i]) / dir[i]; + if( 0 != Float.floatToIntBits(dir_i) ) { + maxT[i] = (high_i - origin_i) / dir_i; } } } // Ray origin inside bounding box if(inside) { - System.arraycopy(origin, 0, result, 0, 3); + result.set(origin); return result; } @@ -523,22 +549,22 @@ public class AABBox { } */ switch( whichPlane ) { case 0: - result[1] = origin[1] + maxT[whichPlane] * dir[1]; - if(result[1] < low[1] - epsilon || result[1] > high[1] + epsilon) { return null; } - result[2] = origin[2] + maxT[whichPlane] * dir[2]; - if(result[2] < low[2] - epsilon || result[2] > high[2] + epsilon) { return null; } + result.setY( origin.y() + maxT[whichPlane] * dir.y() ); + if(result.y() < low.y() - epsilon || result.y() > high.y() + epsilon) { return null; } + result.setZ( origin.z() + maxT[whichPlane] * dir.z() ); + if(result.z() < low.z() - epsilon || result.z() > high.z() + epsilon) { return null; } break; case 1: - result[0] = origin[0] + maxT[whichPlane] * dir[0]; - if(result[0] < low[0] - epsilon || result[0] > high[0] + epsilon) { return null; } - result[2] = origin[2] + maxT[whichPlane] * dir[2]; - if(result[2] < low[2] - epsilon || result[2] > high[2] + epsilon) { return null; } + result.setX( origin.x() + maxT[whichPlane] * dir.x() ); + if(result.x() < low.x() - epsilon || result.x() > high.x() + epsilon) { return null; } + result.setZ( origin.z() + maxT[whichPlane] * dir.z() ); + if(result.z() < low.z() - epsilon || result.z() > high.z() + epsilon) { return null; } break; case 2: - result[0] = origin[0] + maxT[whichPlane] * dir[0]; - if(result[0] < low[0] - epsilon || result[0] > high[0] + epsilon) { return null; } - result[1] = origin[1] + maxT[whichPlane] * dir[1]; - if(result[1] < low[1] - epsilon || result[1] > high[1] + epsilon) { return null; } + result.setX( origin.x() + maxT[whichPlane] * dir.x() ); + if(result.x() < low.x() - epsilon || result.x() > high.x() + epsilon) { return null; } + result.setY( origin.y() + maxT[whichPlane] * dir.y() ); + if(result.y() < low.y() - epsilon || result.y() > high.y() + epsilon) { return null; } break; default: throw new InternalError("XXX"); @@ -546,16 +572,16 @@ public class AABBox { } else { switch( whichPlane ) { case 0: - result[1] = origin[1] + maxT[whichPlane] * dir[1]; - result[2] = origin[2] + maxT[whichPlane] * dir[2]; + result.setY( origin.y() + maxT[whichPlane] * dir.y() ); + result.setZ( origin.z() + maxT[whichPlane] * dir.z() ); break; case 1: - result[0] = origin[0] + maxT[whichPlane] * dir[0]; - result[2] = origin[2] + maxT[whichPlane] * dir[2]; + result.setX( origin.x() + maxT[whichPlane] * dir.x() ); + result.setZ( origin.z() + maxT[whichPlane] * dir.z() ); break; case 2: - result[0] = origin[0] + maxT[whichPlane] * dir[0]; - result[1] = origin[1] + maxT[whichPlane] * dir[1]; + result.setX( origin.x() + maxT[whichPlane] * dir.x() ); + result.setY( origin.y() + maxT[whichPlane] * dir.y() ); break; default: throw new InternalError("XXX"); @@ -570,14 +596,14 @@ public class AABBox { * @return a float representing the size of the AABBox */ public final float getSize() { - return VectorUtil.distVec3(low, high); + return low.dist(high); } /** * Get the Center of this AABBox * @return the xyz-coordinates of the center of the AABBox */ - public final float[] getCenter() { + public final Vec3f getCenter() { return center; } @@ -587,23 +613,17 @@ public class AABBox { * high and low is recomputed by scaling its distance to fixed center. * </p> * @param size a constant float value - * @param tmpV3 caller provided temporary 3-component vector * @return this AABBox for chaining + * @see #scale2(float, float[]) */ - public final AABBox scale(final float size, final float[] tmpV3) { - tmpV3[0] = high[0] - center[0]; - tmpV3[1] = high[1] - center[1]; - tmpV3[2] = high[2] - center[2]; - - VectorUtil.scaleVec3(tmpV3, tmpV3, size); // in-place scale - VectorUtil.addVec3(high, center, tmpV3); + public final AABBox scale(final float size) { + final Vec3f tmp = new Vec3f(); + tmp.set(high).sub(center).scale(size); + high.set(center).add(tmp); - tmpV3[0] = low[0] - center[0]; - tmpV3[1] = low[1] - center[1]; - tmpV3[2] = low[2] - center[2]; + tmp.set(low).sub(center).scale(size); + low.set(center).add(tmp); - VectorUtil.scaleVec3(tmpV3, tmpV3, size); // in-place scale - VectorUtil.addVec3(low, center, tmpV3); return this; } @@ -613,12 +633,27 @@ public class AABBox { * high and low is scaled and center recomputed. * </p> * @param size a constant float value - * @param tmpV3 caller provided temporary 3-component vector + * @return this AABBox for chaining + * @see #scale(float, float[]) + */ + public final AABBox scale2(final float size) { + high.scale(size); + low.scale(size); + computeCenter(); + return this; + } + + /** + * Translate this AABBox by a float[3] vector + * @param dx the translation x-component + * @param dy the translation y-component + * @param dz the translation z-component + * @param t the float[3] translation vector * @return this AABBox for chaining */ - public final AABBox scale2(final float size, final float[] tmpV3) { - VectorUtil.scaleVec3(high, high, size); // in-place scale - VectorUtil.scaleVec3(low, low, size); // in-place scale + public final AABBox translate(final float dx, final float dy, final float dz) { + low.add(dx, dy, dz); + high.add(dx, dy, dz); computeCenter(); return this; } @@ -628,9 +663,9 @@ public class AABBox { * @param t the float[3] translation vector * @return this AABBox for chaining */ - public final AABBox translate(final float[] t) { - VectorUtil.addVec3(low, low, t); // in-place translate - VectorUtil.addVec3(high, high, t); // in-place translate + public final AABBox translate(final Vec3f t) { + low.add(t); + high.add(t); computeCenter(); return this; } @@ -641,46 +676,46 @@ public class AABBox { * @return this AABBox for chaining */ public final AABBox rotate(final Quaternion quat) { - quat.rotateVector(low, 0, low, 0); - quat.rotateVector(high, 0, high, 0); + quat.rotateVector(low, low); + quat.rotateVector(high, high); computeCenter(); return this; } public final float getMinX() { - return low[0]; + return low.x(); } public final float getMinY() { - return low[1]; + return low.y(); } public final float getMinZ() { - return low[2]; + return low.z(); } public final float getMaxX() { - return high[0]; + return high.x(); } public final float getMaxY() { - return high[1]; + return high.y(); } public final float getMaxZ() { - return high[2]; + return high.z(); } public final float getWidth(){ - return high[0] - low[0]; + return high.x() - low.x(); } public final float getHeight() { - return high[1] - low[1]; + return high.y() - low.y(); } public final float getDepth() { - return high[2] - low[2]; + return high.z() - low.z(); } @Override @@ -692,8 +727,7 @@ public class AABBox { return false; } final AABBox other = (AABBox) obj; - return VectorUtil.isVec2Equal(low, 0, other.low, 0, FloatUtil.EPSILON) && - VectorUtil.isVec3Equal(high, 0, other.high, 0, FloatUtil.EPSILON) ; + return low.isEqual(other.low) && high.isEqual(other.high); } @Override public final int hashCode() { @@ -701,79 +735,103 @@ public class AABBox { } /** + * Transform this box using the given {@link Matrix4f} into {@code out} + * @param mat transformation {@link Matrix4f} + * @param out the resulting {@link AABBox} + * @return the resulting {@link AABBox} for chaining + */ + public AABBox transform(final Matrix4f mat, final AABBox out) { + final Vec3f tmp = new Vec3f(); + out.reset(); + out.resize( mat.mulVec3f(low, tmp) ); + out.resize( mat.mulVec3f(high, tmp) ); + out.computeCenter(); + return out; + } + + /** + * Transform this box using the {@link PMVMatrix#getMvMat() modelview} of the given {@link PMVMatrix} into {@code out} + * @param pmv transformation {@link PMVMatrix} + * @param out the resulting {@link AABBox} + * @return the resulting {@link AABBox} for chaining + */ + public AABBox transformMv(final PMVMatrix pmv, final AABBox out) { + final Vec3f tmp = new Vec3f(); + out.reset(); + out.resize( pmv.mulMvMatVec3f(low, tmp) ); + out.resize( pmv.mulMvMatVec3f(high, tmp) ); + out.computeCenter(); + return out; + } + + /** * Assume this bounding box as being in object space and * compute the window bounding box. * <p> * If <code>useCenterZ</code> is <code>true</code>, - * only 4 {@link FloatUtil#mapObjToWinCoords(float, float, float, float[], int[], int, float[], int, float[], float[]) mapObjToWinCoords} + * only 4 {@link FloatUtil#mapObjToWin(float, float, float, float[], int[], float[], float[], float[]) mapObjToWinCoords} * operations are made on points [1..4] using {@link #getCenter()}'s z-value. - * Otherwise 8 {@link FloatUtil#mapObjToWinCoords(float, float, float, float[], int[], int, float[], int, float[], float[]) mapObjToWinCoords} + * Otherwise 8 {@link FloatUtil#mapObjToWin(float, float, float, float[], int[], float[], float[], float[]) mapObjToWinCoords} * operation on all 8 points are performed. * </p> * <pre> - * [2] ------ [4] + * .z() ------ [4] * | | * | | - * [1] ------ [3] + * .y() ------ [3] * </pre> - * @param mat4PMv P x Mv matrix - * @param view + * @param mat4PMv [projection] x [modelview] matrix, i.e. P x Mv + * @param viewport viewport rectangle * @param useCenterZ * @param vec3Tmp0 3 component vector for temp storage * @param vec4Tmp1 4 component vector for temp storage * @param vec4Tmp2 4 component vector for temp storage * @return */ - public AABBox mapToWindow(final AABBox result, final float[/*16*/] mat4PMv, final int[] view, final boolean useCenterZ, - final float[] vec3Tmp0, final float[] vec4Tmp1, final float[] vec4Tmp2) { + public AABBox mapToWindow(final AABBox result, final Matrix4f mat4PMv, final Recti viewport, final boolean useCenterZ) { + final Vec3f tmp = new Vec3f(); + final Vec3f winPos = new Vec3f(); { - // System.err.printf("AABBox.mapToWindow.0: view[%d, %d, %d, %d], this %s%n", view[0], view[1], view[2], view[3], toString()); - final float objZ = useCenterZ ? center[2] : getMinZ(); - FloatUtil.mapObjToWinCoords(getMinX(), getMinY(), objZ, mat4PMv, view, 0, vec3Tmp0, 0, vec4Tmp1, vec4Tmp2); - // System.err.printf("AABBox.mapToWindow.p1: %f, %f, %f -> %f, %f, %f%n", getMinX(), getMinY(), objZ, vec3Tmp0[0], vec3Tmp0[1], vec3Tmp0[2]); - // System.err.println("AABBox.mapToWindow.p1:"); - // System.err.println(FloatUtil.matrixToString(null, " mat4PMv", "%10.5f", mat4PMv, 0, 4, 4, false /* rowMajorOrder */)); - + final float objZ = useCenterZ ? center.z() : getMinZ(); result.reset(); - result.resize(vec3Tmp0, 0); - FloatUtil.mapObjToWinCoords(getMinX(), getMaxY(), objZ, mat4PMv, view, 0, vec3Tmp0, 0, vec4Tmp1, vec4Tmp2); - // System.err.printf("AABBox.mapToWindow.p2: %f, %f, %f -> %f, %f, %f%n", getMinX(), getMaxY(), objZ, vec3Tmp0[0], vec3Tmp0[1], vec3Tmp0[2]); - result.resize(vec3Tmp0, 0); + Matrix4f.mapObjToWin(tmp.set(getMinX(), getMinY(), objZ), mat4PMv, viewport, winPos); + result.resize(winPos); + + Matrix4f.mapObjToWin(tmp.set(getMinX(), getMaxY(), objZ), mat4PMv, viewport, winPos); + result.resize(winPos); - FloatUtil.mapObjToWinCoords(getMaxX(), getMinY(), objZ, mat4PMv, view, 0, vec3Tmp0, 0, vec4Tmp1, vec4Tmp2); - // System.err.printf("AABBox.mapToWindow.p3: %f, %f, %f -> %f, %f, %f%n", getMaxX(), getMinY(), objZ, vec3Tmp0[0], vec3Tmp0[1], vec3Tmp0[2]); - result.resize(vec3Tmp0, 0); + Matrix4f.mapObjToWin(tmp.set(getMaxX(), getMaxY(), objZ), mat4PMv, viewport, winPos); + result.resize(winPos); - FloatUtil.mapObjToWinCoords(getMaxX(), getMaxY(), objZ, mat4PMv, view, 0, vec3Tmp0, 0, vec4Tmp1, vec4Tmp2); - // System.err.printf("AABBox.mapToWindow.p4: %f, %f, %f -> %f, %f, %f%n", getMaxX(), getMaxY(), objZ, vec3Tmp0[0], vec3Tmp0[1], vec3Tmp0[2]); - result.resize(vec3Tmp0, 0); + Matrix4f.mapObjToWin(tmp.set(getMaxX(), getMinY(), objZ), mat4PMv, viewport, winPos); + result.resize(winPos); } if( !useCenterZ ) { final float objZ = getMaxZ(); - FloatUtil.mapObjToWinCoords(getMinX(), getMinY(), objZ, mat4PMv, view, 0, vec3Tmp0, 0, vec4Tmp1, vec4Tmp2); - result.resize(vec3Tmp0, 0); - FloatUtil.mapObjToWinCoords(getMinX(), getMaxY(), objZ, mat4PMv, view, 0, vec3Tmp0, 0, vec4Tmp1, vec4Tmp2); - result.resize(vec3Tmp0, 0); + Matrix4f.mapObjToWin(tmp.set(getMinX(), getMinY(), objZ), mat4PMv, viewport, winPos); + result.resize(winPos); + + Matrix4f.mapObjToWin(tmp.set(getMinX(), getMaxY(), objZ), mat4PMv, viewport, winPos); + result.resize(winPos); - FloatUtil.mapObjToWinCoords(getMaxX(), getMinY(), objZ, mat4PMv, view, 0, vec3Tmp0, 0, vec4Tmp1, vec4Tmp2); - result.resize(vec3Tmp0, 0); + Matrix4f.mapObjToWin(tmp.set(getMaxX(), getMaxY(), objZ), mat4PMv, viewport, winPos); + result.resize(winPos); - FloatUtil.mapObjToWinCoords(getMaxX(), getMaxY(), objZ, mat4PMv, view, 0, vec3Tmp0, 0, vec4Tmp1, vec4Tmp2); - result.resize(vec3Tmp0, 0); + Matrix4f.mapObjToWin(tmp.set(getMaxX(), getMinY(), objZ), mat4PMv, viewport, winPos); + result.resize(winPos); } if( DEBUG ) { - System.err.printf("AABBox.mapToWindow: view[%d, %d], this %s -> %s%n", view[0], view[1], toString(), result.toString()); + System.err.printf("AABBox.mapToWindow: view[%s], this %s -> %s%n", viewport, toString(), result.toString()); } return result; } @Override public final String toString() { - return "[ dim "+getWidth()+" x "+getHeight()+" x "+getDepth()+ - ", box "+low[0]+" / "+low[1]+" / "+low[2]+" .. "+high[0]+" / "+high[1]+" / "+high[2]+ - ", ctr "+center[0]+" / "+center[1]+" / "+center[2]+" ]"; + return "[dim "+getWidth()+" x "+getHeight()+" x "+getDepth()+ + ", box "+low+" .. "+high+", ctr "+center+"]"; } } diff --git a/src/jogl/classes/com/jogamp/opengl/math/geom/Frustum.java b/src/jogl/classes/com/jogamp/opengl/math/geom/Frustum.java index 8b0fa559e..73079959b 100644 --- a/src/jogl/classes/com/jogamp/opengl/math/geom/Frustum.java +++ b/src/jogl/classes/com/jogamp/opengl/math/geom/Frustum.java @@ -1,5 +1,5 @@ /** - * Copyright 2010 JogAmp Community. All rights reserved. + * Copyright 2010-2023 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: @@ -27,15 +27,13 @@ */ package com.jogamp.opengl.math.geom; -import jogamp.common.os.PlatformPropsImpl; - -import com.jogamp.common.os.Platform; -import com.jogamp.opengl.math.FloatUtil; import com.jogamp.opengl.math.FovHVHalves; +import com.jogamp.opengl.math.Matrix4f; +import com.jogamp.opengl.math.Vec3f; /** * Providing frustum {@link #getPlanes() planes} derived by different inputs - * ({@link #updateByPMV(float[], int) P*MV}, ..) used to classify objects + * ({@link #updateFrustumPlanes(float[], int) P*MV}, ..) used to classify objects * <ul> * <li> {@link #classifyPoint(float[]) point} </li> * <li> {@link #classifySphere(float[], float) sphere} </li> @@ -103,6 +101,7 @@ public class Frustum { this.zNear = zNear; this.zFar = zFar; } + @Override public final String toString() { return "FrustumFovDesc["+fovhv.toStringInDegrees()+", Z["+zNear+" - "+zFar+"]]"; } @@ -117,7 +116,7 @@ public class Frustum { * Use one of the <code>update(..)</code> methods to set the {@link #getPlanes() planes}. * </p> * @see #updateByPlanes(Plane[]) - * @see #updateByPMV(float[], int) + * @see #updateFrustumPlanes(float[], int) */ public Frustum() { for (int i = 0; i < 6; ++i) { @@ -134,7 +133,7 @@ public class Frustum { */ public static class Plane { /** Normal of the plane */ - public final float[] n = new float[3]; + public final Vec3f n = new Vec3f(); /** Distance to origin */ public float d; @@ -155,17 +154,17 @@ public class Frustum { * </p> **/ public final float distanceTo(final float x, final float y, final float z) { - return n[0] * x + n[1] * y + n[2] * z + d; + return n.x() * x + n.y() * y + n.z() * z + d; } /** Return distance of plane to given point, see {@link #distanceTo(float, float, float)}. */ - public final float distanceTo(final float[] p) { - return n[0] * p[0] + n[1] * p[1] + n[2] * p[2] + d; + public final float distanceTo(final Vec3f p) { + return n.x() * p.x() + n.y() * p.y() + n.z() * p.z() + d; } @Override public String toString() { - return "Plane[ [ " + n[0] + ", " + n[1] + ", " + n[2] + " ], " + d + "]"; + return "Plane[ [ " + n + " ], " + d + "]"; } } @@ -221,9 +220,9 @@ public class Frustum { * Operation Details: * <ul> * <li>The given {@link FovDesc} will be transformed - * into the given float[16] as a perspective matrix (column major order) first, - * see {@link FloatUtil#makePerspective(float[], int, boolean, FovHVHalves, float, float)}.</li> - * <li>Then the float[16] perspective matrix is used to {@link #updateByPMV(float[], int)} this instance.</li> + * into the given perspective matrix (column major order) first, + * see {@link Matrix4f#setToPerspective(FovHVHalves, float, float)}.</li> + * <li>Then the perspective matrix is used to {@link Matrix4f#updateFrustumPlanes(Frustum)} this instance.</li> * </ul> * </p> * <p> @@ -232,120 +231,42 @@ public class Frustum { * </p> * * @param m 4x4 matrix in column-major order (also result) - * @param m_offset offset in given array <i>m</i>, i.e. start of the 4x4 matrix - * @param initM if true, given matrix will be initialized w/ identity matrix, - * otherwise only the frustum fields are set. * @param fovDesc {@link Frustum} {@link FovDesc} * @return given matrix for chaining - * @see FloatUtil#makePerspective(float[], int, boolean, FovHVHalves, float, float) + * @see Matrix4f#setToPerspective(FovHVHalves, float, float) + * @see Matrix4f#updateFrustumPlanes(Frustum) + * @see Matrix4f#getFrustum(Frustum, FovDesc) */ - public float[] updateByFovDesc(final float[] m, final int m_offset, final boolean initM, - final FovDesc fovDesc) { - FloatUtil.makePerspective(m, m_offset, initM, fovDesc.fovhv, fovDesc.zNear, fovDesc.zFar); - updateByPMV(m, 0); + public Matrix4f updateByFovDesc(final Matrix4f m, final FovDesc fovDesc) { + m.setToPerspective(fovDesc.fovhv, fovDesc.zNear, fovDesc.zFar); + m.updateFrustumPlanes(this); return m; } /** * Calculate the frustum planes in world coordinates - * using the passed float[16] as premultiplied P*MV (column major order). + * using the passed premultiplied P*MV (column major order) matrix. * <p> * Frustum plane's normals will point to the inside of the viewing frustum, * as required by this class. * </p> */ - public void updateByPMV(final float[] pmv, final int pmv_off) { - // Left: a = m41 + m11, b = m42 + m12, c = m43 + m13, d = m44 + m14 - [1..4] column-major - // Left: a = m30 + m00, b = m31 + m01, c = m32 + m02, d = m33 + m03 - [0..3] column-major - { - final Plane p = planes[LEFT]; - final float[] p_n = p.n; - p_n[0] = pmv[ pmv_off + 3 + 0 * 4 ] + pmv[ pmv_off + 0 + 0 * 4 ]; - p_n[1] = pmv[ pmv_off + 3 + 1 * 4 ] + pmv[ pmv_off + 0 + 1 * 4 ]; - p_n[2] = pmv[ pmv_off + 3 + 2 * 4 ] + pmv[ pmv_off + 0 + 2 * 4 ]; - p.d = pmv[ pmv_off + 3 + 3 * 4 ] + pmv[ pmv_off + 0 + 3 * 4 ]; - } - - // Right: a = m41 - m11, b = m42 - m12, c = m43 - m13, d = m44 - m14 - [1..4] column-major - // Right: a = m30 - m00, b = m31 - m01, c = m32 - m02, d = m33 - m03 - [0..3] column-major - { - final Plane p = planes[RIGHT]; - final float[] p_n = p.n; - p_n[0] = pmv[ pmv_off + 3 + 0 * 4 ] - pmv[ pmv_off + 0 + 0 * 4 ]; - p_n[1] = pmv[ pmv_off + 3 + 1 * 4 ] - pmv[ pmv_off + 0 + 1 * 4 ]; - p_n[2] = pmv[ pmv_off + 3 + 2 * 4 ] - pmv[ pmv_off + 0 + 2 * 4 ]; - p.d = pmv[ pmv_off + 3 + 3 * 4 ] - pmv[ pmv_off + 0 + 3 * 4 ]; - } - - // Bottom: a = m41 + m21, b = m42 + m22, c = m43 + m23, d = m44 + m24 - [1..4] column-major - // Bottom: a = m30 + m10, b = m31 + m11, c = m32 + m12, d = m33 + m13 - [0..3] column-major - { - final Plane p = planes[BOTTOM]; - final float[] p_n = p.n; - p_n[0] = pmv[ pmv_off + 3 + 0 * 4 ] + pmv[ pmv_off + 1 + 0 * 4 ]; - p_n[1] = pmv[ pmv_off + 3 + 1 * 4 ] + pmv[ pmv_off + 1 + 1 * 4 ]; - p_n[2] = pmv[ pmv_off + 3 + 2 * 4 ] + pmv[ pmv_off + 1 + 2 * 4 ]; - p.d = pmv[ pmv_off + 3 + 3 * 4 ] + pmv[ pmv_off + 1 + 3 * 4 ]; - } - - // Top: a = m41 - m21, b = m42 - m22, c = m43 - m23, d = m44 - m24 - [1..4] column-major - // Top: a = m30 - m10, b = m31 - m11, c = m32 - m12, d = m33 - m13 - [0..3] column-major - { - final Plane p = planes[TOP]; - final float[] p_n = p.n; - p_n[0] = pmv[ pmv_off + 3 + 0 * 4 ] - pmv[ pmv_off + 1 + 0 * 4 ]; - p_n[1] = pmv[ pmv_off + 3 + 1 * 4 ] - pmv[ pmv_off + 1 + 1 * 4 ]; - p_n[2] = pmv[ pmv_off + 3 + 2 * 4 ] - pmv[ pmv_off + 1 + 2 * 4 ]; - p.d = pmv[ pmv_off + 3 + 3 * 4 ] - pmv[ pmv_off + 1 + 3 * 4 ]; - } - - // Near: a = m41 + m31, b = m42 + m32, c = m43 + m33, d = m44 + m34 - [1..4] column-major - // Near: a = m30 + m20, b = m31 + m21, c = m32 + m22, d = m33 + m23 - [0..3] column-major - { - final Plane p = planes[NEAR]; - final float[] p_n = p.n; - p_n[0] = pmv[ pmv_off + 3 + 0 * 4 ] + pmv[ pmv_off + 2 + 0 * 4 ]; - p_n[1] = pmv[ pmv_off + 3 + 1 * 4 ] + pmv[ pmv_off + 2 + 1 * 4 ]; - p_n[2] = pmv[ pmv_off + 3 + 2 * 4 ] + pmv[ pmv_off + 2 + 2 * 4 ]; - p.d = pmv[ pmv_off + 3 + 3 * 4 ] + pmv[ pmv_off + 2 + 3 * 4 ]; - } - - // Far: a = m41 - m31, b = m42 - m32, c = m43 - m33, d = m44 - m34 - [1..4] column-major - // Far: a = m30 - m20, b = m31 - m21, c = m32 + m22, d = m33 + m23 - [0..3] column-major - { - final Plane p = planes[FAR]; - final float[] p_n = p.n; - p_n[0] = pmv[ pmv_off + 3 + 0 * 4 ] - pmv[ pmv_off + 2 + 0 * 4 ]; - p_n[1] = pmv[ pmv_off + 3 + 1 * 4 ] - pmv[ pmv_off + 2 + 1 * 4 ]; - p_n[2] = pmv[ pmv_off + 3 + 2 * 4 ] - pmv[ pmv_off + 2 + 2 * 4 ]; - p.d = pmv[ pmv_off + 3 + 3 * 4 ] - pmv[ pmv_off + 2 + 3 * 4 ]; - } - - // Normalize all planes - for (int i = 0; i < 6; ++i) { - final Plane p = planes[i]; - final float[] p_n = p.n; - final double invl = Math.sqrt(p_n[0] * p_n[0] + p_n[1] * p_n[1] + p_n[2] * p_n[2]); - - p_n[0] /= invl; - p_n[1] /= invl; - p_n[2] /= invl; - p.d /= invl; - } + public void updateFrustumPlanes(final Matrix4f pmv) { + pmv.updateFrustumPlanes(this); } private static final boolean isOutsideImpl(final Plane p, final AABBox box) { - final float[] low = box.getLow(); - final float[] high = box.getHigh(); - - if ( p.distanceTo(low[0], low[1], low[2]) > 0.0f || - p.distanceTo(high[0], low[1], low[2]) > 0.0f || - p.distanceTo(low[0], high[1], low[2]) > 0.0f || - p.distanceTo(high[0], high[1], low[2]) > 0.0f || - p.distanceTo(low[0], low[1], high[2]) > 0.0f || - p.distanceTo(high[0], low[1], high[2]) > 0.0f || - p.distanceTo(low[0], high[1], high[2]) > 0.0f || - p.distanceTo(high[0], high[1], high[2]) > 0.0f ) { + final Vec3f lo = box.getLow(); + final Vec3f hi = box.getHigh(); + + if ( p.distanceTo(lo.x(), lo.y(), lo.z()) > 0.0f || + p.distanceTo(hi.x(), lo.y(), lo.z()) > 0.0f || + p.distanceTo(lo.x(), hi.y(), lo.z()) > 0.0f || + p.distanceTo(hi.x(), hi.y(), lo.z()) > 0.0f || + p.distanceTo(lo.x(), lo.y(), hi.z()) > 0.0f || + p.distanceTo(hi.x(), lo.y(), hi.z()) > 0.0f || + p.distanceTo(lo.x(), hi.y(), hi.z()) > 0.0f || + p.distanceTo(hi.x(), hi.y(), hi.z()) > 0.0f ) { return false; } return true; @@ -377,7 +298,7 @@ public class Frustum { * @param p the point * @return {@link Location} of point related to frustum planes */ - public final Location classifyPoint(final float[] p) { + public final Location classifyPoint(final Vec3f p) { Location res = Location.INSIDE; for (int i = 0; i < 6; ++i) { @@ -397,7 +318,7 @@ public class Frustum { * @param p the point * @return true if outside of the frustum, otherwise inside or on a plane */ - public final boolean isPointOutside(final float[] p) { + public final boolean isPointOutside(final Vec3f p) { return Location.OUTSIDE == classifyPoint(p); } @@ -408,7 +329,7 @@ public class Frustum { * @param radius radius of the sphere * @return {@link Location} of point related to frustum planes */ - public final Location classifySphere(final float[] p, final float radius) { + public final Location classifySphere(final Vec3f p, final float radius) { Location res = Location.INSIDE; // fully inside for (int i = 0; i < 6; ++i) { @@ -431,7 +352,7 @@ public class Frustum { * @param radius radius of the sphere * @return true if outside of the frustum, otherwise inside or intersecting */ - public final boolean isSphereOutside(final float[] p, final float radius) { + public final boolean isSphereOutside(final Vec3f p, final float radius) { return Location.OUTSIDE == classifySphere(p, radius); } @@ -439,13 +360,13 @@ public class Frustum { if( null == sb ) { sb = new StringBuilder(); } - sb.append("Frustum[ Planes[ ").append(PlatformPropsImpl.NEWLINE) - .append(" L: ").append(planes[0]).append(", ").append(PlatformPropsImpl.NEWLINE) - .append(" R: ").append(planes[1]).append(", ").append(PlatformPropsImpl.NEWLINE) - .append(" B: ").append(planes[2]).append(", ").append(PlatformPropsImpl.NEWLINE) - .append(" T: ").append(planes[3]).append(", ").append(PlatformPropsImpl.NEWLINE) - .append(" N: ").append(planes[4]).append(", ").append(PlatformPropsImpl.NEWLINE) - .append(" F: ").append(planes[5]).append("], ").append(PlatformPropsImpl.NEWLINE) + sb.append("Frustum[Planes[").append(System.lineSeparator()) + .append(" L: ").append(planes[0]).append(", ").append(System.lineSeparator()) + .append(" R: ").append(planes[1]).append(", ").append(System.lineSeparator()) + .append(" B: ").append(planes[2]).append(", ").append(System.lineSeparator()) + .append(" T: ").append(planes[3]).append(", ").append(System.lineSeparator()) + .append(" N: ").append(planes[4]).append(", ").append(System.lineSeparator()) + .append(" F: ").append(planes[5]).append("], ").append(System.lineSeparator()) .append("]"); return sb; } |